Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Ann Jt ; 9: 23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114420

RESUMEN

Background: Traditional Chinese medicine (TCM) offers the advantage of effectively relieving rheumatoid arthritis (RA) with minimal side effects. The Juanbi recipe is a commonly utilized TCM treatment for RA, yet its pharmacological mechanism remains unclear. Network pharmacology serves as an effective tool for identifying pharmaceutical ingredients and potential therapeutic targets of TCM, thereby uncovering its mechanisms. This study aimed to identify the core target genes and explore the mechanisms underlying the treatment of RA with the Juanbi recipe. Methods: This study adopted the method of network pharmacology to filter key gene targets of Juanbi recipe in RA treatment. Single-cell ribonucleic acid (RNA) sequencing data was used to screen the key genes to form the core genes of Juanbi recipe in RA treatment. The molecular docking technique was used to verify the core target genes and explore the mechanisms of Juanbi recipe in RA treatment. The RA model of mice was induced by the collagen-induced arthritis and the effect of Juanbi recipe was evaluated by intragastric administrating of extraction of Juanbi recipe. Enzyme linked immunosorbent assay was used to analysis serum inflammatory factors. Hematoxylin and eosin staining was used to evaluate inflammation and immunohistochemical (IHC) staining was used to evaluate core target genes and pathways in synovium of ankle. Results: This study screened out 281 active molecules in Juanbi recipe, found 105 key target genes of Juanbi recipe in RA treatment, and drew an "ingredient - molecule - gene" diagram. Juanbi recipe reduced the levels of serum interleukin (IL)-1 and IL-6, the inflammatory infiltration in synovium, demonstration that Juanbi recipe reduced both systemic and synovial inflammatory response. Single cell RNA sequencing data were used to select six core target genes and six core active molecules of Juanbi recipe in RA treatment. The pathways of Juanbi recipe in RA treatment involved in activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB) pathway. Results of western blot and IHC staining showed that Juanbi recipe decreased the expressions of c-jun and p65, which demonstrated that Juanbi recipe inhibited the expression of AP-1 and NF-κB pathway in RA. Conclusions: The core active molecules of Juanbi recipe could inhibit key factors of AP-1 and NF-κB pathway to inhibit the inflammation, which played a protective role in RA.

2.
Pathol Res Pract ; 258: 155334, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718468

RESUMEN

Placental transmogrification of the lung (PTL) is a rare pulmonary condition characterized by the presence of immature placental villous structures. The etiology and molecular mechanisms underlying this disease remain largely unknown. This functional study aimed to identify the molecular signatures in the pathogenesis of PTL via comprehensive transcriptome analysis. Comparative transcriptomic assessment of PTL tissue and stromal cells showed differential expression of 257 genes in PTL tissue and 189 genes in stromal cells. Notably, several transcription factors and regulators, including FOSB, FOS, JUN, and ATF3, were upregulated in PTL tissue. Additionally, genes associated with the extracellular matrix and connective tissue, such as COL1A1, MMP2, and SPARC, were significantly altered, indicating possible fibrotic changes. Gene set enrichment analysis highlighted the role of vascular development and extracellular matrix organization, and the Activator Protein-1 (AP-1) transcription factor was significantly activated in PTL tissue. Furthermore, the analysis highlighted an overlap of 25 genes between PTL tissue and stromal cells, underscoring the importance of shared molecular pathways in the pathogenesis of PTL. Among the shared genes, JUND, COL4A2, COL6A2, IGFBP5, and IGFBP7 were consistently upregulated, highlighting the possible involvement of AP-1-mediated signaling and fibrotic changes in the pathogenesis of PTL. The present findings pave the way for further research into the molecular mechanisms underlying PTL and offer novel insights for therapeutic interventions. Given the rarity of PTL, these molecular findings represent a significant step forward in our understanding this enigmatic disease.


Asunto(s)
Perfilación de la Expresión Génica , Factor de Transcripción AP-1 , Humanos , Femenino , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Embarazo , Transcriptoma , Pulmón/patología , Pulmón/metabolismo , Fibrosis/patología , Fibrosis/genética , Placenta/patología , Placenta/metabolismo , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/metabolismo
3.
Mol Metab ; 84: 101954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718896

RESUMEN

OBJECTIVE: The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS: We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS: The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS: This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.


Asunto(s)
Corteza Suprarrenal , Envejecimiento , Análisis de la Célula Individual , Transcriptoma , Humanos , Envejecimiento/genética , Envejecimiento/metabolismo , Análisis de la Célula Individual/métodos , Corteza Suprarrenal/metabolismo , Masculino , Perfilación de la Expresión Génica/métodos , Anciano , Adulto , Femenino , Persona de Mediana Edad , Macrófagos/metabolismo
4.
Bratisl Lek Listy ; 125(6): 382-386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757596

RESUMEN

OBJECTIVES: To distinguish whether idiopathic intracranial hypertension (IIH) is a condition predisposing to multiple sclerosis (MS) or an isolated disease, the current gene transcription factor Activator Protein-1 (AP-1) was evaluated with its potential to differentiate both diseases. BACKGROUND: The aim of this study was to investigate the use of AP-1 as biomarkers for the discrimination of IIH and MS. METHODS: AP-1, TNF-α, and IL-6 protein values in the CSF of the cases were evaluated by the ELISA method. The numerical measures of the groups and the ability of AP-1 to distinguish the groups were analyzed with the ROC curve. RESULTS: There was no difference between the groups in CSF TNF-α, IL-6, CSF, and serum biochemistry analyses. However, it was determined that the AP-1 concentration (pg/ml) was significantly higher in the IIH group, the sensitivity of AP-1 in separating those with IIH was 75%, and the specificity in separating those with MS was 60% in those with an AP-1 concentration of 606.5 and above. CONCLUSION: According to our results, the fact that CSF TNF-α and IL-6 values did not differ in IIH compared to MS revealed that IIH could not methodologically control MS, and AP-1 was a supportive parameter in differentiating both diseases (Tab. 2, Fig. 1, Ref. 31).


Asunto(s)
Biomarcadores , Esclerosis Múltiple , Factor de Transcripción AP-1 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores/líquido cefalorraquídeo , Diagnóstico Diferencial , Interleucina-6/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/diagnóstico , Seudotumor Cerebral/líquido cefalorraquídeo , Seudotumor Cerebral/diagnóstico , Curva ROC , Sensibilidad y Especificidad , Factor de Transcripción AP-1/líquido cefalorraquídeo , Factor de Transcripción AP-1/metabolismo , Factor de Necrosis Tumoral alfa/líquido cefalorraquídeo
5.
Wei Sheng Yan Jiu ; 53(2): 300-309, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604968

RESUMEN

OBJECTIVE: To investigate the effects and possible mechanisms of negative air ions(NAIs) on blood pressure, oxidative stress, and inflammatory status in spontaneous hypertension rats(SHR). METHODS: A total of 60 SHR(half male and half female) were randomly divided into one-month and three-month groups, 30 rats per groups, based on the duration of the intervention. Each group was further randomized into three groups based on the daily intervention time: SHR control group, 2 h NAIs-SHR group, and 6 h NAIs-SHR group, 10 rats per groups. In addition, 20 Wistar Kyoto(WKY)(half male and half female), were randomized into one-month WKY group and three-month WKY group, 10 rats per groups, based on the intervention time. The 2 h NAIs-SHR group and 6 h NAIs-SHR group were exposed to an environment with NAIs concentrations of 4.5×10~4-5×10~4 cm~3 per day for 2 h and 6 h. The WKY group and SHR group were exposed to normal air on a daily basis. Blood pressure of rats in each group was measured every three days, while weight was measured once a week. After sacrificing the rats in the first month and the third month of rearing, wet weight of the organs was weighed. The enzyme linked immunosorbent assay(ELISA) was used to detect 8-hydroxylated deoxyguanosine(8-OHdG), interleukin-6(IL-6), interleukin-8(IL-8), tumor necrosis factor-α(TNF-α), nitric oxide(NO) and endothelin-1(ET-1) levels. Reactive oxygen species(ROS) detection kit was used to detect ROS level. Malondialdehyde(MDA) and superoxide dismutase(SOD), glutathione(GSH) and glutathione disulfide(GSSG) were measured by colorimetric analysis. HE staining was conducted to observe the histopathological morphological changes of the thoracic aorta in each group, and Western blot was conducted to detect the thoracic aortap38 mitogen-activated protein kinase(p38 MAPK), extracellular signal-regulated kinases(ERK), c-Jun n-terminal kinase(JNK), c-fos proteins, c-jun proteins and their phosphorylated proteins level. RESULTS: The weight of WKY male mice in the same week age group was higher than that of SHR control group, and there was no significant difference in the weight between the other groups. The coefficient of heart in SHR control group(4.66±0.48) was higher than that in WKY group(3.73±0.15)(P<0.05), while there were no significant differences in the coefficients of brain, kidney, liver and spleen among the groups. Blood pressure in WKY group at the same age was lower than that in SHR group, and blood pressure in SHR control group at 2-5 and 8-11 weeks was higher than that in 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). HE staining showed that the internal, middle and external membranes of thoracic aorta in 2 h NAIs-SHR group and 6 h NAIs-SHR group were improved to varying degrees compared with those in SHR control group, including disordered internal membrane structure, thickened middle membrane and broken external membrane. In terms of oxidative stress levels, compared with the SHR control group, the ROS(0.66%±0.17%, 0.49%±0.32%) and 8-OHdG((48.29±8.00) ng/mL, (33.13±14.67)ng/mL) levels were lower in the 6 h NAIs-SHR group(P<0.05), while the GSH/GSSG ratio was higher in the one-month 6 h NAIs-SHR group(10.08±4.93). Compared with the 2 h NAIs-SHR group, the ROS level(0.99%±0.19%) was lower in the 6 h NAIs-SHR group(P<0.05). In terms of inflammatory factor levels, compared with the SHR control group, the IL-8 levels((160.44±56.54) ng/L, (145.77±38.39) ng/L) were lower in the 6 h NAIs-SHR group(P<0.05), while the ET-1 level((249.55±16.98) ng/L) was higher in the one-month WKY group. There was no significant difference in NO levels among the groups. The relative expression of p-p38 protein in the thoracic aorta of rats in the one-month SHR control group was lower than that in the WKY group(P<0.05). The relative expression of p-p38 and p-c-fos proteins in the thoracic aorta of rats at three-months was higher in the SHR control group than in the 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). CONCLUSION: The intervention of NAIs at a concentration of 4.5×10~4-5×10~4/cm~3 may regulate the partial oxidation and inflammatory state of SHR rats through the ROS/MAPK/AP1 signaling pathway, thereby reducing their blood pressure level.


Asunto(s)
Hipertensión , Interleucina-8 , Femenino , Ratas , Masculino , Ratones , Animales , Ratas Endogámicas SHR , Presión Sanguínea , Ratas Endogámicas WKY , Interleucina-8/metabolismo , Interleucina-8/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/farmacología , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Especies Reactivas de Oxígeno , Estrés Oxidativo , Inflamación
6.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396960

RESUMEN

Active vitamin D derivatives (VDDs)-1α,25-dihydroxyvitamin D3/D2 and their synthetic analogs-are well-known inducers of cell maturation with the potential for differentiation therapy of acute myeloid leukemia (AML). However, their dose-limiting calcemic activity is a significant obstacle to using VDDs as an anticancer treatment. We have shown that different activators of the NF-E2-related factor-2/Antioxidant Response Element (Nrf2/ARE) signaling pathway, such as the phenolic antioxidant carnosic acid (CA) or the multiple sclerosis drug monomethyl fumarate (MMF), synergistically enhance the antileukemic effects of various VDDs applied at low concentrations in vitro and in vivo. This study aimed to investigate whether glutathione, the major cellular antioxidant and the product of the Nrf2/ARE pathway, can mediate the Nrf2-dependent differentiation-enhancing activity of CA and MMF in HL60 human AML cells. We report that glutathione depletion using L-buthionine sulfoximine attenuated the enhancing effects of both Nrf2 activators concomitant with downregulating vitamin D receptor (VDR) target genes and the activator protein-1 (AP-1) family protein c-Jun levels and phosphorylation. On the other hand, adding reduced glutathione ethyl ester to dominant negative Nrf2-expressing cells restored both the suppressed differentiation responses and the downregulated expression of VDR protein, VDR target genes, as well as c-Jun and P-c-Jun levels. Finally, using the transcription factor decoy strategy, we demonstrated that AP-1 is necessary for the enhancement by CA and MMF of 1α,25-dihydroxyvitamin D3-induced VDR and RXRα protein expression, transactivation of the vitamin D response element, and cell differentiation. Collectively, our findings suggest that glutathione mediates, at least in part, the potentiating effect of Nrf2 activators on VDDs-induced differentiation of AML cells, likely through the positive regulation of AP-1.


Asunto(s)
Abietanos , Leucemia Mieloide Aguda , Factor de Transcripción AP-1 , Humanos , Factor de Transcripción AP-1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Vitamina D/uso terapéutico , Vitaminas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Receptores de Calcitriol/metabolismo , Diferenciación Celular , Transducción de Señal , Glutatión/metabolismo
7.
Cell Signal ; 117: 111124, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417633

RESUMEN

Overwhelming macrophage M1 polarization induced by malfunction of the renin-angiotensin-aldosterone system (RAAS) initiates inflammatory responses, which play a crucial role in various cardiovascular diseases. However, the underlying regulatory mechanism remains elusive. Here, we identified adaptor protein HIP-55 as a critical regulator of macrophage M1 polarization. The expression of HIP-55 was upregulated in M1 macrophage induced by Ang II. Overexpression of HIP-55 significantly promoted Ang II-induced macrophage M1 polarization, whereas genetic deletion of HIP-55 inhibited the Ang II-induced macrophage M1 polarization. Mechanistically, HIP-55 facilitated activator protein-1 (AP-1) complex activation induced by Ang II via promoting ERK1/2 and JNK phosphorylation. Moreover, blocking AP-1 complex activation can attenuate the function of HIP-55 in macrophage polarization. Collectively, our results reveal the role of HIP-55 in macrophage polarization and provide potential therapeutic insights for cardiovascular diseases associated with RAAS dysfunction.


Asunto(s)
Enfermedades Cardiovasculares , Proteínas de Microfilamentos , Transducción de Señal , Factor de Transcripción AP-1 , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Enfermedades Cardiovasculares/metabolismo , Macrófagos/metabolismo , Animales , Ratones , Proteínas de Microfilamentos/metabolismo , Dominios Homologos src
8.
Biomol Ther (Seoul) ; 32(2): 240-248, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296652

RESUMEN

We observed that treatment with dimethyl α-ketoglutarate (DMK) increased the amount of intracellular α-ketoglutarate significantly more than that of α-ketoglutarate in HaCaT cells. DMK also increased the level of intracellular 4-hydroxyproline and promoted the production of collagen in HaCaT cells. In addition, DMK decreased the production of collagenase and elastase and down-regulated the expression of selected matrix metalloproteinases (MMPs), such as MMP-1, MMP-9, MMP-10, and MMP-12, via transcriptional inhibition. The inhibition of MMPs by DMK was mediated by the suppression of the IL-1 signaling cascade, leading to the attenuation of ERK1/2 phosphorylation and AP-1 transactivation. Our study results illustrate that DMK, an alkylated derivative of α-ketoglutarate, increased the level of 4-hydroxyproline, promoted the production of collagen, and inhibited the expression of selected MMPs by affecting the IL-1 cascade and AP-1 transactivation in HaCaT cells. The results suggest that DMK might be useful as an anti-wrinkle ingredient.

9.
Exp Ther Med ; 26(6): 577, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023354

RESUMEN

Alendronate (ALN) is an anti-bone-resorptive drug with inflammatory side effects. ALN upregulates lipid A-induced interleukin (IL)-1α and IL-1ß release by J774.1 cells via apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) activation. The present study examined whether ALN augmented lipid A-induced proinflammatory cytokine production using ASC-deficient mouse macrophage-like RAW264 cells. Pretreatment of RAW264 cells with ALN significantly augmented lipid A-induced IL-1ß release, although ALN did not upregulate the expression of Toll-like receptor 4, myeloid differentiation factor 88 (MyD88) and caspase-11. Moreover, pretreatment of caspase-11-deficient RAW264.7 cells with ALN significantly augmented lipid A-induced IL-1ß release. Notably, ALN upregulated the activation of FosB, c-Jun or JunD, but not c-Fos or NF-κB in RAW264 cells. Furthermore, pretreatment with the activator protein 1 (AP-1) inhibitor SR11302, but not the c-Fos inhibitor T-5224, before addition of ALN inhibited ALN-augmented IL-1ß release by lipid A-treated RAW264 cells. SR11302 also reduced ALN-augmented lactate dehydrogenase release by the cells. These findings collectively suggested that ALN augmented lipid A-induced IL-1ß release and cell membrane damage in ASC-deficient RAW264 cells via activation of AP-1, but not NF-κB.

10.
J Med Life ; 16(7): 1120-1126, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37900081

RESUMEN

As sepsis is associated with a 50% increase in mortality, sepsis-induced cardiomyopathy has become a critical topic. A multidisciplinary approach is required for the diagnosis and treatment of septic cardiomyopathy. This study looked at Sulforaphane, a natural product that aims to evaluate cardiac function after sepsis, and its likely mechanism of action. Twenty-four adult male Swiss albino mice were randomly divided into 4 equal groups (n=6): sham, CLP, vehicle Sulforaphane (the same amount of DMSO injected IP one hour before the CLP), and Sulforaphane group (one hour before the CLP, a 5mg/kg dose of Sulforaphane was injected). Cardiac tissue levels of toll-like receptor 4 (TLR-4), pro-inflammatory mediators, anti-inflammatory markers, oxidative stress markers, apoptosis markers, and serum cardiac damage biomarkers were assessed using ELISA. Statistical analyses, including t-tests and ANOVA tests, were performed with a significance level of 0.05 for normally distributed data. Compared to the sham group, the sepsis group had significantly elevated levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB (p<0.05). In contrast, the Sulforaphane pre-treated group demonstrated significantly lower levels of these markers (p<0.05). Additionally, Bcl-2 levels were significantly reduced (p<0.05) in the Sulforaphane group. Sulforaphane administration also significantly attenuated cardiac tissue injury (p<0.05). The findings suggest that Sulforaphane can decrease heart damage in male mice during CLP-induced polymicrobial sepsis by suppressing TLR-4/NF-kB downstream signal transduction pathways.


Asunto(s)
Cardiomiopatías , Lesiones Cardíacas , Sepsis , Ratones , Masculino , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/uso terapéutico , Cardiomiopatías/etiología , Cardiomiopatías/complicaciones , Lesiones Cardíacas/complicaciones , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
11.
Clin Transl Med ; 13(8): e1364, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37581569

RESUMEN

BACKGROUND: The immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin-dependent degradation of IKZF1 and subsequent down-regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co-factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation. METHODS: To identify unknown components of the IKZF1 complex, we analyzed the genome-wide binding of IKZF1 in MM cells using chromatin immunoprecipitation-sequencing (ChIP-seq) and screened for the co-occupancy of IKZF1 with other DNA-binding factors on the myeloma genome using the ChIP-Atlas platform. RESULTS: We found that c-FOS, a member of the activator protein-1 (AP-1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome-wide screening revealed the co-occupancy of c-FOS with IKZF1 on the regulatory regions of IKZF1-target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre-B cells or mature T-lymphocytes. c-FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein-protein interactions. The complex also includes c-JUN and IKZF3 but not IRF4. Treatment of MM cells with short-hairpin RNA against FOS or a selective AP-1 inhibitor significantly enhanced the anti-MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP-1 inhibitor mitigated the lenalidomide resistance of MM cells. CONCLUSIONS: C-FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co-factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.


Asunto(s)
Resistencia a Antineoplásicos , Factor de Transcripción Ikaros , Lenalidomida , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-fos , Animales , Humanos , Ratones , Médula Ósea , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Transactivadores/uso terapéutico , Factor de Transcripción AP-1/uso terapéutico , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166817, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37532113

RESUMEN

The constitutive activation and aberrant expression of Signal Transducer and Activator of Transcription 3 (STAT3) plays a key role in initiation and progression of cervical cancer (CaCx). How STAT3 influences HPV transcription is poorly defined. In the present study, we probed direct and indirect interactions of STAT3 with HPV16/18 LCR. In silico assessment of cis-elements present on LCR revealed the presence of potential STAT3 binding motifs. However, experimental validation by ChIP-PCR could not confirm any specific STAT3 binding on HPV16 LCR. Protein-protein interaction (PPI) network analysis of STAT3 with other host transcription factors that bind LCR, highlighted the physical association of STAT3 with c-FOS and c-JUN. This was further confirmed in vitro by co-immunoprecipitation, where STAT3 co-immunoprecipitated with c-FOS and c-JUN in CaCx cells. The result was supported by immunocytochemical analysis and colocalization of STAT3 with c-FOS and c-JUN. Positive signals in proximity ligation assay validated physical interaction and colocalization of STAT3 with AP1. Colocalization of STAT3 with c-FOS and c-JUN increased upon IL-6 treatment and decreased post-Stattic treatment. Alteration of STAT3 expression affected the subcellular localization of c-FOS and c-JUN, along with the expression of viral oncoproteins (E6 and E7) in CaCx cells. High expression of c-JUN in tumor tissues correlated with poor prognosis in both HPV16 and HPV18 CaCx cohort whereas high expression of STAT3 correlated with poor prognosis in HPV18 CaCx lesions only. Overall, the data suggest an indirect interaction of STAT3 with HPV LCR via c-FOS and c-JUN and potentiate transcription of viral oncoproteins.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Factor de Transcripción AP-1 , Neoplasias del Cuello Uterino , Femenino , Humanos , Carcinogénesis/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
13.
Zhen Ci Yan Jiu ; 48(4): 366-71, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37186201

RESUMEN

OBJECTIVE: To observe the effect of acupoint injection on serum T helper (Th)1/Th2 related cytokines, and the expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and activator protein-1 (AP-1) of nasal mucosa in allergic rhinitis (AR) rats, so as to explore its mechanism underlying improvement of AR. METHODS: Thirty-two SD rats were randomly divided into normal, model, non-acupoint injection and acupoint injection groups (n=8 in each group). The AR model was established by ovalbumin sensitization. In the acupoint injection group, "Yintang" (GV24+) and bilateral "Yingxiang" (LI20) were selected for injection of mixture solution of dexamethasone and lidocaine (0.05 mL/acupoint), once every 4 days for a total of 4 times. The non-acupoints, located at the midpoint between the "Houhai" and "Huantiao" (GB30) on the bilateral hips and the sites 5 cm inferior to the axillary were injected with the same dose of mixture solution as that in the acupoint injection group. The AR severity was assessed by cumulative quantification scoring methods (including the numbers of nose-catching and sneezes, and the amount of nasal secretions in 30 min). The pathological changes of nasal mucosa were observed by HE staining. The contents of immunoglobulin E (IgE), interleukin (IL)-4 and interferon (IFN)-γ in serum were detected by ELISA. The expressions of TLR4 and MyD88 in nasal mucosa was detected by immunofluorescence. The expression of AP-1 in nasal mucosa was detected by Western blot. RESULTS: Following modeling, the AR symptom score, serum IgE and IL-4 contents and expression of TLR4, MyD88 and AP-1 of nasal mucosa were significantly increased in the model group than those in the normal group (P<0.01), while the serum IFN-γ content was significantly decreased (P<0.01). Compared with the model group and non-acupoint injection group, the AR symptom score, the serum contents of IgE and IL-4 and the expressions of TLR4, MyD88 and AP-1 in nasal mucosa were significantly decreased in the acupoint injection group (P<0.01, P<0.05), while the serum IFN-γ content was significantly increased (P<0.01). H.E. staining of the nasal mucosa showed that most of the epithelium fell off, the lamina propria vessels expanded, the glands proliferated, and eosinophils and lymphocytes infiltrated in the model and non-acupoint injection groups, and those were significantly improved in the acupoint injection group. CONCLUSION: Acupoint injection can effectively improve allergic inflammation of the nose in AR rats, which may be related with its function in inhibiting the abnormal activation of TLR4/AP-1 signaling pathway and regulating the imbalance of Th1/Th2.


Asunto(s)
Rinitis Alérgica , Factor de Transcripción AP-1 , Ratas , Animales , Factor de Transcripción AP-1/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Ratas Sprague-Dawley , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/genética , Transducción de Señal , Inmunoglobulina E/metabolismo , Modelos Animales de Enfermedad
14.
Am J Physiol Renal Physiol ; 324(6): F581-F589, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141146

RESUMEN

Chronic kidney disease (CKD) is a major health problem. Kidney fibrosis is a hallmark and final common pathway of CKD. The Hippo/yes-associated protein (YAP) pathway regulates organ size, inflammation, and tumorigenesis. Our previous study demonstrated tubular YAP activation by tubule-specific double knockout of mammalian STE20-like protein kinase 1/2 (Mst1/2) induced CKD in mice, but the underlying mechanisms remain to be fully elucidated. Activator protein (AP)-1 activation was found to promote tubular atrophy and tubulointerstitial fibrosis. Therefore, we studied whether YAP regulates AP-1 expression in the kidney. We found that expression of various AP-1 components was induced in kidneys subjected to unilateral ureteric obstruction and in Mst1/2 double knockout kidneys, and these inductions were blocked by deletion of Yap in tubular cells, with Fosl1 being most affected compared with other AP-1 genes. Inhibition of Yap also most highly suppressed Fosl1 expression among AP-1 genes in HK-2 and IMCD3 renal tubular cells. YAP bound to the Fosl1 promoter and promoted Fosl1 promoter-luciferase activity. Our results suggest that YAP controls AP-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.NEW & NOTEWORTHY Yes-associated protein (YAP) activation leads to tubular injury, renal inflammation, and fibrosis, but the underlying mechanisms are not fully understood. We now provide genetic evidence that YAP promotes activator protein-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Inflamación/metabolismo , Riñón/metabolismo , Mamíferos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Proteínas Señalizadoras YAP
15.
Exp Anim ; 72(4): 454-459, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37100620

RESUMEN

Nuclear factor of activated T cells (NFAT) is a transcription factor essential for immunological and other biological responses. To develop analyzing system for NFAT activity in vitro and in vivo, we generated reporter mouse lines introduced with NFAT-driven enhanced green fluorescent protein (EGFP) expressing gene construct. Six tandem repeats of -286 to -265 of the human IL2 gene to which NFAT binds in association with its co-transcription factor, activator protein (AP)-1, was conjunct with thymidine kinase minimum promoter and following EGFP coding sequence. Upon introduction of the resulting reporter cassette into C57BL/6 fertilized eggs, the transgenic mice were obtained. Among 7 transgene-positive mice in 110 mice bone, 2 mice showed the designated reporter mouse character. Thus, the EGFP fluorescence of CD4+ and CD8+ T cells in these mice was enhanced by stimulation through CD3 and CD28. Each of phorbol 12-myristate 13-acetate (PMA) and ionomycin (IOM) stimulation weakly but their combined stimulation strongly enhanced EGFP expression. The stimulation-induced EGFP upregulation was also observed following T cell subset differentiation in a different manner. The EGFP induction by PMA + IOM stimulation was more potent than that by CD3/CD28 stimulation in helper T (Th)1, Th2, Th9, and regulatory T cells, while both stimulation conditions displayed the equivalent EGFP induction in Th17 cells. Our NFAT reporter mouse lines are useful for analyzing stimulation-induced transcriptional activation mediated by NFAT in cooperation with AP-1 in T cells.


Asunto(s)
Antígenos CD28 , Linfocitos T CD8-positivos , Ratones , Humanos , Animales , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Ratones Transgénicos , Activación de Linfocitos
16.
Zhonghua Zhong Liu Za Zhi ; 45(2): 129-137, 2023 Feb 23.
Artículo en Chino | MEDLINE | ID: mdl-36781233

RESUMEN

Objective: To investigate the effect of ubiquitin mutation at position 331 of tumor necrosis factor receptor related factor 6 (TRAF6) on the biological characteristics of colorectal cancer cells and its mechanism. Methods: lentivirus wild type (pCDH-3×FLAG-TRAF6) and mutation (pCDH-3×FLAG-TRAF6-331mut) of TRAF6 gene expression plasmid with green fluorescent protein tag were used to infect colorectal cancer cells SW480 and HCT116, respectively. The infection was observed by fluorescence microscope, and the expressions of TRAF6 and TRAF6-331mut in cells was detected by western blot. Cell counting kit-8 (CCK-8) and plate cloning test were used to detect the proliferation ability of colorectal cancer cells in TRAF6 group and TRAF6-331mut group, cell scratch test to detect cell migration, Transwell chamber test to detect cell migration and invasion, immunoprecipitation to detect the ubiquitination of TRAF6 and TRAF6-331mut with ubiquitinof lysine binding sites K48 and K63. Western blot was used to detect the effects of TRAF6 and TRAF6-331mut over expression on the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase mitogen-activated protein kinase (MAPK)/activating protein-1(AP-1) signal pathway. Results: The successful infection of colorectal cancer cells was observed under fluorescence microscope. Western blot detection showed that TRAF6 and TRAF6-331mut were successfully expressed in colorectal cancer cells. The results of CCK-8 assay showed that on the fourth day, the absorbance values of HCT116 and SW480 cells in TRAF6-331mut group were 1.89±0.39 and 1.88±0.24 respectively, which were lower than those in TRAF6 group (2.09±0.12 and 2.17±0.45, P=0.036 and P=0.011, respectively). The results of plate colony formation assay showed that the number of clones of HCT116 and SW480 cells in TRAF6-331mut group was 120±14 and 85±14 respectively, which was lower than those in TRAF6 group (190±21 and 125±13, P=0.001 and P=0.002, respectively). The results of cell scratch test showed that after 48 hours, the percentage of wound healing distance of HCT116 and SW480 cells in TRAF6-331mut group was (31±12)% and (33±14)%, respectively, which was lower than those in TRAF6 group [(43±13)% and (43±7)%, P=0.005 and 0.009, respectively]. The results of Transwell migration assay showed that the migration numbers of HCT116 and SW480 cells in TRAF6-331mut group were significantly lower than those in TRAF6 group (P<0.001 and P<0.002, respectively). The results of Transwell invasion assay showed that the number of membrane penetration of HCT116 and SW480 cells in TRAF6-331mut group was significantly lower than those in TRAF6 group (P=0.008 and P=0.009, respectively). The results of immunoprecipitation detection showed that the ubiquitin protein of K48 chain pulled by TRAF6-331mut was lower than that of wild type TRAF6 in 293T cells co-transfected with K48 (0.57±0.19), and the ubiquitin protein of K63 chain pulled down by TRAF6-331mut in 293T cells co-transfected with K63 was lower than that of wild type TRAF6 (0.89±0.08, P<0.001). Western blot assay showed that the protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-HCT116 cells were 0.63±0.08, 0.42±0.08 and 0.60±0.07 respectively, which were lower than those in TRAF6-HCT116 cells (P=0.002, P<0.001 and P<0.001, respectively). The expression level of AP-1 protein in TRAF6-HCT116 cells was 0.89±0.06, compared with that in TRAF6-HCT116 cells. The difference was not statistically significant (P>0.05). The protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-SW480 cells were 0.50±0.06, 0.51±0.04, 0.48±0.02, respectively, which were lower than those in TRAF6-SW480 cells (all P<0.001). There was no significant difference in AP-1 protein expression between TRAF6-331mut-SW480 cells and TRAF6-SW480 cells. Conclusion: The ubiquitin site mutation of TRAF6 gene at 331 may prevent the binding of TRAF6 and ubiquitin lysine sites K48 and K63, and then affect the expressions of proteins related to downstream NF-κB and MAPK/AP-1 signal pathways, and inhibit the proliferation, migration and invasion of colorectal cancer cells.


Asunto(s)
Línea Celular Tumoral , Neoplasias Colorrectales , Factor 6 Asociado a Receptor de TNF , Humanos , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Lisina/metabolismo , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción AP-1/metabolismo , Ubiquitina/metabolismo
17.
Biol Open ; 12(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36636913

RESUMEN

Injury triggers a genetic program that induces gene expression for regeneration. Recent studies have identified regeneration-response enhancers (RREs); however, it remains unclear whether a common mechanism operates in these RREs. We identified three RREs from the zebrafish fn1b promoter by searching for conserved sequences within the surrounding genomic regions of regeneration-induced genes and performed a transgenic assay for regeneration response. Two regions contained in the transposons displayed RRE activity when combined with the -0.7 kb fn1b promoter. Another non-transposon element functioned as a stand-alone enhancer in combination with a minimum promoter. By searching for transcription factor-binding motifs and validation by transgenic assays, we revealed that the cooperation of E-box and activator protein 1 motifs is necessary and sufficient for regenerative response. Such RREs respond to variety of tissue injuries, including those in the zebrafish heart and Xenopus limb buds. Our findings suggest that the fidelity of regeneration response is ensured by the two signals evoked by tissue injuries. It is speculated that a large pool of potential enhancers in the genome has helped shape the regenerative capacities during evolution.


Asunto(s)
Factor de Transcripción AP-1 , Pez Cebra , Animales , Factor de Transcripción AP-1/metabolismo , Pez Cebra/metabolismo , Animales Modificados Genéticamente , Regiones Promotoras Genéticas , Secuencia Conservada
18.
Mol Med Rep ; 27(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633137

RESUMEN

Secreted protein acidic and rich in cysteine (SPARC), also called basement­membrane protein 40 or osteonectin, is a matricellular protein that is abundant not only in bone tissue as a non­collagenous protein but is also ubiquitously expressed in non­calcified tissue. SPARC is located intracellularly and disruption of the Sparc gene has been reported to reduce bone formation and increase fat tissue; however, the mechanism by which SPARC inhibits adipogenesis remains unclear. The present study evaluated the intracellular function of SPARC in adipogenesis using the bone marrow stromal cell line ST2. When ST2 cells with low SPARC production were cloned, intrinsic activator protein­1 (AP­1) activity was markedly higher, mineralized nodule formation was significantly lower and lipid accumulation was significantly increased compared with in the parental ST2 cells. Forced expression of secreted SPARC with the signal peptide­coding sequences of wild­type Sparc or preprotrypsin in SPARC­low ST2 cells significantly reduced AP­1 transcription activity; however, these reductions were not observed in the absence of signal peptide sequences. Recombinant SPARC, produced using Brevibacillus brevis, specifically bound to c­Fos but not c­Jun and inhibited the binding of c­Fos/c­Jun to a TPA­response element sequence. These data suggested that SPARC was incorporated into the cells from the extracellular spaces and serves an intracellular role as a decoy counterpart for c­Fos, as well as being associated with osteoblastogenesis through the inhibition of adipogenesis. These findings may provide new insights into regenerative medicine.


Asunto(s)
Células Madre Mesenquimatosas , Osteonectina , Osteonectina/genética , Osteonectina/metabolismo , Adipogénesis/genética , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Diferenciación Celular/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Señales de Clasificación de Proteína
19.
Neuroscience ; 509: 173-186, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395916

RESUMEN

Understanding the neuro-molecular mechanisms that mediate the quantity of daily physical activity (PA) level is of medical significance, given the tremendous health benefits associated with greater physical activity. Here, we examined the effects of intra-nucleus accumbens (NAc) inhibition of activator protein-1 (AP-1), an important transcriptional factor downstream of cAMP response element binding protein (CREB; a reward-related transcriptional regulator), on voluntary wheel running behavior in wild-type (WT) and low voluntary running (LVR) female rats. Transcriptome analysis of the nucleus accumbens (NAc; a brain region critical for PA reward and motivation) was performed to further determine molecular responses to intra-NAc AP-1 inhibition in these rat lines. Within WT rats, intra-NAc AP-1 inhibition caused a significant decrease in overnight running distance in comparison to control rats (p = 0.009). Transcriptomic and bioinformatic analysis in WT rats identified involvement of gene products that regulate cellular proliferation and development, which were cellular processes regulated by AP-1. In contrast to above decreased WT distances, intra-NAc AP-1 inhibition in LVR rats increased nightly running distance in comparison to LVR control rats (p = 0.0008). Further analysis identified gene products that are associated with regulating intracellular Ca2+ homeostasis, calcium ion binding and neuronal excitability. In short, our study aims to gain a comprehensive understanding of transcriptional profile that was due to AP-1 inhibition in NAc, in which it could not only enhance the knowledge regarding molecular regulatory loops within NAc for modulating voluntary running behavior, but also provide further insights into molecular targets for future investigations.


Asunto(s)
Actividad Motora , Factor de Transcripción AP-1 , Ratas , Femenino , Animales , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/farmacología , Actividad Motora/fisiología , Transcriptoma , Núcleo Accumbens/metabolismo , Perfilación de la Expresión Génica
20.
Mol Cell Biochem ; 478(4): 791-805, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36094721

RESUMEN

Connexin 43 (Cx43, also known as Gja1) is the most abundant testicular gap junction protein. It has a crucial role in the support of spermatogenesis by Sertoli cells in the seminiferous tubules as well as in androgen synthesis by Leydig cells. The multifunctional family of Ca2+/calmodulin-dependent protein kinases (CaMK) is composed of CaMK I, II, and IV and each can serve as a mediator of nuclear Ca2+ signals. These kinases can control gene expression by phosphorylation of key regulatory sites on transcription factors. Among these, AP-1 members cFos and cJun are interesting candidates that seem to cooperate with CaMKs to regulate Cx43 expression in Leydig cells. In this study, the Cx43 promoter region important for CaMK-dependent activation is characterized using co-transfection of plasmid reporter-constructs with different plasmids coding for CaMKs and/or AP-1 members in MA-10 Leydig cells. Here we report that the activation of Cx43 expression by cFos and cJun is increased by CaMKI. Furthermore, results from chromatin immunoprecipitation suggest that the recruitment of AP-1 family members to the proximal region of the Cx43 promoter may involve another uncharacterized AP-1 DNA regulatory element and/or protein-protein interactions with other partners. Thus, our data provide new insights into the molecular regulatory mechanisms that control mouse Cx43 transcription in testicular Leydig cells.


Asunto(s)
Células Intersticiales del Testículo , Neoplasias , Masculino , Ratones , Animales , Células Intersticiales del Testículo/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA