Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Clin Chim Acta ; : 119987, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368684

RESUMEN

Mucopolysaccharidosis type IIIA is a lysosomal storage disorder caused by mutations in the gene coding for heparan-N-sulphatase, a crucial enzyme in the degradation of heparan sulfate. In mucopolysaccharidosis type IIIA, heparan sulfate accumulates in the lysosomes, predominantly affecting the central nervous system. It is the most common and most severe form of mucopolysaccharidosis type III, with onset typically before the age of ten years. There is an ongoing effort to develop therapies that aim at restoring enzyme function in the brain. This study introduces a novel tandem mass spectrometry method for assessing heparan-N-sulphatase activity in pediatric cerebrospinal fluid from healthy and disease individuals. Analysis of cerebrospinal fluid samples revealed marked differences in enzyme activity, with mucopolysaccharidosis type IIIA individuals exhibiting significantly reduced levels. This new method could serve as a valuable tool for evaluating the efficacy of future therapeutic interventions targeting sulphatase activity restoration in the brain.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39296471

RESUMEN

Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.

3.
Microsc Res Tech ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192686

RESUMEN

As a result of their unique and novel properties, nanocomposites have found applications in a wide variety of fields. The purpose of this study is to demonstrate the ability to synthesize nanoparticles consisting of zinc oxide (ZnO) and graphene oxide (GO) via sol-gel techniques. An x-ray diffractometer (XRD) as well as a UV-visible spectrometer were used to determine the crystalline and optical characteristics of the prepared samples. A hexagonal wurtzite crystal structure was observed in both pure ZnO nanoparticles and those that contain GO based on XRD results. It was estimated that the average crystallite size is based on the broadening of x-ray lines. In comparison with pure ZnO, the antimicrobial properties were enhanced when GO was incorporated with ZnO. In addition, experiments on the absorption edge indicated the presence of a red shift as a result of the incorporation of GO. When GO is incorporated in quantitative amounts, the bandgap value of pure ZnO decreased. FTIR spectra exhibit a band of absorption at 486 cm-1, which confirms Zn-O stretching in both samples. SEM images reveal a random pattern of structural features on the surface of the prepared samples. According to the EDX spectrum, pure GO nanoparticles and those doped with ZnO contain 61%-64% zinc and 32%-34% oxygen, respectively. When annealed at a higher temperature, ZnO NPs produced more H2 with a narrower bandgap than before annealing. In addition, methyl blue (MB) was used as an example of an organic compound in order to investigate the potential photocatalytic properties of nanoparticles with ZnO doped GO. In addition to DPPH assays, ZnO nanoparticles and ZnO doped GO nanoparticles were tested for their ability to scavenge free radicals. Comparing ZnO doped GO NPs with pure ZnO, these nanoparticles showed increased antioxidant activity. Based on the increased zone of inhibition observed for pure ZnO and ZnO doped GO (5, 10, 50, and 100 mg/mL), the antibacterial activity of pure ZnO and ZnO doped GO is concentration dependent. A detailed discussion of the results of the study demonstrated that ZnO doped GO and pure ZnO are toxic in different ways depending on how long they survive in degreased Zebrafish embryos and how fast they decompose. RESEARCH HIGHLIGHTS: The scope of the manuscript was under the results of the study confirmed that both nanoparticles exhibited concentration dependent antioxidative activity. Determined that 89% of methyl orange dye can be degraded photocatalytically. ZnO nanoparticles were found to be 74.86% antioxidant at a concentration of 50 g/mL in the present study. At a concentration of 50 g/mL, ZnO doped GO NPs showed 79.1% antioxidant activity. Photocatalytic degradation mechanism scheme is implicit in the photoexcited charge carrier transportation path is observed for all the samples. Survival rate of zebrafish embryos was shown to decrease with increasing concentrations of ZnO and zinc oxide plus GO nanoparticles.

4.
J Phycol ; 60(4): 1001-1020, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38995628

RESUMEN

Climate change and global warming have led to more frequent harmful algal blooms in the last decade. Among these blooms, Heterosigma akashiwo, a golden-brown phytoflagellate, is one of the 40 species with a high potential to form harmful blooms, leading to significant fish mortality. Climate change leads to rising atmospheric and ocean temperatures. These changes, along with altered rainfall patterns and meltwater input, can cause fluctuations in ocean salinity. Elevated atmospheric carbon dioxide (CO2) levels increase water acidity as oceans absorb CO2. This study investigated the effects of temperature, salinity, and CO2 levels on lipid production, hemolytic activity, and toxicity of H. akashiwo using the design of experiment approach, which can be used to investigate the effect of two or more factors on the same response simultaneously in a precise manner with fewer experiments and materials but in a larger region of the factor space. The lipid content was measured using a high-throughput Nile Red method, and the highest level of lipid content was detected at 25°C, a salinity of 30, and a CO2 concentration of 400 ppm. Hemolytic activity was assessed using rabbit blood erythrocytes in a 96-well plate, and the optimal conditions for achieving the highest hemolytic activity were determined at 15°C, a salinity of 10, and a CO2 concentration of 400 ppm. As the chemical structure of the toxin is not known, we used the toxicity against the cell line RTgill-W1 as the cell toxicity proxy. The maximum toxicity was identified at 15°C, a salinity of 10, and a CO2 level of 700 ppm.


Asunto(s)
Dióxido de Carbono , Salinidad , Temperatura , Animales , Estramenopilos/química , Hemólisis , Cambio Climático , Conejos , Floraciones de Algas Nocivas , Peces
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1059-1069, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-38977335

RESUMEN

OBJECTIVE: To investigate the cell membrane-penetrating capacity of human cell-penetrating peptide hPP10 carrying human antioxidant protein Cu-Zn superoxide dismutase (Cu, Zn-SOD) and assess the antioxidant and anti-inflammatory activity of these fusion proteins. METHODS: The fusion protein hPP10-Cu, Zn-SOD was obtained by genetic engineering and identified by Western blotting. The membrane-penetrating ability of the fusion protein was evaluated by immunofluorescence assay, fluorescence colocalization assay and Western blotting, its SOD enzyme activity was detected using a commercial kit, and its effect on cell viability was assessed with MTT assay. In a HEK293 cell model of H2O2-induced oxidative stress, the effect of hPP10-Cu, Zn-SOD on cell apoptosis was analyzed with flow cytometry and RT-qPCR, and its antioxidant effect was assessed using reactive oxygen species (ROS) assay; its anti-inflammatory effect was evaluated in mouse model of TPA-induced ear inflammation by detecting expression of the inflammatory factors using RT-qPCR, Western blotting and immunohistochemistry. RESULTS: The fusion protein hPP10-Cu, Zn-SOD was successfully obtained. Immunofluorescence assay confirmed obvious membrane penetration of this fusion protein in HEK293 cells, localized both in the cell membrane and the cell nuclei after cell entry. hPP10-Cu, Zn-SOD at the concentration of 5 µmol/L exhibited strong antioxidant activity with minimal impact on cell viability at the concentration up to 10 µmol/L. The fusion protein obviously inhibited apoptosis and decreased intracellular ROS level in the oxidative stress cell model and significantly reduced mRNA and protein expression of the inflammatory factors in the mouse model of ear inflammation. CONCLUSION: The fusion protein hPP10-Cu, Zn-SOD capable of penetrating the cell membrane possesses strong antioxidant and anti-inflammatory activities with only minimal cytotoxicity, demonstrating the value of hPP10 as an efficient drug delivery vector and the potential of hPP10-Cu, Zn-SOD in the development of skincare products.


Asunto(s)
Antiinflamatorios , Antioxidantes , Apoptosis , Péptidos de Penetración Celular , Estrés Oxidativo , Superóxido Dismutasa , Humanos , Ratones , Antioxidantes/farmacología , Animales , Antiinflamatorios/farmacología , Células HEK293 , Estrés Oxidativo/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Apoptosis/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Inflamación/metabolismo , Peróxido de Hidrógeno
6.
Talanta ; 279: 126611, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067202

RESUMEN

Peptidyl arginine deiminase 4 (PAD4) plays a critical role in many autoimmune diseases including rheumatoid arthritis. Herein, a trypsin assisted highly immunoassay method was established to determine PAD4 activity and screen potent inhibitors from herbal plants extracts and purified natural products. The method was applied to determine endogenous PAD4 activity in both cell and tissue lysates, as well as the inhibitory effects of 20 herbal plants and 50 purified natural products. The Cinnamomi ramulus extract showed strongest inhibitory potency with IC50 value lower than 5 µg/mL. Meanwhile, pyrroloquinoline quinone (PQQ), widely used as a dietary supplement, was discovered as a promising PAD4 inhibitor with an IC50 value lower than 4 µM. The inhibition kinetic analysis, drug affinity response target stability (DARTS) and molecular docking were performed to confirm the interaction between PQQ and PAD4. This method has great potential for researchers to monitor activities and discover potential inhibitors of PAD4.


Asunto(s)
Simulación del Acoplamiento Molecular , Extractos Vegetales , Arginina Deiminasa Proteína-Tipo 4 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Inmunoensayo/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/análisis , Productos Biológicos/química , Productos Biológicos/farmacología , Tripsina/metabolismo , Tripsina/química , Evaluación Preclínica de Medicamentos , Animales
7.
Int J Biol Macromol ; 273(Pt 2): 132769, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823745

RESUMEN

Paper-based test film material is widely used in a variety of test instruments for different applications. The enzyme activity test paper sheet is one of the most popularly used test papers. Here we present a novel fabrication of paper-based enzyme activity test paper without cationic resin added in. The chemical pulping fibers were first beaten to different degrees (from 14.6 to 41.5°SR) with a PFI beater. After that, the fibers were modified with a cationic agent (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) under the system of alkali and water solution. Finally, the test papers were made with the modified fiber by a regular paper former in lab. The results showed that beating is beneficial for the improvement of the cationization reaction which is indicated by the Zeta potential, FTIR and EDS. The main mechanisms involved are the destruction of crystalline zone, increase of free hydroxyl group and defibrillation. This hypothesis was supported by the SEM, XRD and fiber analyzer. Beating under the optimized condition, the wet strength and liquid absorbability of test paper can meet the application requirement, and the test results of enzyme activity are quite close to those of commercial test papers.


Asunto(s)
Aniones , Papel , Adsorción , Aniones/química , Madera/química , Cationes/química
8.
Front Microbiol ; 15: 1401436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751721

RESUMEN

Broad bean paste is a popular condiment in Asian countries. Leaves of Vitex negundo Linn. were used extensively in China during the koji-making of broad bean paste. Spreading V. negundo leaves on raw broad beans during fermentation was able to facilitate the rapid growth of fungi to form mature koji. We isolated two strains of fungi from mature koji, and four strains of bacteria from the rotten broad beans resulting from a failed attempt. According to microbial activity assays, two polymethoxylated flavones, 5-hydroxy-3,6,7,8,3',4'-hexamethoxy flavone (HJ-1) and 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxy flavone (HJ-2) were isolated from V. negundo leaves, and the fungal growth promotion and inhibition of bacterial growth of these two compounds were found to improve the production of broad bean koji. This study reveals the compounds present in V. negundo leaves with bioactivity against important microbes in koji manufacture, and provides a theoretical basis for the application of V. negundo in broad bean paste production.

9.
Front Plant Sci ; 15: 1374912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751843

RESUMEN

Prunella vulgaris is an important material for Chinese medicines with rosmarinic acid (RA) as its index component. Based on the chromosome-level genome assembly we obtained recently, 51 RA biosynthesis-related genes were identified. Sequence feature, gene expression pattern and phylogenetic relationship analyses showed that 17 of them could be involved in RA biosynthesis. In vitro enzymatic assay showed that PvRAS3 catalyzed the condensation of p-coumaroyl-CoA and caffeoyl-CoA with pHPL and DHPL. Its affinity toward p-coumaroyl-CoA was higher than caffeoyl-CoA. PvRAS4 catalyzed the condensation of p-coumaroyl-CoA with pHPL and DHPL. Its affinity toward p-coumaroyl-CoA was lower than PvRAS3. UPLC and LC-MS/MS analyses showed the existence of RA, 4-coumaroyl-3',4'-dihydroxyphenyllactic acid, 4-coumaroyl-4'-hydroxyphenyllactic acid and caffeoyl-4'-hydroxyphenyllactic acid in P. vulgaris. Generation and analysis of pvras3 homozygous mutants showed significant decrease of RA, 4-coumaroyl-3',4'-dihydroxyphenyllactic acid, 4-coumaroyl-4'-hydroxyphenyllactic acid and caffeoyl-4'-hydroxyphenyllactic acid and significant increase of DHPL and pHPL. It suggests that PvRAS3 is the main enzyme catalyzing the condensation of acyl donors and acceptors during RA biosynthesis. The role of PvRAS4 appears minor. The results provide significant information for quality control of P. vulgaris medicinal materials.

10.
Appl Microbiol Biotechnol ; 108(1): 316, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700735

RESUMEN

Nowadays, it is very important to produce new-generation drugs with antimicrobial properties that will target biofilm-induced infections. The first target for combating these microorganisms, which are the source itself. Antimicrobial peptides, which are more effective than antibiotics due to their ability to kill microorganisms and use a different metabolic pathway, are among the new options today. The aim of this study is to develop new-generation antibiotics that inhibit both biofilm-producing bacteria and the biofilm itself. For this purpose, we designed four different peptides by combining two amino acid forms (D- and L-) with the same sequence having alpha helix structures. It was found that the combined use of these two forms can increase antimicrobial efficacy more than 30-fold. These results are supported by molecular modeling and scanning electron microscopy (SEM), at the same time cytotoxicity (IC50) and hemotoxicity (HC50) values remained within the safe range. Furthermore, antibiofilm activities of these peptides were investigated. Since the existing biofilm inhibition methods in the literature do not technically simulate the exact situation, in this study, we have developed a real-time observable biofilm model and a new detection method based on it, which we call the CoMIC method. Findings have shown that the NET1 peptide with D-leucine amino acid in its structure and the NET3 peptide with D-arginine amino acid in its structure are effective in inhibiting biofilm. As a conclusion, our peptides can be considered as potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in biofilm and clinical important bacteria. KEY POINTS: • Antimicrobial peptides were developed to inhibit both biofilms producing bacteria and the biofilm itself. • CoMIC will fill a very crucial gap in understanding biofilms and conducting the necessary quantitative studies. • Molecular modelling studies, NET1 peptide molecules tends to move towards and adhere to the membrane within nanoseconds.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/química , Modelos Moleculares , Microscopía Electrónica de Rastreo , Bacterias/efectos de los fármacos
11.
Vascul Pharmacol ; 155: 107379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762131

RESUMEN

Pulmonary hypertension (PH) is a progressive, severe and to date not curable disease of the pulmonary vasculature. Alterations of the insulin-like growth factor 1 (IGF-1) system are known to play a role in vascular pathologies and IGF-binding proteins (IGFBPs) are important regulators of the bioavailability and function of IGFs. In this study, we show that circulating plasma levels of IGFBP-1, IGFBP-2 and IGFBP-3 are increased in idiopathic pulmonary arterial hypertension (IPAH) patients compared to healthy individuals. These binding proteins inhibit the IGF-1 induced IGF-1 receptor (IGF1R) phosphorylation and exhibit diverging effects on the IGF-1 induced signaling pathways in human pulmonary arterial cells (i.e. healthy as well as IPAH-hPASMCs, and healthy hPAECs). Furthermore, IGFBPs are differentially expressed in an experimental mouse model of PH. In hypoxic mouse lungs, IGFBP-1 mRNA expression is decreased whereas the mRNA for IGFBP-2 is increased. In contrast to IGFBP-1, IGFBP-2 shows vaso-constrictive properties in the murine pulmonary vasculature. Our analyses show that IGFBP-1 and IGFBP-2 exhibit diverging effects on IGF-1 signaling and display a unique IGF1R-independent kinase activation pattern in human pulmonary arterial smooth muscle cells (hPASMCs), which represent a major contributor of PAH pathobiology. Furthermore, we could show that IGFBP-2, in contrast to IGFBP-1, induces epidermal growth factor receptor (EGFR) signaling, Stat-3 activation and expression of Stat-3 target genes. Based on our results, we conclude that the IGFBP family, especially IGFBP-1, IGFBP-2 and IGFBP-3, are deregulated in PAH, that they affect IGF signaling and thereby regulate the cellular phenotype in PH.


Asunto(s)
Modelos Animales de Enfermedad , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Miocitos del Músculo Liso , Arteria Pulmonar , Receptor IGF Tipo 1 , Transducción de Señal , Humanos , Animales , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Células Cultivadas , Masculino , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Fosforilación , Factor de Transcripción STAT3/metabolismo , Estudios de Casos y Controles , Ratones Endogámicos C57BL , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipertensión Pulmonar Primaria Familiar/fisiopatología , Hipertensión Pulmonar Primaria Familiar/patología , Hipertensión Pulmonar Primaria Familiar/genética , Femenino , Receptores ErbB/metabolismo , Persona de Mediana Edad , Remodelación Vascular , Adulto , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
12.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792162

RESUMEN

Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5'-3' polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication-transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 µM) and B3 (IC50 = 0.98 µM) as potential lead antiviral compounds for further targeted drug research.


Asunto(s)
Antivirales , Pruebas de Enzimas , Imidazoles , SARS-CoV-2 , Proteínas no Estructurales Virales , Humanos , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Colorantes Fluorescentes/química , Imidazoles/química , Imidazoles/farmacología , Metiltransferasas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , ARN Helicasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Pruebas de Enzimas/métodos
13.
Methods Mol Biol ; 2798: 205-212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587745

RESUMEN

Superoxide and hydrogen peroxide are reactive oxygen species (ROS) involved in the oxidation of multiple biological molecules and the signaling processes during plant growth and stress response. Thus, control of ROS is fundamental for cell survival and development, with superoxide dismutase (EC 1.15.1.1, SOD) being one of the main enzymes involved. Different isoforms of SOD catalyze the dismutation of superoxide (O2.-) to hydrogen peroxide (H2O2) and oxygen (O2), such as Mn-SODs, Cu,Zn-SODs, and Fe-SODs. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) combined with a specific staining method for SOD activity, the protocol describes the identification of different SOD isozymes, based on their differential inhibition by KCN and H2O2, in different organs and plant species such as pea (Pisum sativum L.) leaves and pepper (Capsicum annuum L.) fruits.


Asunto(s)
Isoenzimas , Superóxido Dismutasa , Superóxidos , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Frutas , Oxígeno , Pisum sativum
14.
Plant Physiol Biochem ; 210: 108618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631157

RESUMEN

The Acacia koa S-adenosylmethionine (SAM) synthetase was identified from transcriptome data and cloned into the T7-expression vector pEt14b. Assays indicate a thermoalkaliphic enzyme which tolerates conditions up to pH 10.5, 55 °C and 3 M KCl. In vitro examples of plant SAM-synthetase activity are scarce, however this study provides supporting evidence that these extremophilic properties may actually be typical for this plant enzyme. Enzyme kinetic constants (Km = 1.44 mM, Kcat = 1.29 s-1, Vmax 170 µM. min-1) are comparable to nonplant SAM-synthetases except that substrate inhibition was not apparent at 10 mM ATP/L-methionine. Methods were explored in this study to reduce feedback inhibition, which is known to limit SAM-synthetase activity in vitro. Four single-point mutation variants of the Acacia koa SAM-synthetase were produced, each with varying degrees of reduced reaction rate, greater sensitivity to product inhibition and loss of thermophilic properties. Although an enhanced mutant was not produced, this study describes the first mutagenesis of a plant SAM-synthetase. Overcoming feedback inhibition was accomplished by the addition of organic solvent to enzyme assays. Acetonitrile, methanol or dimethylformamide, when included as 25% of the assay volume, improved total SAM production by 30-65%.


Asunto(s)
Acacia , Metionina Adenosiltransferasa , Acacia/genética , Acacia/metabolismo , Acacia/enzimología , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cinética , S-Adenosilmetionina/metabolismo , Concentración de Iones de Hidrógeno
15.
Artículo en Inglés | MEDLINE | ID: mdl-38660992

RESUMEN

Thymidylate synthase (TS) is an enzyme responsible for the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP), with the co-substrate 5,10-methylenetetrahydrofolate (5,10-CH2-THF) as the methyl donor. TS is the only enzyme capable of de novo biosynthesis of dTMP in humans, a nucleotide crucial for DNA synthesis and therefore cell proliferation and survival. As such, TS is a major drug target in chemotherapy by compounds such as 5-fluorouracil. Due to the clinical and physiological importance of TS, the ability to accurately assay its activity is crucial. Several assays have been developed for this purpose, relying on spectrophotometry or radioisotope labeling methods. In this study, we have developed a liquid chromatography - mass spectrometry-based method for assessing TS activity by direct and specific measurement of the reaction product, dTMP. The assay was tested on mouse liver homogenates. We noted that excessive 5,10-CH2-THF concentration (400 µM) led to substrate inhibition and therefore 200 µM was used. The activity assayed at 1 µM dUMP was linear with protein content and time (up to 60 min) and was 0.56 ± 0.12 pmol/mg protein/min, in line with previously reported values. Additionally, by using a high mass resolution Orbitrap instrument side reactions were monitored, revealing major changes in folate pools and nucleotide metabolism. These findings highlight the value of the developed TS assay for routine TS activity monitoring in complex matrixes such as clinical material.

16.
J Agric Food Chem ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598318

RESUMEN

Mesosulfuron-methyl, an inhibitor of acetolactate synthase (ALS), has been extensively used in wheats. However, it can damage wheat (Triticum aestivum) and even lead to crop death. Herbicide safeners selectively shield crops from such damage without compromising weed control. To mitigate the phytotoxicity of mesosulfuron-methyl in crops, several purine derivatives were developed based on active substructure splicing. The synthesized title compounds underwent thorough characterization using infrared spectroscopy, 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. We evaluated chlorophyll and glutathione contents as well as various enzyme activities to evaluate the safer activity of these compounds. Compounds III-3 and III-7 exhibited superior activity compared with the safener mefenpyr-diethyl. Molecular structure analysis, along with predictions of absorption, distribution, metabolism, excretion, and toxicity, indicated that compound III-7 shared pharmacokinetic traits with the commercial safener mefenpyr-diethyl. Molecular docking simulations revealed that compound III-7 competitively bound to the ALS active site with mesosulfuron-methyl, elucidating the protective mechanism of the safeners. Overall, this study highlights purine derivatives as potential candidates for novel safener development.

17.
Protein Pept Lett ; 31(4): 305-311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644721

RESUMEN

BACKGROUND: Protease 3C (3Cpro) is the only protease encoded in the human hepatitis A virus genome and is considered as a potential target for antiviral drugs due to its critical role in the viral life cycle. Additionally, 3Cpro has been identified as a potent inducer of ferroptosis, a newly described type of cell death. Therefore, studying the molecular mechanism of 3Cpro functioning can provide new insights into viral-host interaction and the biological role of ferroptosis. However, such studies require a reliable technique for producing the functionally active recombinant enzyme. OBJECTIVE: Here, we expressed different modified forms of 3Cpro with a hexahistidine tag on the N- or C-terminus to investigate the applicability of immobilized metal Ion affinity chromatography (IMAC) for producing 3Cpro. METHODS: We expressed the proteins in Escherichia coli and purified them using IMAC, followed by gel permeation chromatography. The enzymatic activity of the produced proteins was assayed using a specific chromogenic substrate. RESULTS: Our findings showed that the introduction and position of the hexahistidine tag did not affect the activity of the enzyme. However, the yield of the target protein was highest for the variant with seven C-terminal residues replaced by a hexahistidine sequence. CONCLUSION: We demonstrated the applicability of our approach for producing recombinant, enzymatically active 3Cpro.


Asunto(s)
Proteasas Virales 3C , Cromatografía de Afinidad , Escherichia coli , Histidina , Oligopéptidos , Histidina/genética , Histidina/metabolismo , Histidina/química , Proteasas Virales 3C/química , Proteasas Virales 3C/metabolismo , Humanos , Oligopéptidos/genética , Oligopéptidos/química , Oligopéptidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Virus de la Hepatitis A Humana/genética , Virus de la Hepatitis A Humana/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Expresión Génica
18.
Methods Mol Biol ; 2798: 223-234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587747

RESUMEN

At the cellular level, the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), due to different abiotic or biotic stress, causes oxidative stress that induces an imbalance in the metabolism. Among the different H2O2-scavenging enzymatic antioxidants, ascorbate peroxidase (APX) is a heme-peroxidase that plays an important role in the ascorbate-glutathione pathway using ascorbate to reduce H2O2 to water. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a spectrophotometric assay for APX activity, the protocol allows identifying diverse APX isozymes present in different organs and plant species.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Ascorbato Peroxidasas , Electroforesis en Gel de Poliacrilamida Nativa , Ácido Ascórbico
19.
MedComm (2020) ; 5(4): e506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525110

RESUMEN

Recombinant proteins are gaining increasing popularity for treating human diseases. The clinical effectiveness of recombinant proteins is directly related to their biological activity, which is an important indicator in drug development and quality control. However, certain recombinant proteins have unclear or complex signal pathways, making detecting their activity in vitro difficult. For instance, recombinant human endostatin (endostatin), a new antitumor drug developed in China, lacks a sensitive and stable assay for its biological activity since being market approval. To address this issue, we performed a genome-wide screening of immortalized human umbilical vein endothelial cells (HUVECs) using a CRISPR/Cas9 knockout library containing 20,000 targeted genes. We identified two potential endostatin-resistant genes, NEPSPP and UTS2, and successfully constructed a highly sensitive cell line, HUVEC-UTS2-3#, by knocking down the UTS2 gene. Based on the optimized parameters of HUVEC-UTS2-3# cells, we established a new method for detecting the biological activity of endostatin. The method was validated, and it produced results consistent with primary HUVEC cells but with higher sensitivity and more stable data. The use of gene-editing technology provides a novel solution for detecting the biological activity of recombinant proteins that other methods cannot detect.

20.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344920

RESUMEN

The biosynthetic arginine decarboxylase in Thermus thermophilus is responsible for producing spermidine, a polyamine with numerous biological applications in humans. The arginine decarboxylase has significant applications in biotechnology industries, suggesting the need to evaluate its biochemical and biophysical characteristics at the molecular level. In this study, both in vitro and in silico methods were employed to investigate the structural and functional behavior of the arginine decarboxylase protein. In in vitro, MALDI-TOF, size exclusion, and assay studies were performed to examine the nature and activity of the protein. The MALDI-TOF analysis confirmed the purified protein as biosynthetic arginine decarboxylase. The assay results revealed that the Pyridoxal 5'-Phosphate (PLP) cofactor plays a crucial role in enhancing enzyme activity by producing agmatine (a by-product of spermidine). Further, optimum enzyme activity was observed at 50 °C, suggesting the extremophilic nature of the enzyme. Unlike other proteins, this enzyme displayed optimal activity at both acidic and basic pH, demonstrating its sensitivity to pH changes. Furthermore, the addition of divalent ions like Mg 2+ increased the rate of reaction. In in silico, structure modeling, and comparative molecular dynamics simulation studies were used to assess the protein stability and behavior at different pH and temperature conditions. The findings of this study could be applied to improve enzyme production in the industry.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA