Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Crit Rev Oncol Hematol ; 201: 104438, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977145

RESUMEN

Cancer metabolism is now a key area for therapeutic intervention, targeting unique metabolic reprogramming crucial for tumor growth and survival. This article reviews the therapeutic potential of addressing metabolic vulnerabilities through glycolysis and glutaminase inhibitors, which disrupt cancer cell metabolism. Challenges such as tumor heterogeneity and adaptive resistance are discussed, with strategies including personalized medicine and predictive biomarkers to enhance treatment efficacy. Additionally, integrating diet and lifestyle changes with metabolic targeting underscores a holistic approach to improving therapy outcomes. The article also examines the benefits of incorporating these strategies into standard care, highlighting the potential for more tailored, safer treatments. In conclusion, exploiting metabolic vulnerabilities promises a new era in oncology, positioning metabolic targeting at the forefront of personalized cancer therapy and transforming patient care.

2.
Biochem Biophys Res Commun ; 722: 150161, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38797153

RESUMEN

Melanoma, arising from the malignant transformation of melanocytes, stands as the most lethal type of skin cancer. While significant strides have been made in targeted therapy and immunotherapy, substantially enhancing therapeutic efficacy, the prognosis for melanoma patients remains unoptimistic. SIRT7, a nuclear-localized deacetylase, plays a pivotal role in maintaining cellular homeostasis and adapting to external stressors in melanoma, with its activity closely tied to intracellular nicotinamide adenine dinucleotide (NAD+). However, its involvement in adaptive resistance to targeted therapy remains unclear. Herein, we unveil that up-regulated SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Initially, we observed a significant increase of SIRT7 expression in publicly available datasets following targeted therapy within a short duration. In consistent, we found elevated SIRT7 expression in melanoma cells subjected to BRAF or MEK inhibitors in vitro. The up-regulation of SIRT7 expression was also confirmed in xenograft tumors in mice after targeted therapy in vivo. Furthermore, we proved that SIRT7 deficiency led to decreased cell viability upon prolonged exposure to BRAF or MEK inhibitors, accompanied by an increase in cell apoptosis. Mechanistically, SIRT7 deficiency restrained the upregulation of genes associated with mitochondrial biogenesis and intracellular ATP levels in response to targeted therapy treatment in melanoma cells. Ultimately, we proved that SIRT7 deficieny could sensitize BRAF-mutant melanoma cells to MAPK inhibition targeted therapy in vivo. In conclusion, our findings underscore the role of SIRT7 in fostering adaptive resistance to targeted therapy through the facilitation of mitochondrial biogenesis. Targeting SIRT7 emerges as a promising strategy to overcome MAPK inhibitor adaptive resistance in melanoma.


Asunto(s)
Resistencia a Antineoplásicos , Melanoma , Biogénesis de Organelos , Inhibidores de Proteínas Quinasas , Sirtuinas , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Melanoma/tratamiento farmacológico , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/tratamiento farmacológico , Ratones Desnudos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores
3.
Gastric Cancer ; 27(4): 785-801, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782859

RESUMEN

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC) is a heterogeneous GC subtype characterized by the overexpression of HER2. To date, few specific targeted therapies have demonstrated durable efficacy in HER2-positive GC patients, with resistance to trastuzumab typically emerging within 1 year. However, the mechanisms of resistance to trastuzumab remain incompletely understood, presenting a significant challenge to clinical practice. METHODS: In this study, we integrated genetic screening and bulk transcriptome and epigenomic profiling to define the mechanisms mediating adaptive resistance to HER2 inhibitors and identify potential effective therapeutic strategies for treating HER2-positive GCs. RESULTS: We revealed a potential association between adaptive resistance to trastuzumab in HER2-positive GC and the expression of YES-associated protein (YAP). Notably, our investigation revealed that long-term administration of trastuzumab triggers extensive chromatin remodeling and initiates YAP gene transcription in HER2-positive cells characterized by the initial inhibition and subsequent reactivation. Furthermore, treatment of HER2-positive GC cells and cell line-derived xenografts (CDX) models with YAP inhibitors in combination with trastuzumab was found to induce synergistic effects through the AKT/mTOR and ERK/mTOR pathways. CONCLUSION: These findings underscore the pivotal role of reactivated YAP and mTOR signaling pathways in the development of adaptive resistance to trastuzumab and may serve as a promising joint target to overcome resistance to trastuzumab.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-akt , Receptor ErbB-2 , Neoplasias Gástricas , Serina-Treonina Quinasas TOR , Factores de Transcripción , Trastuzumab , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Femenino , Línea Celular Tumoral , Ratones Desnudos , Proliferación Celular
4.
Appl Environ Microbiol ; 90(6): e0228323, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38757978

RESUMEN

Resistance to potassium tellurite (PT) is an important indicator in isolating Shiga toxin-producing Escherichia coli (STEC) O157:H7 and other major STEC serogroups. Common resistance determinant genes are encoded in the ter gene cluster. We found an O157:H7 isolate that does not harbor ter but is resistant to PT. One nonsynonymous mutation was found in another PT resistance gene, tehA, through whole-genome sequence analyses. To elucidate the contribution of this mutation to PT resistance, complementation of tehA and the related gene tehB in isogenic strains and quantitative RT‒PCR were performed. The results indicated that the point mutation not only changed an amino acid of tehA, but also was positioned on a putative internal promoter of tehB and increased PT resistance by elevating tehB mRNA expression. Meanwhile, the amino acid change in tehA had negligible impact on the PT resistance. Comprehensive screening revealed that 2.3% of O157:H7 isolates in Japan did not harbor the ter gene cluster, but the same mutation in tehA was not found. These results suggested that PT resistance in E. coli can be enhanced through one mutational event even in ter-negative strains. IMPORTANCE: Selective agents are important for isolating Shiga toxin-producing Escherichia coli (STEC) because the undesirable growth of microflora should be inhibited. Potassium tellurite (PT) is a common selective agent for major STEC serotypes. In this study, we found a novel variant of PT resistance genes, tehAB, in STEC O157:H7. Molecular experiments clearly showed that one point mutation in a predicted internal promoter region of tehB upregulated the expression of the gene and consequently led to increased resistance to PT. Because tehAB genes are ubiquitous across E. coli, these results provide universal insight into PT resistance in this species.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli , Regiones Promotoras Genéticas , Telurio , Telurio/farmacología , Escherichia coli O157/genética , Escherichia coli O157/efectos de los fármacos , Proteínas de Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Mutación , Antibacterianos/farmacología , Japón
5.
Heliyon ; 10(9): e30365, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720704

RESUMEN

Objectives: Determining the best available therapy for carbapenem-resistant Acinetobacter baumannii (CRAB) infections is a challenge. Cefiderocol is an attractive alternative drug effective against many resistance mechanisms in Gram-negative bacteria. However, its place in the treatment of Acinetobacter baumannii infections remains unclear and much debated, with contradictory results. Methods: We describe here the case of a 37-year-old man with ventilator-associated bacteraemic CRAB pneumonia in an intensive care unit. He was initially treated with a combination of colistin and tigecycline, and was then switched onto colistin and cefiderocol. We then used a new accessible protocol to test 30 CRAB isolates (OXA-23/OXA-24/OXA-58/NDM-1) for adaptive resistance to cefiderocol (ARC) after exposure to this drug. Results: After clinical failure with the initial combination, we noted a significant clinical improvement in the patient on the second combination, leading to clinical cure. No ARC was detected in the two OXA-23 case-CRAB isolates. All NDM-1 CRAB isolates were resistant to cefiderocol in standard tests; the OXA-23, OXA-24 and OXA-58 CRAB isolates presented 84.2 %, 50 % and 0 % ARC, respectively. Conclusions: ARC is not routinely assessed for CRAB isolates despite frequently being reported in susceptible isolates (69.2 %). Subpopulations displaying ARC may account for treatment failure, but this hypothesis should be treated with caution in the absence of robust clinical data. The two main findings of this work are that (i) cefiderocol monotherapy should probably not be recommended for OXA-23/24 CRAB infections and (ii) the characterisation of carbapenemases in CRAB strains may be informative for clinical decision-making.

6.
Mol Cancer ; 23(1): 39, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378518

RESUMEN

BACKGROUND: Focal adhesion signaling involving receptor tyrosine kinases (RTK) and integrins co-controls cancer cell survival and therapy resistance. However, co-dependencies between these receptors and therapeutically exploitable vulnerabilities remain largely elusive in HPV-negative head and neck squamous cell carcinoma (HNSCC). METHODS: The cytotoxic and radiochemosensitizing potential of targeting 10 RTK and ß1 integrin was determined in up to 20 3D matrix-grown HNSCC cell models followed by drug screening and patient-derived organoid validation. RNA sequencing and protein-based biochemical assays were performed for molecular characterization. Bioinformatically identified transcriptomic signatures were applied to patient cohorts. RESULTS: Fibroblast growth factor receptor (FGFR 1-4) targeting exhibited the strongest cytotoxic and radiosensitizing effects as monotherapy and combined with ß1 integrin inhibition, exceeding the efficacy of the other RTK studied. Pharmacological pan-FGFR inhibition elicited responses ranging from cytotoxicity/radiochemosensitization to resistance/radiation protection. RNA sequence analysis revealed a mesenchymal-to-epithelial transition (MET) in sensitive cell models, whereas resistant cell models exhibited a partial epithelial-to-mesenchymal transition (EMT). Accordingly, inhibition of EMT-associated kinases such as EGFR caused reduced adaptive resistance and enhanced (radio)sensitization to FGFR inhibition cell model- and organoid-dependently. Transferring the EMT-associated transcriptomic profiles to HNSCC patient cohorts not only demonstrated their prognostic value but also provided a conclusive validation of the presence of EGFR-related vulnerabilities that can be strategically exploited for therapeutic interventions. CONCLUSIONS: This study demonstrates that pan-FGFR inhibition elicits a beneficial radiochemosensitizing and a detrimental radioprotective potential in HNSCC cell models. Adaptive EMT-associated resistance appears to be of clinical importance, and we provide effective molecular approaches to exploit this therapeutically.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Integrina beta1/genética , Línea Celular Tumoral , Proteínas Tirosina Quinasas Receptoras/genética , Antineoplásicos/uso terapéutico , Receptores ErbB/metabolismo , Fenotipo , Transición Epitelial-Mesenquimal/genética
7.
Cancer Lett ; 587: 216692, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38342232

RESUMEN

Recently, novel Kirsten rat sarcoma viral oncogene homolog (KRAS) inhibitors have been clinically developed to treat KRAS G12C-mutated non-small cell lung cancer (NSCLC) patients. However, achieving complete tumor remission is challenging. Therefore, the optimal combined therapeutic intervention with KRAS G12C inhibitors has a potentially crucial role in the clinical outcomes of patients. We investigated the underlying molecular mechanisms of adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutated NSCLC cells to devise a strategy preventing drug-tolerant cell emergence. We demonstrate that AXL signaling led to the adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutated NSCLC, activation of which is induced by GAS6 production via YAP. AXL inhibition reduced the viability of AXL-overexpressing KRAS G12C-mutated lung cancer cells by enhancing KRAS G12C inhibition-induced apoptosis. In xenograft models of AXL-overexpressing KRAS G12C-mutated lung cancer treated with KRAS G12C inhibitors, initial combination therapy with AXL inhibitor markedly delayed tumor regrowth compared with KRAS G12C inhibitor alone or with the combination after acquired resistance to KRAS G12C inhibitor. These results indicated pivotal roles for the YAP-GAS6-AXL axis and its inhibition in the intrinsic resistance to KRAS G12C inhibitor.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Apoptosis , Respuesta Patológica Completa , Mutación
8.
Cell Genom ; 4(2): 100487, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38278156

RESUMEN

Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or nuclear factor κB (NF-κB) inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Genómica , Proteínas Serina-Treonina Quinasas , Proteínas de Ciclo Celular/uso terapéutico
9.
J Pharm Sci ; 113(1): 202-213, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37879409

RESUMEN

Colistin is a polymyxin and peptide antibiotic that can yield rapid bacterial killing, but also leads to resistance emergence. We aimed to develop a novel experimental and Quantitative and Systems Pharmacology approach to distinguish between inducible and non-inducible resistance. Viable count profiles for the total and less susceptible populations of Pseudomonas aeruginosa ATCC 27853 from static and dynamic in vitro infection models were simultaneously modeled. We studied low and normal initial inocula to distinguish between inducible and non-inducible resistance. A novel cutoff filter approach allowed us to describe the eradication and inter-conversion of bacterial populations. At all inocula, 4.84 mg/L of colistin (sulfate) yielded ≥4 log10 killing, followed by >4 log10 regrowth. A pre-existing, less susceptible population was present at standard but not at low inocula. Formation of a non-pre-existing, less susceptible population was most pronounced at intermediate colistin (sulfate) concentrations (0.9 to 5 mg/L). Both less susceptible populations inter-converted with the susceptible population. Simultaneously modeling of the total and less susceptible populations at low and standard inocula enabled us to identify the de novo formation of an inducible, less susceptible population. Inducible resistance at intermediate colistin concentrations highlights the importance of rapidly achieving efficacious polymyxin concentrations by front-loaded dosage regimens.


Asunto(s)
Colistina , Infecciones por Pseudomonas , Humanos , Colistina/farmacología , Pseudomonas aeruginosa , Farmacología en Red , Antibacterianos , Infecciones por Pseudomonas/tratamiento farmacológico , Sulfatos , Pruebas de Sensibilidad Microbiana
10.
Eur J Med Chem ; 261: 115857, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37852032

RESUMEN

Although several covalent KRASG12C inhibitors have made great progress in the treatment of KRASG12C-mutant cancer, their clinical applications are limited by adaptive resistance, motivating novel therapeutic strategies. Through drug design and structure optimization, a series of highly potent and selective KRASG12C Proteolysis Targeting Chimeras (PROTACs) were developed by incorporating AMG510 and VHL ligand VH032. Among them, degrader YN14 significantly inhibited KRASG12C-dependent cancer cells growth with nanomolar IC50 and DC50 values, and > 95 % maximum degradation (Dmax). Molecular dynamics (MD) simulation showed that YN14 induced a stable KRASG12C: YN14: VHL ternary complex with low binding free energy (ΔG). Notably, YN14 led to tumor regression with tumor growth inhibition (TGI%) rates more than 100 % in the MIA PaCa-2 xenograft model with well-tolerated dose-schedules. We also found that KRASG12C degradation exhibited advantages in overcoming adaptive KRASG12C feedback resistance over KRASG12C inhibition. Furthermore, combination of RTKs, SHP2, or CDK9 inhibitors with YN14 exhibited synergetic efficacy in KRASG12C-mutant cancer cells. Overall, these results demonstrated that YN14 holds exciting prospects for the treatment of tumors with KRASG12C-mutation and boosted efficacy could be achieved for greater clinical applications via drug combination.


Asunto(s)
Neoplasias , Quimera Dirigida a la Proteólisis , Humanos , Proteínas Proto-Oncogénicas p21(ras) , Mutación , Citoplasma , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
11.
Antimicrob Agents Chemother ; 67(10): e0048023, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37695298

RESUMEN

A double ampC (AmpCG183D) and ampD (AmpDH157Y) genes mutations have been identified by whole genome sequencing in a Pseudomonas aeruginosa (PaS) that became resistant (PaR) in a patient treated by ceftolozane/tazobactam (C/T). To precisely characterize the respective contributions of these mutations on the decreased susceptibility to C/T and on the parallel increased susceptibility to imipenem (IMI), mutants were generated by homologous recombination in PAO1 reference strain (PAO1- AmpCG183D, PAO1-AmpDH157Y, PAO1-AmpCG183D/AmpDH157Y) and in PaR (PaR-AmpCPaS/AmpDPaS). Sequential time-kill curve experiments were conducted on all strains and analyzed by semi-mechanistic PKPD modeling. A PKPD model with adaptation successfully described the data, allowing discrimination between initial and time-related (adaptive resistance) effects of mutations. With PAO1 and mutant-derived strains, initial EC50 values increased by 1.4, 4.1, and 29-fold after AmpCG183D , AmpDH157Y and AmpCG183D/AmpDH157Y mutations, respectively. EC50 values were increased by 320, 12.4, and 55-fold at the end of the 2 nd experiment. EC50 of PAO1-AmpCG183D/AmpDH157Y was higher than that of single mutants at any time of the experiments. Within the PaR clinical background, reversal of AmpCG183D, and AmpDH157Y mutations led to an important decrease of EC50 value, from 80.5 mg/L to 6.77 mg/L for PaR and PaR-AmpCPaS/AmpDPaS, respectively. The effect of mutations on IMI susceptibility mainly showed that the AmpCG183D mutation prevented the emergence of adaptive resistance. The model successfully described the separate and combined effect of AmpCG183D and AmpDH157Y mutations against C/T and IMI, allowing discrimination and quantification of the initial and time-related effects of mutations. This method could be reproduced in clinical strains to decipher complex resistance mechanisms.


Asunto(s)
Farmacorresistencia Bacteriana , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/farmacología , Cefalosporinas/farmacología , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Tazobactam/farmacología , Farmacorresistencia Bacteriana/genética
12.
Microbiol Spectr ; 11(4): e0121523, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37338344

RESUMEN

Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.


Asunto(s)
Antiinfecciosos , Colistina , Colistina/farmacología , Antibacterianos/farmacología , Acetoína , Ácido Pirúvico , Farmacorresistencia Bacteriana/genética , Antiinfecciosos/farmacología , Glioxilatos , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
13.
Transl Oncol ; 35: 101722, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37352624

RESUMEN

In this perspective article, a clinically inspired phenotype-driven experimental approach is put forward to address the challenge of the adaptive response of solid cancers to small-molecule targeted therapies. A list of conditions is derived, including an experimental quantitative assessment of cell plasticity and an information theory-based detection of in vivo dependencies, for the discovery of post-transcriptional druggable mechanisms capable of preventing at multiple levels the emergence of plastic dedifferentiated slow-proliferating cells. The approach is illustrated by the author's own work in the example case of the adaptive response of BRAFV600-melanoma to BRAF inhibition. A bench-to-bedside and back to bench effort leads to a therapeutic strategy in which the inhibition of the baseline activity of the interferon-γ-activated inhibitor of translation (GAIT) complex, incriminated in the expression insufficiency of the RNA-binding protein HuR in a minority of cells, results in the suppression of the plastic, intermittently slow-proliferating cells involved in the adaptive response. A similar approach is recommended for the validation of other classes of mechanisms that we seek to modulate to overcome this complex challenge of modern cancer therapy.

14.
Antibiotics (Basel) ; 12(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37107145

RESUMEN

Background: Vancomycin-intermediate Staphylococcus aureus (VISA) emerges typically in the healthcare-associated methicillin-resistant S. aureus and more rarely in community-acquired S. aureus (CA-MRSA). VISA is a serious concern for public health due to its association with persistent infections, the failure of vancomycin treatment, and poor clinical outcomes. Currently, the burden of VISA is somewhat high, even though vancomycin is the mainstay treatment for severe MRSA infections. The molecular mechanisms of reduced glycopeptide susceptibility in S. aureus are constantly under investigation but have still not yet been fully characterized. Methods: Our goal was to investigate the reduced glycopeptide susceptibility mechanisms emerging in a VISA CA-MRSA versus its vancomycin-susceptible (VSSA) CA-MRSA parents in a hospitalized patient undergoing glycopeptide treatment. Comparative integrated omics, Illumina MiSeq whole-genome sequencing (WGS), RNA-Seq, and bioinformatics were performed. Results: Through a comparison of VISA CA-MRSA vs. its VSSA CA-MRSA parent, mutational and transcriptomic adaptations were found in a pool of genes involved, directly or indirectly, in the biosynthesis of the glycopeptide target conferring or supporting the VISA phenotype, and its cross-resistance with daptomycin. This pool included key genes responsible for the biosynthesis of the peptidoglycan precursors, i.e., D-Ala, the D-Ala-D-Ala dipeptide termini of the pentapeptide, and its incorporation in the nascent pentapeptide, as key targets of the glycopeptide resistance. Furthermore, accessory glycopeptide-target genes involved in the pathways corroborated the key adaptations, and thus, supported the acquisition of the VISA phenotype i.e., transporters, nucleotide metabolism genes, and transcriptional regulators. Finally, transcriptional changes were also found in computationally predicted cis-acting small antisense RNA triggering genes related both to the key or accessory adaptive pathways. Conclusion: Our investigation describes an adaptive resistance pathway acquired under antimicrobial therapy conferring reduced glycopeptide susceptibility in a VISA CA-MRSA due to a comprehensive network of mutational and transcriptional adaptations in genes involved in pathways responsible for the biosynthesis of glycopeptide's target or supporters of the key resistance path.

15.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096883

RESUMEN

The failure of cancer treatments, including immunotherapy, continues to be a major obstacle in preventing durable remission. This failure often results from tumor evolution, both genotypic and phenotypic, away from sensitive cell states. Here, we propose a mathematical framework for studying the dynamics of adaptive immune evasion that tracks the number of tumor-associated antigens available for immune targeting. We solve for the unique optimal cancer evasion strategy using stochastic dynamic programming and demonstrate that this policy results in increased cancer evasion rates compared to a passive, fixed strategy. Our foundational model relates the likelihood and temporal dynamics of cancer evasion to features of the immune microenvironment, where tumor immunogenicity reflects a balance between cancer adaptation and host recognition. In contrast with a passive strategy, optimally adaptive evaders navigating varying selective environments result in substantially heterogeneous post-escape tumor antigenicity, giving rise to immunogenically hot and cold tumors.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Inmunoterapia/métodos , Microambiente Tumoral , Escape del Tumor , Evasión Inmune
16.
Gene ; 850: 146930, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36195266

RESUMEN

Resistance to cancer therapeutics represents a leading cause of mortality and is particularly important in cancers, such as triple negative breast cancer, for which no targeted therapy is available, as these are only treated with traditional chemotherapeutics. Cancer, as well as bacterial, drug resistance can be intrinsic, acquired or adaptive. Adaptive cancer drug resistance is gaining attention as a mechanism for the generation of long-term drug resistance as is the case with bacterial antibiotic resistance. We have used a cellular model of triple negative breast cancer (CAL51) and its drug resistance derivative (CALDOX) to gain insight into genome-wide expression changes associated with long-term doxorubicin (a widely used anthracycline for cancer treatment) resistance and doxorubicin-induced stress. Previous work indicates that both naïve and resistance cells have a functional p53-p21 axis controlling cell cycle at G1, although this is not a driver for drug resistance, but down-regulation of TOP2A (topoisomerase IIα). As expected, CALDOX cells have a signature characterized, in addition to down-regulation of TOP2A, by genes and pathways associated with drug resistance, metastasis and stemness. Both CAL51 and CALDOX stress signatures share 12 common genes (TRIM22, FAS, SPATA18, SULF2, CDKN1A, GDF15, MYO6, CXCL5, CROT, EPPK1, ZMAT3 and CD44), with roles in the above-mentioned pathways, indicating that these cells have similar functional responses to doxorubicin relaying on the p53 control of apoptosis. Eight genes are shared by both drug stress signatures (in CAL51 and CALDOX cells) and CALDOX resistant cells (FAS, SULF2, CDKN1A, CXCL5, CD44, SPATA18, TRIM22 and CROT), many of them targets of p53. This corroborates experimental data indicating that CALDOX cells, even in the absence of drug, have activated, at least partially, the p53-p21 axis and DNA damage response. Although this eight-gene signature might be an indicator of adaptive resistance, as this transient phenomenon due to short-term stress may not revert to its original state upon withdrawal of the stressor, previous experimental data indicates that the p53-p21 axis is not responsible for doxorubicin resistance. Importantly, TOP2A is not responsive to doxorubicin treatment and thus absent in both drug stress signatures. This indicates that during the generation of doxorubicin resistance, cells acquire genetic changes likely to be random, leading to down regulation of TOP2A, but selected during the generation of cells due to the presence of drug in the culture medium. This poses a considerable constraint for the development of strategies aimed at avoiding the emergence of drug resistance in the clinic.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética
17.
Front Oncol ; 12: 1004669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483040

RESUMEN

Adaptions to therapeutic pressures exerted on cancer cells enable malignant progression of the tumor, culminating in escape from programmed cell death and development of resistant diseases. A common form of cancer adaptation is non-genetic alterations that exploit mechanisms already present in cancer cells and do not require genetic modifications that can also lead to resistance mechanisms. Epithelial-to-mesenchymal transition (EMT) is one of the most prevalent mechanisms of adaptive drug resistance and resulting cancer treatment failure, driven by epigenetic reprogramming and EMT-specific transcription factors. A recent breakthrough in cancer treatment is the development of KRASG12C inhibitors, which herald a new era of therapy by knocking out a unique substitution of an oncogenic driver. However, these highly selective agents targeting KRASG12C, such as FDA-approved sotorasib (AMG510) and adagrasib (MRTX849), inevitably encounter multiple mechanisms of drug resistance. In addition to EMT, cancer cells can hijack or rewire the sophisticated signaling networks that physiologically control cell proliferation, growth, and differentiation to promote malignant cancer cell phenotypes, suggesting that inhibition of multiple interconnected signaling pathways may be required to block tumor progression on KRASG12C inhibitor therapy. Furthermore, the tumor microenvironment (TME) of cancer cells, such as tumor-infiltrating lymphocytes (TILs), contribute significantly to immune escape and tumor progression, suggesting a therapeutic approach that targets not only cancer cells but also the TME. Deciphering and targeting cancer adaptions promises mechanistic insights into tumor pathobiology and improved clinical management of KRASG12C-mutant cancer. This review presents recent advances in non-genetic adaptations leading to resistance to KRASG12C inhibitors, with a focus on oncogenic pathway rewiring, TME, and EMT.

18.
Antibiotics (Basel) ; 11(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36421316

RESUMEN

Antibiotic resistance (AR) is a naturally occurring phenomenon with the capacity to render useless all known antibiotics in the fight against bacterial infections. Although bacterial resistance appeared before any human life form, this process has accelerated in the past years. Important causes of AR in modern times could be the over-prescription of antibiotics, the presence of faulty infection-prevention strategies, pollution in overcrowded areas, or the use of antibiotics in agriculture and farming, together with a decreased interest from the pharmaceutical industry in researching and testing new antibiotics. The last cause is primarily due to the high costs of developing antibiotics. The aim of the present review is to highlight the techniques that are being developed for the identification of new antibiotics to assist this lengthy process, using artificial intelligence (AI). AI can shorten the preclinical phase by rapidly generating many substances based on algorithms created by machine learning (ML) through techniques such as neural networks (NN) or deep learning (DL). Recently, a text mining system that incorporates DL algorithms was used to help and speed up the data curation process. Moreover, new and old methods are being used to identify new antibiotics, such as the combination of quantitative structure-activity relationship (QSAR) methods with ML or Raman spectroscopy and MALDI-TOF MS combined with NN, offering faster and easier interpretation of results. Thus, AI techniques are important additional tools for researchers and clinicians in the race for new methods of overcoming bacterial resistance.

19.
Expert Opin Biol Ther ; 22(11): 1379-1391, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302510

RESUMEN

INTRODUCTION: High-grade serous ovarian carcinoma (HGSC) is an aggressive subtype of epithelial ovarian carcinoma (EOC) and remains the most lethal gynecologic cancer. A lack of effective and tolerable therapeutic options and nonspecific symptoms at presentation with advanced stage of disease are among the challenges in the management of the disease. AREAS COVERED: An overview of ovarian cancer, followed by a discussion of the current therapeutic regimes and challenges that arise during and after the treatment of EOC. We discuss different formats of antibody therapeutics and their usage in targeting validated targets implicated in ovarian cancer, as well as three emerging novel proteins as examples recently implicated in their contribution to adaptive resistance in ovarian cancer. EXPERT OPINION: Antibody therapeutics allow for a unique and effective way to target proteins implicated in cancer and other diseases, and have the potential to radically change the outcomes of patients suffering from ovarian cancer. The vast array of targets that have been implicated in ovarian cancer and yet the lack of effective therapeutic options for patients further stresses the importance of discovering novel proteins that can be targeted, as well as predictive biomarkers that can inform the stratification of patients into treatment-specific populations.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico
20.
J Med Microbiol ; 71(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36201344

RESUMEN

Introduction. The presence of heteroresistant subpopulations and the development of resistance during drug exposure (adaptive resistance) limits colistin's efficacy against carbapenemase-producing Klebsiella pneumoniae (CP-Kp) isolates.Hypothesis/Gap statement. The pharmacokinetic/pharmacodynamic (PK/PD) characteristics of both types of colistin resistance against CP-Kp are unknown.Aim. We therefore studied the PK/PD characteristics of colistin resistance in an in vitro PK/PD model simulating clinical colistin exposures.Methods. Two K. pneumoniae clinical isolates, one non-CP-Kp and one CP-Kp, with colistin MICs of 0.5-1 mg l-1 at a final inoculum of 107 c.f.u. ml-1 were used in an in vitro PK/PD dialysis/diffusion closed model simulating 4.5 MU q12h and 3 MU q8h clinical dosing regimens. Heteroresistant (HRS, bacteria with stable high-level resistance present before drug exposure) and adaptive resistant (ARS, bacteria with reversible low-level resistance emerging after drug exposure) subpopulations were measured and optimal PK/PD targets for reducing both ARS and HRS were determined. Cumulative fractional response (CFR) was calculated with Monte Carlo simulation for 9 MU q24h, 4.5 MU q12h and 3 MU q8h clinical dosing regimens.Results. A 2-5 log10c.f.u. ml-1 decrease of the total bacterial population was observed within the first 2 h of exposure, followed by regrowth at 12 h. Colistin exposure was positively and negatively correlated with HRS and ARS 24-0 h c.f.u. ml-1 changes, respectively. An optimal PK/PD (~0.5log10 increase) target of 35 fAUC/MIC (the ratio of the area under the unbound concentration-time curve to the MIC) was found for reducing both HRS and ARS of high-level resistance (MIC >16 mg l-1). The 4.5 MU q12h regimen had slightly higher CFR (74 %) compared to the other dosing regimens.Conclusions. High colistin exposures reduced high-level adaptive resistance at the expense of selection of heteroresistant subpopulations.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas , Colistina/farmacología , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA