Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
ESC Heart Fail ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039797

RESUMEN

AIMS: Allogeneic stem cell therapy is more logistically suitable compared with autologous cell therapy for large-scale patient treatment. We aim to investigate the clinical safety and efficacy profile of the allogeneic adipose tissue derived mesenchymal stromal cell product (CSCC_ASC) as an add-on therapy in patients with chronic non-ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) < 40%. METHODS AND RESULTS: This is a single-centre investigator-initiated randomized phase I/II study with direct intra-myocardial injections of 100 million allogeneic CSCC_ASC. A total of 30 HFrEF patients with New York Heart Association (NYHA) class ≥II despite optimal anticongestive heart failure medication and plasma NT-proBNP > 300 pg/mL (>35 pmol/L) were included and randomized 2:1 to CSCC_ASC or standard care. The primary endpoint left ventricular end systolic volume (LVESV) and other echo related parameters were analysed by an investigator blinded for treatment allocation. No difference in serious adverse events was observed between groups. LVESV decreased significantly from baseline to 6 months follow-up in the ASC group (153.7 ± 53.2 mL and 128.7 ± 45.6 mL, P < 0.001) and remained unchanged in the standard care group (180.4 ± 39.4 mL and 186.7 ± 48.9 mL, P = 0.652). There was a significant difference between the groups in LVESV change (31.3 ± 11.0 mL, P = 0.009). The difference from baseline to follow-up between the two groups in left ventricular end diastolic volume (LVEDV) was 18.7 ± 12.4 mL, P = 0.146 and in left ventricular ejection fraction (LVEF) -7.8 ± 2.1%, P = 0.001. Considering the baseline values of LVESV, LVEDV and LVEF as covariates, the difference between groups for change from baseline to follow-up resulted in a P-value of 0.056, 0.076, and 0.738, respectively. NYHA class and self-reported health did also improve significantly in the ASC group compared with the standard care group (0.7 ± 0.2, P = 0.001 and -12.8 ± 5.3, P = 0.025; respectively). There was no difference in NT-proBNP (-371 ± 455 pmol/L, P = 0.422) or in 6 min walk test (12 ± 31 m, P = 0.695) between groups. CONCLUSIONS: Intramyocardial injections of allogeneic CSCC_ASC in patients with chronic non-ischaemic HFrEF was safe and improved LVESV, LVEF, NYHA class, and self-reported health compared with standard care group.

2.
J Clin Med ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731011

RESUMEN

Background/Objective: Mesenchymal Stromal Cells (MSCs) have been considered a promising treatment for several diseases, such as cardiac injuries. Many studies have analyzed their functional properties; however, few studies have characterized MSCs through successive culture passages. The main objective of this work was to analyze the phenotype and functionality of MSCs isolated from two different sources in five culture passages to determine if the culture passage might influence the efficacy of MSCs as a cell therapy treatment. Methods: Bone Marrow (BM)-MSCs were harvested from the femur of Wistar rats (n = 17) and Adipose Tissue(AT)-MSCs were isolated from inguinal fat (n = 17). MSCs were cultured for five culture passages, and the immunophenotype was analyzed by flow cytometry, the functionality was characterized by adipogenic, osteogenic, and chondrogenic differentiation assays, and cytokine secretion capacity was determined through the quantification of the Vascular Endothelial Growth-Factor, Fibroblast Growth-Factor2, and Transforming Growth-Factorß1 in the cell supernatant. The ultrastructure of MSCs was analyzed by transmission electron microscopy. Results: BM-MSCs exhibited typical phenotypes in culture passages two, four, and five, and their differentiation capacity showed an irregular profile throughout the five culture passages analyzed. AT-MSCs showed a normal phenotype and differentiation capacity in all the culture passages. BM- and AT-MSCs did not modify their secretion ability or ultrastructural morphology. Conclusions: Throughout the culture passages, BM-MSCs, but not AT-MSCs, exhibited changes in their functional and phenotypic characteristic that might affect their efficacy as a cell therapy treatment. Therefore, the culture passage selected should be considered for the application of MSCs as a cell therapy treatment.

3.
Immunobiology ; 229(1): 152766, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091798

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) have demonstrated a pronounced immunosuppressive activity, the manifestation of which depends on the microenvironmental factors, including O2 level. Here we examined the effects of MSCs on transcriptomic profile of allogeneic phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) after interaction at ambient (20%) or "physiological" hypoxia (5%) O2. As revealed with microarray analysis, PBMC transcriptome at 20% O2 was more affected, which was manifested as differential expression of more than 300 genes, whereas under 5% O2 220 genes were changed. Most of genes at 20% O2 were downregulated, while at hypoxia most of genes were upregulated. Altered gene patterns were only partly overlapped at different O2 levels. A set of altered genes at hypoxia only was of particular interest. According to Gene Ontology a part of above genes was responsible for adhesion, cell communication, and immune response. At both oxygen concentrations, MSCs demonstrated effective immunosuppression manifested as attenuation of T cell activation and proliferation as well as anti-inflammatory shift of cytokine profile. Thus, MSC-mediated immunosuppression is executed with greater efficacy at a "physiological" hypoxia, since the same result has been achieved through a change in the expression of a fewer genes in target PBMCs.


Asunto(s)
Células Madre Mesenquimatosas , Transcriptoma , Humanos , Leucocitos Mononucleares , Células Madre Mesenquimatosas/metabolismo , Comunicación Celular , Hipoxia/genética , Hipoxia/metabolismo , Células Cultivadas , Proliferación Celular
4.
Tissue Eng Part A ; 30(1-2): 14-30, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933911

RESUMEN

The leading cause of stress urinary incontinence (SUI) in women is the urethral sphincter muscle deficiency caused by mechanical stress during pregnancy and vaginal delivery. In men, prostate cancer surgery and injury of local nerves and muscles are associated with incontinence. Current treatment often fails to satisfy the patient's needs. Cell therapy may improve the situation. We therefore investigated the regeneration potential of cells in ameliorating sphincter muscle deficiency and UI in a large animal model. Urethral sphincter deficiency was induced surgically in gilts by electrocautery and balloon dilatation. Adipose tissue-derived stromal cells (ADSCs) and myoblasts from Musculus semitendinosus were isolated from male littermates, expanded, characterized in depth for expression of marker genes and in vitro differentiation, and labeled. The cells were injected into the deficient sphincter complex of the incontinent female littermates. Incontinent gilts receiving no cell therapy served as controls. Sphincter deficiency and functional regeneration were recorded by monitoring the urethral wall pressure during follow-up by two independent methods. Cells injected were detected in vivo during follow-up by transurethral fluorimetry, ex vivo by fluorescence imaging, and in cryosections of tissues targeted by immunofluorescence and by polymerase chain reaction of the sex-determining region Y (SRY) gene. Partial spontaneous regeneration of sphincter muscle function was recorded in control gilts, but the sphincter function remained significantly below levels measured before induction of incontinence (67.03% ± 14.00%, n = 6, p < 0.05). Injection of myoblasts yielded an improved sphincter regeneration within 5 weeks of follow-up but did not reach significance compared to control gilts (81.54% ± 25.40%, n = 5). A significant and full recovery of the urethral sphincter function was observed upon injection of ADSCs within 5 weeks of follow-up (100.4% ± 23.13%, n = 6, p < 0.05). Injection of stromal cells provoked slightly stronger infiltration of CD45pos leukocytes compared to myoblasts injections and controls. The data of this exploratory study indicate that ADSCs inherit a significant potential to regenerate the function of the urethral sphincter muscle.


Asunto(s)
Células Madre Mesenquimatosas , Incontinencia Urinaria , Embarazo , Porcinos , Femenino , Humanos , Masculino , Animales , Incontinencia Urinaria/terapia , Mioblastos , Uretra , Sus scrofa , Tratamiento Basado en Trasplante de Células y Tejidos
5.
Immunobiology ; 228(6): 152765, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38029515

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) have shown promising therapeutic options for acute lung injury (ALI) caused by multiple factors. Here, we evaluated the therapeutic potential of adipose tissue-derived mesenchymal stromal cells (ADSCs) in trauma and hemorrhagic shock (THS)-induced ALI. METHODS: ALI model induced by THS was constructed by fractures plus abdominal trauma plus acute hemorrhage plus fluid resuscitation. The ADSCs group rats were generated by injecting 2 × 106 ADSCs at 0 and 1 h after THS. The sham, ALI, and ADSCs group rats were sacrificed at 24 h after resuscitation. The changes in lung histopathology, total protein in bronchoalveolar lavage fluid (BALF), mRNA expression of pro-inflammatory/anti-inflammatory cytokines, antioxidant, and anti-apoptotic indicator, and the activity of Toll-like receptor 4 (TLR4) signaling in lung tissues were evaluated. RESULTS: Administration of the ADSCs reversed ALI induced by THS, including lung histopathological changes/scores, and BALF total protein concentration. Additionally, ADSCs therapy also significantly down-regulated mRNA expression of pro-inflammatory TNF-α, IL-1ß, and IL-6, up-regulated mRNA expression of anti-inflammatory IL-10, anti-apoptotic molecule Bcl-2, and anti-oxidative molecule HO-1 in THS rats. Furthermore, ADSCs suppressed the expression of TLR4 in lung tissue. CONCLUSION: Our data show that ADSCs administration can exert therapeutic effects on THS-induced ALI in rats and may provide beneficial in preventative strategies for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Células Madre Mesenquimatosas , Choque Hemorrágico , Ratas , Animales , Choque Hemorrágico/complicaciones , Choque Hemorrágico/terapia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/terapia , Pulmón/patología , Células Madre Mesenquimatosas/metabolismo , Antiinflamatorios , ARN Mensajero
6.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240036

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is a severe disease with unclear pathogenesis. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)s) serve as a special source for cell therapy. Herein, we explored whether exosomes (Exo) derived from MSC(AT)s promote primary gingival wound healing and prevent MRONJ. An MRONJ mice model was constructed using zoledronate (Zol) administration and tooth extraction. Exosomes were collected from the conditioned medium (CM) of MSC(AT)s (MSC(AT)s-Exo) and locally administered into the tooth sockets. Interleukin-1 receptor antagonist (IL-1RA)-siRNA was used to knock down the expression of IL-1RA in MSC(AT)s-Exo. Clinical observations, micro-computed tomography (microCT), and histological analysis were used to evaluate the therapeutic effects in vivo. In addition, the effect of exosomes on the biological behavior of human gingival fibroblasts (HGFs) was evaluated in vitro. MSC(AT)s-Exo accelerated primary gingival wound healing and bone regeneration in tooth sockets and prevented MRONJ. Moreover, MSC(AT)s-Exo increased IL-1RA expression and decreased interleukin-1 beta (IL-1ß) and tumor necrosis factor-α (TNF-α) expression in the gingival tissue. The sequent rescue assay showed that the effects of preventing MRONJ in vivo and improving the migration and collagen synthesis abilities of zoledronate-affected HGFs in vitro were partially impaired in the IL-1RA-deficient exosome group. Our results indicated that MSC(AT)s-Exo might prevent the onset of MRONJ via an IL-1RA-mediated anti-inflammatory effect in the gingiva wound and improve the migration and collagen synthesis abilities of HGFs.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteonecrosis , Ratones , Animales , Humanos , Ácido Zoledrónico , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Exosomas/metabolismo , Microtomografía por Rayos X , Osteonecrosis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colágeno/metabolismo
7.
Drug Deliv Transl Res ; 13(6): 1745-1765, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36853436

RESUMEN

There is currently no causal treatment available for Parkinson's disease (PD). However, the use of glial cell line-derived neurotrophic factor (GDNF) to provide regenerative effects for neurons is promising. Such approaches require translational delivery systems that are functional in diseased tissue. To do so, we used a non-viral Sleeping Beauty (SB) transposon system to overexpress GDNF in adipose tissue-derived mesenchymal stromal cells (adMSCs). Entrapment of cells in fibrin hydrogel was used to boost potential neurorestorative effects. Functional GDNF-adMSCs were able to secrete 1066.8 ± 169.4 ng GDNF/120,000 cells in vitro. The GDNF-adMSCs were detectable for up to 1 month after transplantation in a mild 6-hydroxydopamine (6-OHDA) hemiparkinson male rat model. Entrapment of GDNF-adMSCs enabled GDNF secretion in surrounding tissue in a more concentrated manner, also tending to prolong GDNF secretion relatively. GDNF-adMSCs entrapped in hydrogel also led to positive immunomodulatory effects via an 83% reduction of regional IL-1ß levels compared to the non-entrapped GDNF-adMSC group after 1 month. Furthermore, GDNF-adMSC-treated groups showed higher recovery of tyrosine hydroxylase (TH)-expressing cells, indicating a neuroprotective function, although this was not strong enough to show significant improvement in motor performance. Our findings establish a promising GDNF treatment system in a PD model. Entrapment of GDNF-adMSCs mediated positive immunomodulatory effects. Although the durability of the hydrogel needs to be extended to unlock its full potential for motor improvements, the neuroprotective effects of GDNF were evident and safe. Further motor behavioral tests and other disease models are necessary to evaluate this treatment option adequately.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad de Parkinson , Ratas , Masculino , Animales , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Ratas Sprague-Dawley , Factor Neurotrófico Derivado de la Línea Celular Glial , Hidrogeles , Modelos Animales de Enfermedad
8.
Eur J Heart Fail ; 25(4): 576-587, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36644821

RESUMEN

AIMS: The aim of the SCIENCE trial was to investigate whether a single treatment with direct intramyocardial injections of adipose tissue-derived mesenchymal stromal cells (CSCC_ASCs) was safe and improved cardiac function in patients with chronic ischaemic heart failure with reduced ejection fraction (HFrEF). METHODS AND RESULTS: The study was a European multicentre, double-blind, placebo-controlled phase II trial using allogeneic CSCC_ASCs from healthy donors or placebo (2:1 randomization). Main inclusion criteria were New York Heart Association (NYHA) class II-III, left ventricular ejection fraction (LVEF) <45%, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels >300 pg/ml. CSCC_ASCs or placebo (isotonic saline) were injected directly into viable myocardium. The primary endpoint was change in left ventricular end-systolic volume (LVESV) at 6-month follow-up measured by echocardiography. A total of 133 symptomatic HFrEF patients were included. The treatment was safe without any drug-related severe adverse events or difference in cardiac-related adverse events during a 3-year follow-up period. There were no significant differences between groups during follow-up in LVESV (0.3 ± 5.0 ml, p = 0.945), nor in secondary endpoints of left ventricular end-diastolic volume (-2.0 ± 6.0 ml, p = 0.736) and LVEF (-1.6 ± 1.0%, p = 0.119). The NYHA class improved slightly within the first year in both groups without any difference between groups. There were no changes in 6-min walk test, NT-proBNP, C-reactive protein or quality of life the first year in any groups. CONCLUSION: The SCIENCE trial demonstrated safety of intramyocardial allogeneic CSCC_ASC therapy in patients with chronic HFrEF. However, it was not possible to improve the pre-defined endpoints and induce restoration of cardiac function or clinical symptoms.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Humanos , Enfermedad Crónica , Calidad de Vida , Volumen Sistólico , Resultado del Tratamiento , Función Ventricular Izquierda , Método Doble Ciego
9.
ESC Heart Fail ; 10(2): 1170-1183, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36638837

RESUMEN

AIMS: Patients suffering from chronic ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) have reduced quality-of-life, repetitive hospital admissions, and reduced life expectancy. Allogeneic cell therapy is currently investigated as a potential treatment option after initially encouraging results from clinical autologous and allogeneic trials in patients with HFrEF. We aimed to investigate the allogeneic Cardiology Stem Cell Centre Adipose tissue derived mesenchymal Stromal Cell product (CSCC_ASC) as an add-on therapy in patients with chronic HFrEF. METHODS AND RESULTS: This is a Danish multi-centre double-blinded placebo-controlled phase II study with direct intra-myocardial injections of allogeneic CSCC_ASC. A total of 81 HFrEF patients were included and randomized 2:1 to CSCC_ASC or placebo injections. The inclusion criteria were reduced left ventricular ejection fraction (LVEF ≤ 45%), New York Heart Association (NYHA) class II-III despite optimal anti-congestive heart failure medication and no further revascularization options. Injections of 0.3 mL CSCC_ASC (total cell dose 100 × 106 ASCs) (n = 54) or isotonic saline (n = 27) were performed into the viable myocardium in the border zone of infarcted tissue using the NOGA Myostar® catheter (Biological Delivery System, Cordis, Johnson & Johnson, USA). The primary endpoint, left ventricular end systolic volume (LVESV), was evaluated at 6-month follow-up. The safety was measured during a 3-years follow-up period. RESULTS: Mean age was 67.0 ± 9.0 years and 66.6 ± 8.1 years in the ASC and placebo groups, respectively. LVESV was unchanged from baseline to 6-month follow-up in the ASC (125.7 ± 68.8 mL and 126.3 ± 72.5 mL, P = 0.827) and placebo (134.6 ± 45.8 mL and 135.3 ± 49.6 mL, P = 0.855) group without any differences between the groups (0.0 mL (95% CI -9.1 to 9.0 mL, P = 0.992). Neither were there significant changes in left ventricular end diastolic volume or LVEF within the two groups or between groups -5.7 mL (95% CI -16.7 to 5.3 mL, P = 0.306) and -1.7% (95% CI -4.4. to 1.0, P = 0.212), respectively). NYHA classification and 6-min walk test did not alter significantly in the two groups (P > 0.05). The quality-of-life, total symptom, and overall summary score improved significantly only in the ASC group but not between groups. There were 24 serious adverse events (SAEs) in the ASC group and 11 SAEs in the placebo group without any significant differences between the two groups at 1-year follow-up. Kaplan-Meier plot using log-rank test of combined cardiac events showed an overall mean time to event of 30 ± 2 months in the ASC group and 29 ± 2 months in the placebo group without any differences between the groups during the 3 years follow-up period (P = 0.994). CONCLUSIONS: Intramyocardial CSCC_ASC injections in patients with chronic HFrEF were safe but did not improve myocardial function or structure, nor clinical symptoms.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Isquemia Miocárdica , Humanos , Persona de Mediana Edad , Anciano , Insuficiencia Cardíaca/terapia , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/terapia , Volumen Sistólico , Función Ventricular Izquierda , Trasplante de Células Madre Mesenquimatosas/métodos , Dinamarca
10.
Regen Ther ; 21: 527-539, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36382136

RESUMEN

Hair loss, or alopecia, is associated with several psychosocial and medical comorbidities, and it remains an economic burden to individuals and the society. Alopecia is attributable to varied mechanisms and features a multifactorial predisposition, and the available conventional medical interventions have several limitations. Thus, several therapeutic strategies for alopecia in regenerative medicine are currently being explored, with increasing evidence suggesting that mesenchymal stem cell (MSC) implantation, MSC-derived secretome treatment, and blood-derived platelet-rich plasma therapies are potential treatment options. In this review, we searched the Cochrane Library, MEDLINE (PubMed), EMBASE, and Scopus using various combinations of terms, such as "stem cell," "alopecia," "hair loss," "Androgenetic alopecia," "male-pattern hair loss," "female-pattern hair loss," "regenerative hair growth," "cell therapy," "mesenchymal stem cells," "MSC-derived extracellular vesicles," "MSC-derived exosomes," and "platelet-rich plasma" and summarized the most promising regenerative treatments for alopecia. Moreover, further opportunities of improving efficacy and innovative strategies for promoting clinical application were discussed.

11.
J Tissue Eng Regen Med ; 16(6): 515-529, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35278347

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) has neuroprotective effects and may be a promising candidate for regenerative strategies focusing on neurodegenerative diseases. As GDNF cannot cross the blood-brain barrier to potentially regenerate damaged brain areas, continuous in situ delivery with host cells is desired. Here, a non-viral Sleeping Beauty transposon was used to achieve continuous in vitro overexpression of GDNF in immune-privileged human adipose tissue-derived mesenchymal stromal cells (GDNF-tASCs). In addition, in vivo survival, tolerance, and effectiveness of transfected cells were tested in a very mild 6-hydroxydopamine (6-OHDA)-induced dopamine depletion rat model by means of intrastriatal injection on a sample basis up to 6 months after treatment. GDNF-tASCs showed vast in vitro gene overexpression up to 13 weeks post-transfection. In vivo, GDNF was detectable 4 days following transplantation, but no longer after 1 month, although adipose tissue-derived mesenchymal stromal cells (ASCs) could be visualized histologically even after 6 months. Despite successful long-term in vitro GDNF overexpression and its in vivo detection shortly after cell transplantation, the 6-OHDA model was too mild to enable sufficient evaluation of in vivo disease improvement. Still, in vivo immunocompatibility could be further examined. ASCs initially induced a pronounced microglial accumulation at transplantation site, particularly prominent in GDNF-tASCs. However, 6-OHDA-induced pro-inflammatory immune response was attenuated by ASCs, although delayed in the GDNF-tASCs group. To further test the therapeutic potential of the generated GDNF-overexpressing cells in a disease-related context, a follow-up study using a more appropriate 6-OHDA model is needed.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Células Madre Mesenquimatosas , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Estudios de Seguimiento , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Oxidopamina/farmacología , Ratas , Ratas Sprague-Dawley
12.
J Cell Mol Med ; 25(12): 5381-5390, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949765

RESUMEN

Cardiac stromal cells (CSCs) contain a pool of cells with supportive and paracrine functions. Various types of mesenchymal stromal cells (MSCs) can influence CSCs in the cardiac niche through their paracrine activity. Ischaemia/reperfusion (I/R) leads to cell death and reduction of the paracrine activity of CSCs. The forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD), known to potentiate anti-apoptotic, pro-survival and pro-angiogenic activities of MSCs isolated from the adipose tissue (AT-MSCs), may increase CSC survival, favouring their paracrine activities. We aimed at investigating the hypothesis that CSCs feature improved resistance to simulated I/R (SI/R) and increased commitment towards the cardiovascular lineage when preconditioned with conditioned media (CM) or extracellular vesicles (EV) released from AT-MSCs overexpressing TERT and MYOCD (T/M AT-MSCs). Murine CSCs were isolated with the cardiosphere (CSps) isolation technique. T/M AT-MSCs and their secretome improved spontaneous intracellular calcium changes and ryanodine receptor expression in aged CSps. The cytoprotective effect of AT-MSCs was tested in CSCs subjected to SI/R. SI/R induced cell death as compared to normoxia (28 ± 4 vs 10 ± 3%, P = .02). Pre-treatment with CM (15 ± 2, P = .02) or with the EV-enriched fraction (10 ± 1%, P = .02) obtained from mock-transduced AT-MSCs in normoxia reduced cell death after SI/R. The effect was more pronounced with CM (7 ± 1%, P = .01) or the EV-enriched fraction (2 ± 1%, P = .01) obtained from T/M AT-MSCs subjected to SI/R. In parallel, we observed lower expression of the apoptosis marker cleaved caspase-3 and higher expression of cardiac and vascular markers eNOS, sarcomeric α-actinin and cardiac actin. The T/M AT-MSCs secretome exerts a cytoprotective effect and promotes development of CSCs undergoing SI/R towards a cardiovascular phenotype.


Asunto(s)
Biomarcadores/metabolismo , Enfermedades Cardiovasculares/terapia , Corazón/crecimiento & desarrollo , Células Madre Mesenquimatosas/citología , Proteínas Nucleares/metabolismo , Daño por Reperfusión/complicaciones , Telomerasa/metabolismo , Transactivadores/metabolismo , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Telomerasa/genética , Transactivadores/genética
13.
Life Sci ; 268: 118970, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33383051

RESUMEN

AIMS: Stroma-dependent ex vivo expansion of hematopoietic stem progenitor cells (HSPCs) is a valid approach for cell therapy needs. Our goal was to verify whether HSPCs can affect stromal cells to optimize their functions during ex vivo expansion. MAIN METHODS: HSPCs from cord blood (cb) were cocultured with growth-arrested adipose mesenchymal stromal cells (MSCs). Commitment-related transcriptional and secretory profiles as well as hematopoiesis-supportive activity of intact and osteo-induced MSCs were examined. KEY FINDINGS: During expansion, cbHSPCs affected the functional state of MSCs, contributing to the formation of early stromal progenitors with a bipotential osteo-adipogenic profile. This was evidenced by the upregulation of certain MSC genes of osteo- and adipodifferentiation (ALPL, RUNX2, BGLAP, CEBPA, ADIPOQ), as well as by elevated alkaline phosphatase activity and altered osteoprotein patterns. Joint paracrine profiles upon coculture were characterized by a balance of "positive" (GM-SCF) and "negative" (IP-10, MIP-1α, MCP-3) myeloid regulators, effectively supporting expansion of both committed and primitive cbHSPCs. Short-term (72 h) osteoinduction prior to coculture resulted in more pronounced shift of the bipotential transcriptomic and osteoprotein profiles. The increased proportions of late primitive CD133-/CD34+cbHSPCs and unipotent CFUs suggested that cbHSPCs after expansion on osteo-MSCs were more committed versus cbHSPCs from coculture with non-differentiated MSCs. SIGNIFICANCE: During ex vivo expansion, cbHSPCs can drive the bipotential osteo-adipogenic commitment of MSCs, providing a specific hematopoiesis-supportive milieu. Short-term preliminary osteo-induction enhanced the development of the bipotential profile, leading to more pronounced functional polarization of cbHSPCs, which may be of interest in an applied context.


Asunto(s)
Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Fosfatasa Alcalina/metabolismo , Quimiocinas/metabolismo , Técnicas de Cocultivo , Ensayo de Unidades Formadoras de Colonias , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Células del Estroma/citología
14.
Postepy Dermatol Alergol ; 37(5): 771-780, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33240019

RESUMEN

INTRODUCTION: Human adipose tissue-derived mesenchymal stem/stromal cells (hAT-MSCs) are multipotent stromal cells with a high potential application in tissue engineering and regenerative medicine. Laser irradiation of the place where the cells were implanted can stimulate their proliferation, increase the secretion of growth factors and thus increase the therapeutic effect. AIM: To evaluate the influence of two lasers: Er:YAG and diode on the growth of hAT-MSCs in vitro. MATERIAL AND METHODS: hAT-MSCs were isolated from human subcutaneous adipose tissue. Immunophenotype of hAT-MSCs was confirmed by flow cytometry. Multipotency of hAT-MSCs was confirmed by differentiation into adipogenic, osteogenic and chondrogenic lineages. hAT-MSCs were irradiated with Er:YAG laser (wavelength 2940 nm, frequency 5, 10 Hz, doses: 0.1-1.2 J/cm2) for 2 s and 4 s and diode laser (wavelength 635 nm and doses: 1-8 J/cm2) for 5, 10, 20, 30 and 40 s. Cell viability was analysed 24 h after the exposure using MTT assay. RESULTS: Growth stimulation of hAT-MSCs after 5 Hz Er:YAG laser exposure, 0.1 J/cm2 dose for 4 s and 0.3 J/cm2 dose for 4 s was shown in comparison with the control group. Significant growth stimulation of hAT-MSCs after diode laser irradiation in doses of 1-4 J/cm2 was demonstrated compared to the control group. CONCLUSIONS: The presented results indicate that both lasers, Er:YAG and diode can be used to stimulate stem/stromal cell growth in vitro. The biostimulative effect of laser therapy on stromal cells may be used in the future in aesthetic dermatology in combined laser and cell therapy.

15.
Vascul Pharmacol ; 135: 106807, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33130246

RESUMEN

AIM: Cell therapies are hampered by poor survival and growth of grafts. We tested whether forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD) improves post-infarct revascularization and tissue repair by adipose tissue-derived mesenchymal stromal cells (AT-MSCs). METHODS AND RESULTS: We transplanted AT-MSCs overexpressing MYOCD and TERT in a murine model of acute myocardial infarction (AMI). We characterized paracrine effects of AT-MSCs. When transplanted into infarcted hearts of C57BL/6 mice, AT-MSCs overexpressing TERT and MYOCD decreased scar tissue and the intra-scar CD3 and B220 lymphocyte infiltration; and increased arteriolar density as well as ejection fraction compared with saline or mock-transduced AT-MSCs. These effects were accompanied by higher persistence of the injected cells in the heart, increased numbers of Ki-67+ and CD117+ cells, and the expression of cardiac actin and ß-myosin heavy chain. Intramyocardial delivery of the secretome and its extracellular vesicle (EV)-enriched fraction also decreased scar tissue formation and increased arteriolar density in the murine AMI model. Proteomic analysis of AT-MSCs-EV-enriched fraction predicted the activation of vascular development and the inhibition of immune cell trafficking. Elevated concentrations of miR-320a, miR-150-5p and miR-126-3p associated with regulation of apoptosis and vasculogenesis were confirmed in the AT-MSCs-EV-enriched fraction. CONCLUSIONS: AT-MSCs overexpressing TERT and MYOCD promote persistence of transplanted aged AT-MSCs and enhance arteriolar density in a murine model of AMI. EV-enriched fraction is the component of the paracrine secretion by AT-MSCs with pro-angiogenic and anti-fibrotic activities.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/enzimología , Infarto del Miocardio/cirugía , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Regeneración , Telomerasa/metabolismo , Transactivadores/metabolismo , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Vesículas Extracelulares/enzimología , Vesículas Extracelulares/trasplante , Fibrosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Proteínas Nucleares/genética , Comunicación Paracrina , Recuperación de la Función , Transducción de Señal , Telomerasa/genética , Transactivadores/genética
16.
Stem Cell Res Ther ; 11(1): 374, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867857

RESUMEN

BACKGROUND: Leishmaniasis is a neglected disease caused by Leishmania spp. One of its characteristics is an imbalance of host immune responses to foster parasite survival. In this setting, mesenchymal stromal cells (MSCs) may be a viable therapeutic alternative, given their well-established immunomodulatory potential. In this study, we compared the effects of therapy with bone marrow (BM)- and adipose tissue (AD)-derived MSCs in leishmaniasis caused by Leishmania amazonensis in C57BL/6 mice. After determining the most effective MSC source, we then combined these cells with meglumine antimoniate (a pentavalent antimonial commonly used for the treatment of leishmaniasis) to treat the infected mice. METHODS: In vitro, co-culture of AD-MSCs and BM-MSCs with Leishmania amazonensis-infected macrophages was performed to understand the influence of both MSC sources in infected cells. In vivo, infected C57BL/6 mice were treated with phosphate-buffered saline (PBS), AD-MSCs and BM-MSCs, and then meglumine antimoniate was combined with MSCs from the most effective source. RESULTS: In vitro, co-culture of Leishmania amazonensis-infected macrophages with BM-MSCs, compared to AD-MSCs, led to a higher parasite load and lower production of nitric oxide. Fibroblasts grown in conditioned medium from co-cultures with AD-MSCs promoted faster wound healing. Despite a non-significant difference in the production of vascular endothelial growth factor, we observed higher production of tumor necrosis factor-α and interleukin (IL)-10 in the co-culture with AD-MSCs. In vivo, treatment of infected mice with BM-MSCs did not lead to disease control; however, the use of AD-MSCs was associated with partial control of lesion development, without significant differences in the parasite load. AD-MSCs combined with meglumine antimoniate reduced lesion size and parasite load when compared to PBS and AD-MSC groups. At the infection site, we detected a small production of IL-10, but we were unable to detect production of either IL-4 or interferon-γ, indicating resolution of infection without effect on the percentage of regulatory T cells. CONCLUSION: Combination treatment of cutaneous leishmaniasis with AD-MSCs and meglumine antimoniate may be a viable alternative.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Células Madre Mesenquimatosas , Animales , Leishmaniasis Cutánea/terapia , Antimoniato de Meglumina , Ratones , Ratones Endogámicos C57BL , Carga de Parásitos , Factor A de Crecimiento Endotelial Vascular
17.
Tissue Cell ; 63: 101320, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32223948

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) are characterized by immunomodulatory properties along with the high proliferative and paracrine activity, as well as multilineage potency. The effects of MSCs on the T cell adaptive immunity are of a special interest. Low O2 level (1-7 %) is known to be typical for the putative site of the MSC - T cell interactions. A comparative evaluation of the effects of adipose tissue derived MSC (ASCs) on the mitogen-stimulated T cells at the ambient (20 %) and tissue-related (5 %) O2 levels demonstrated reduced T cell activation by the HLA-DR expression, decreased pro-inflammatory and increased anti-inflammatory cytokine production in co-culture, inhibited T cell proliferation, with the effects increased at hypoxia. T cell interactions with ASCs resulted in the up-regulation of PDCD1, Foxp3, and TGFß1 known to play an important role in the immune response suppression, and in the down-regulation of genes involved in the inflammatory reaction (IL2, IFNG). These changes were significantly increased under hypoxia. At the same time, neither ASCs nor the reduced O2 level had negative effects on the viability of T cells.


Asunto(s)
Inmunidad Adaptativa/genética , Células Madre Mesenquimatosas/metabolismo , Oxígeno/metabolismo , Linfocitos T/inmunología , Inmunidad Adaptativa/inmunología , Adipocitos/inmunología , Adipocitos/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Comunicación Celular/genética , Hipoxia de la Célula/genética , Proliferación Celular/genética , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/genética , Antígenos HLA-DR/genética , Humanos , Interferón gamma/genética , Interleucina-2/genética , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/patología , Oxígeno/inmunología , Comunicación Paracrina/genética , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta1/genética
18.
Arch Immunol Ther Exp (Warsz) ; 68(1): 5, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060631

RESUMEN

Adipose tissue is a reliable source of mesenchymal stromal cells (MSC) for use in regenerative medicine. The aim of this pilot study was to describe the method, and assess the safety and the potential efficacy of transplantation of autologous adipose tissue-derived MSC for the treatment of chronic venous stasis ulcers. Study group consisted of 11 patients (mean age: 66.6 ± 9.5 years) with chronic venous stasis ulcers. Adipose tissue was harvested by tumescent-aspiration method. Stromal cells were separated using a dedicated closed system in a real-time bedside manner. The phenotype of cells was determined immediately after separation. Cell concentrate was implanted subcutaneously around the wound and the wound bed. All ulcers were assessed planimetrically before autotransplantation and every two weeks during the six-month follow-up. During the study all patients received standard local and general treatment. The preparation contained an average of 5.6 × 106 ± 4 × 106 cells per milliliter. The phenotype of 65-82% of transplanted cells expressed MSC markers: CD73+ CD90+ and CD34+. An improvement was observed in 75% of ulcers. The data showed highly significant negative correlation (p < 0.0001) between wound size and wound closure degree. There was no correlation of ulcer healing with other parameters evaluated, including age of the patients. No serious side effects were observed. Autotransplantation of adipose tissue stromal cells may be a safe and promising treatment method for chronic venous ulcers.


Asunto(s)
Tejido Adiposo/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Úlcera Varicosa/terapia , Anciano , Biomarcadores/metabolismo , Enfermedad Crónica , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Fenotipo , Proyectos Piloto , Trasplante Autólogo , Resultado del Tratamiento , Úlcera Varicosa/patología , Cicatrización de Heridas/fisiología
19.
J Cell Physiol ; 235(2): 1556-1567, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31400002

RESUMEN

The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Intestino Delgado , Ratas , Ratas Wistar , Regeneración , Ovinos , Resistencia a la Tracción
20.
Stem Cell Res Ther ; 10(1): 235, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383013

RESUMEN

BACKGROUND: Adipose tissue-derived mesenchymal stromal cells (ASCs) have been shown to exhibit some promising properties of their use in regenerative medicine as advanced therapy medicinal products (ATMP). However, different sources of their origin, methods of isolation, and expansion procedures cause the laboratory and clinical results difficult to compare. METHODS: ASCs were isolated from lipoaspirates and cultured in three different medium formulations: αMEM and DMEM as a basal medium supplemented with 10% of human platelet lysate (hPL) and DMEM supplemented with 20% fetal bovine serum (FBS) and bFGF as a gold standard medium. Subsequently, the impact of culture media on ASCs growth kinetics, their morphology and immunophenotype, ability to differentiate, clonogenic potential, and secretion profile was evaluated. RESULTS: All cultured ASCs lines showed similar morphology and similar clonogenic potential and have the ability to differentiate into three lines: adipocytes, osteoblasts, and chondroblasts. The immunophenotype of all cultured ASCs was consistent with the guidelines of the International Society for Cell Therapy (ISCT) allowing to define cells as mesenchymal stromal cell (MSC) (≥ 95% CD105, CD73, CD90 and ≤ 2% CD45, CD34, CD14, CD19, HLA-DR). The immunophenotype stabilized after the second passage and did not differ between ASCs cultured in different conditions. The exception was the ASCs grown in the presence of FBS and bFGF, which expressed CD146 antigens. The secretion profile of ASCs cultured in different media was similar. The main secreted cytokine was IL-6, and its level was donor-specific. However, we observed a strong influence of the medium formulation on ASCs growth kinetics. The proliferation rate of ASCs in medium supplemented with hPL was the highest. CONCLUSIONS: Culture media that do not contain animal-derived antigens (xeno-free) can be used to culture cells defined as MSC. Xeno-free medium is a safe alternative for the production of clinical-grade MSC as an advanced therapy medicinal product. Additionally, in such culture conditions, MSC can be easily expanded in accordance with the Good Manufacturing Process (GMP) requirements to a desired amount of cells for clinical applications.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Adipogénesis , Tejido Adiposo/citología , Adulto , Antígeno CD146/metabolismo , Proliferación Celular , Células Cultivadas , Condrogénesis , Medios de Cultivo/química , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Inmunofenotipificación , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA