Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Lett ; 19(6): 20230090, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311549

RESUMEN

The 2022 highly pathogenic avian influenza (HPAI) outbreak that occurred in many European countries affected several seabird species. Among them, northern gannets (Morus bassanus) were particularly impacted. We conducted aerial surveys in waters around the two largest gannet colonies in southwest Ireland (Little Skellig and Bull Rock, together representing 87% of the national population) in September 2022. During surveys dead and alive northern gannets were counted on survey effort. A total of 184 dead gannets were recorded on survey effort, representing 3.74% of the total number of gannets recorded. We estimated the abundance of dead gannets in the surveyed area at 1526 (95% confidence intervals (CIs) 1450-1605) individuals. The percentage of dead gannets observed was used to estimate a minimum local population mortality of 3126 (95% CIs 2993-3260) individuals across both colonies. Aerial surveys provided key information on gannet mortality from HPAI at sea. The study provides the first estimate of gannet mortality in the two largest gannetries in Ireland.


Asunto(s)
Gripe Aviar , Morus , Humanos , Animales , Bovinos , Masculino , Irlanda/epidemiología , Gripe Aviar/epidemiología , Pandemias , Aves
2.
Animals (Basel) ; 12(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35953924

RESUMEN

The Iberian porpoise population is small and under potentially unsustainable removal by fisheries bycatch. Recently, a marine Site of Community Importance (SCI) was legally approved in Portugal, but no measures ensued to promote porpoise conservation. Information about porpoise abundance and distribution is fundamental to guide any future conservation measures. Annual aerial surveys conducted between 2011 and 2015 show a low overall porpoise abundance and density (2254 individuals; 0.090 ind/km2, CV = 21.99%) in the Portuguese coast. The highest annual porpoise estimates were registered in 2013 (3207 individuals, 0.128 ind/km2), followed by a sharp decrease in 2014 (1653 individuals, 0.066 ind/km2). The porpoise density and abundance estimated in 2015 remained lower than the 2013 estimates. A potential distribution analysis of the Iberian porpoise population was performed using ensembles of small models (ESMs) with MaxEnt and showed that the overall habitat suitability is particularly high in the Portuguese northern area. The analysis also suggested a different pattern in porpoise potential distribution across the study period. These results emphasize the importance of further porpoise population assessments to fully understand the spatial and temporal porpoise habitat use in the Iberian Peninsula as well as the urgent need for on-site threat mitigation measures.

3.
Environ Sci Pollut Res Int ; 28(3): 2893-2903, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32895793

RESUMEN

Marine debris is known for its ubiquitousness and harmful effects on marine life. This study is the first analysis to provide information on the distribution of floating marine debris in German waters using aerial survey data collected between 2002 and 2016. During regular harbour porpoise monitoring flights, 191,167 km were covered and 26,512 floating debris items recorded (average encounter rate 0.1387 items/km). Debris was encountered more often in the North Sea than in the Baltic Sea (0.16 items/km; 0.08 items/km). The average encounter rate was higher in offshore waters than in coastal areas. Overlaps of marine debris distribution with 'Special Areas of Conservation' are a particular reason for concern. Moreover, the spring months (March-May) were identified to be the time of the year with the highest average encounter rates for marine debris. Fishing-related debris was shown to contribute up to 25% of the total number of all observed items. This study shows that opportunistically collected data on marine debris from aerial surveys are valuable for identifying distribution patterns of floating debris without additional survey effort and costs. These data can be used as baseline information to inform management schemes such as the Marine Strategy Framework Directive.


Asunto(s)
Plásticos , Residuos , Monitoreo del Ambiente , Mar del Norte , Encuestas y Cuestionarios , Residuos/análisis
5.
Environ Pollut ; 258: 113680, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31796317

RESUMEN

Pollution by marine litter is raising major concerns due to its potential impact on marine biodiversity and, above all, on endangered mega-fauna species, such as cetaceans and sea turtles. The density and distribution of marine litter and mega-fauna have been traditionally monitored through observer-based methods, yet the advent of new technologies has introduced aerial photography as an alternative monitoring method. However, to integrate results produced by different monitoring techniques and consider the photographic method a viable alternative, this 'new' methodology must be validated. This study aims to compare observations obtained from the concurrent application of observer-based and photographic methods during aerial surveys. To do so, a Partenavia P-68 aircraft equipped with an RGB sensor was used to monitor the waters off the Spanish Mediterranean coast along 12 transects (941 km). Over 10000 images were collected and checked manually by a photo-interpreter to detect potential targets, which were classified as floating marine macro-litter, mega-fauna and seabirds. The two methods allowed the detection of items from the three categories and proved equally effective for the detection of cetaceans, sea turtles and large fish on the sea surface. However, the photographic method was more effective for floating litter detection and the observer-based method was more effective for seabird detection. These results provide the first validation of the use of aerial photography to monitor floating litter and mega-fauna over the marine surface.


Asunto(s)
Cetáceos/metabolismo , Monitoreo del Ambiente/métodos , Plásticos , Tortugas , Animales , Mar Mediterráneo , Fotograbar , Tecnología de Sensores Remotos , Residuos
6.
PeerJ ; 7: e8129, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31844569

RESUMEN

BACKGROUND: Drones are reliable tools for estimating colonial seabird numbers. Although most research has focused on methods of improving the accuracy of bird counts, few studies have evaluated the impacts of these methods on bird behavior. In this study, we examined the effects of the DJI Phantom 3 drone approach (altitude, horizontal and vertical descent speeds) on changes in the intensity of behavioral response of guano birds: guanay cormorants (Phalacrocorax bougainvilli), Peruvian boobies (Sula variegata) and Peruvian pelicans (Pelecanus thagus). The breeding and non-breeding condition was also evaluated. METHODS: Eleven locations along the Peruvian coast were visited in 2016-2017. Drone flight tests considered an altitude range from 5 to 80 m from the colony level, a horizontal speed range from 0.5 to 15 m/s, and a vertical descent speed range from 0.5 to 3 m/s. The intensity of the behavioral response of birds was scored and categorized as: 0-no reacting, 1-head pointing to the drone (HP), 2-wing flapping (WF), 3-walking/running (WR) and 4-taking-off/flying (TK). Drone noise at specific altitudes was recorded with a sound meter close to the colony to discriminate visual from auditory effects of the drone. RESULTS: In 74% of all test flights (N = 507), guano birds did not react to the presence of the drone, whereas in the remaining flights, birds showed a sign of discomfort: HP (47.7%, N = 130), WF (18.5%), WR (16.9%) and TK (16.9%). For the drone approach tests, only flight altitude had a significant effect in the intensity of the behavioral response of guano birds (intensity behavioral response <2). No birds reacted at drone altitudes above 50 m from the colony. Birds, for all species either in breeding or non-breeding condition, reacted more often at altitudes of 5 and 10 m. Chick-rearing cormorants and pelicans were less sensitive than their non-breeding counterparts in the range of 5-30 m of drone altitude, but boobies reacted similarly irrespective of their condition. At 5 m above the colony, cormorants were more sensitive to the drone presence than the other two species. Horizontal and vertical flights at different speeds had negligible effects (intensity behavioral response <1). At 2 m above the ground, the noise of the cormorant colony was in average 71.34 ± 4.05 dB (N = 420). No significant differences were observed in the drone noise at different flight altitudes because the background noise of the colony was as loud as the drone. CONCLUSIONS: It is feasible to use the drone DJI Phantom 3 for surveys on the guano islands of Peru. We recommend performing drone flights at altitudes greater than 50 m from guano bird colonies and to select take-off spots far from gulls. Likewise, this study provides a first step to develop guidelines and protocols of drone use for other potential activities on the Peruvian guano islands and headlands such as surveys of other seabirds and pinnipeds, filming and surveillance.

7.
R Soc Open Sci ; 6(9): 190296, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31598284

RESUMEN

A double-platform protocol was implemented in the Bay of Biscay and English Channel during the SCANS-III survey (2016). Two observation platforms using different protocols were operating on board a single aircraft: the reference platform (Scans), targeting cetaceans, and the 'Megafauna' platform, recording all the marine fauna visible at the sea surface (jellyfish to seabirds). We tested for a potential bias in small cetacean detection and density estimation when recording all marine fauna. At a small temporal scale (30 s, roughly 1.5 km), our results provided overall similar perception probabilities for both platforms. Small cetacean perception was higher following the detection of another cetacean within the previous 30 s in both platforms. The only prior target that decreased small cetacean perception during the subsequent 30 s was seabirds, in the Megafauna platform. However, at a larger scale (study area), this small-scale perception bias had no effect on the density estimates, which were similar for the two protocols. As a result, there was no evidence of lower performance regarding small cetacean population monitoring for the multi-target protocol in our study area. Because our study area was characterized by moderate cetacean densities and small spatial overlap of cetaceans and seabirds, any extrapolation to other areas or time requires caution. Nonetheless, by permitting the collection of cost-effective quantitative data for marine fauna, anthropogenic activities and marine litter at the sea surface, the multi-target protocol is valuable for optimizing logistical and financial resources to efficiently monitor biodiversity and study community ecology.

8.
J Environ Manage ; 251: 109511, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539703

RESUMEN

Marine habitats are nowadays strongly affected by human activities, while for many species the consequences of these impacts are still unclear. The red-throated diver (Gavia stellata) has been reported to be sensitive to ship traffic and other anthropogenic pressures and is consequently of high conservation concern. We studied red-throated divers in the German Bight (North Sea) using satellite telemetry and digital aerial surveys with the aim of assessing effects of ship traffic on the distribution and movements of this species during the non-breeding season. Data from the automatic identification system of ships (AIS) were intersected with bird data and allowed detailed spatial and temporal analyses. During the study period, ship traffic was present throughout the main distribution area of divers. Depending on impact radius, only small areas existed in which ship traffic was present on less than 20% of the days. Ship traffic was dominated by fishing vessels and cargo ships, but also wind farm-related ships were frequently recorded. Red-throated divers were more abundant in areas with no or little concurrent ship traffic. Analysis of aerial survey data revealed strong effects of ship speed on divers: in areas with vessels sailing at high speed only a slow resettlement of the area was observed after the disturbance, while in areas with vessels sailing at medium speed the resettlement was more rapid during the observed time period of 7 hours. Data from satellite-tracking of divers suggest that large relocation distances of individuals are related to disturbance by ships which often trigger birds to take flight. Effective measures to reduce disturbance could include channeled traffic in sensitive areas, as well as speed limits for ships traveling within the protected marine area.


Asunto(s)
Ecosistema , Navíos , Animales , Aves , Movimiento , Mar del Norte
9.
Environ Sci Pollut Res Int ; 26(2): 1654-1660, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30448947

RESUMEN

Illinois is one of the US states where elimination of feral swine (Sus scrofa) was determined practical, as only a few isolated populations were established. A particularly important step towards feral swine elimination from Illinois was to eliminate the population in Fulton County. We describe the approaches applied to systematically detect, locate, and eliminate feral swine in a successful county-wide elimination. Detecting and locating feral swine was facilitated by extensive outreach activities, aerial surveys to locate crop damage, and use of camera traps placed over bait in areas where reports, sign, or crop damage occurred. The population was eliminated after 376 feral swine were removed from 2009 to 2016 by trapping, sharpshooting over bait, and aerial shooting. Aerial surveys efficiently located feral swine activity over wide areas during times of the crop cycle when damage would occur and would be most distinguishable from other damage sources. Two applications of aerial shooting in 2014 were particularly efficient for rapidly eliminating most remaining feral swine after they had become difficult to locate and remove. Persistent efforts thereafter led to the successful elimination of feral swine in Fulton County by 2016. We believe this is the first documentation of a widespread feral swine elimination in mixed agriculture and forest habitats.


Asunto(s)
Control de Plagas/métodos , Porcinos , Agricultura , Animales , Animales Salvajes , Ecosistema , Bosques , Illinois , Especies Introducidas
10.
Front Robot AI ; 6: 149, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33501164

RESUMEN

In the immediate aftermath following a large-scale release of radioactive material into the environment, it is necessary to determine the spatial distribution of radioactivity quickly. At present, this is conducted by utilizing manned aircraft equipped with large-volume radiation detection systems. Whilst these are capable of mapping large areas quickly, they suffer from a low spatial resolution due to the operating altitude of the aircraft. They are also expensive to deploy and their manned nature means that the operators are still at risk of exposure to potentially harmful ionizing radiation. Previous studies have identified the feasibility of utilizing unmanned aerial systems (UASs) in monitoring radiation in post-disaster environments. However, the majority of these systems suffer from a limited range or are too heavy to be easily integrated into regulatory restrictions that exist on the deployment of UASs worldwide. This study presents a new radiation mapping UAS based on a lightweight (8 kg) fixed-wing unmanned aircraft and tests its suitability to mapping post-disaster radiation in the Chornobyl Exclusion Zone (CEZ). The system is capable of continuous flight for more than 1 h and can resolve small scale changes in dose-rate in high resolution (sub-20 m). It is envisaged that with some minor development, these systems could be utilized to map large areas of hazardous land without exposing a single operator to a harmful dose of ionizing radiation.

11.
PeerJ ; 6: e4467, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576950

RESUMEN

The use of small unoccupied aircraft systems (UAS) for ecological studies and wildlife population assessments is increasing. These methods can provide significant benefits in terms of costs and reductions in human risk, but little is known if UAS-based approaches cause disturbance of animals during operations. To address this knowledge gap, we conducted a series of UAS flights at gray seal breeding colonies on Hay and Saddle Islands in Nova Scotia, Canada. Using a small fixed-wing UAS, we assessed both immediate and short-term effects of surveys using sequential image analysis and between-flight seal counts in ten, 50 m2 random quadrats at each colony. Counts of adult gray seals and young-of-the-year animals between first and second flights revealed no changes in abundance in quadrats (matched pair t-test p > 0.69) and slopes approaching 1 for linear regression comparisons (r2 > 0.80). Sequential image analysis revealed no changes in orientation or posture of imaged animals. We also assessed the acoustic properties of the small UAS in relation to low ambient noise conditions using sound equivalent level (Leq) measurements with a calibrated U-MIK 1 and a 1/3 octave band soundscape approach. The results of Leq measurements indicate that small fixed-wing UAS are quiet, with most energy above 160 Hz, and that levels across 1/3 octave bands do not greatly exceed ambient acoustic measurements in a quiet field during operations at standard survey altitudes. As such, this platform is unlikely to acoustically disturb gray seals at breeding colonies during population surveys. The results of the present study indicate that the effects of small fixed-wing UAS on gray seals at breeding colonies are negligible, and that fixed-wing UAS-based approaches should be considered amongst best practices for assessing gray seal colonies.

12.
Ecol Evol ; 7(18): 7304-7310, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28944018

RESUMEN

If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double-observer models, distance sampling models and combined double-observer and distance sampling models (known as mark-recapture-distance-sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under-counted, but not over-counted. The estimator combines an MRDS model with an N-mixture model to account for imperfect detection of individuals. The new MRDS-Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS-Nmix model to an MRDS model. Abundance estimates generated by the MRDS-Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re-allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data required are a second estimate of group size.

13.
Sensors (Basel) ; 16(8)2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27472333

RESUMEN

Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA