Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932147

RESUMEN

Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.


Asunto(s)
Arachis , Virus Fúngicos , Filogenia , Enfermedades de las Plantas , Virus ARN , Arachis/virología , Arachis/microbiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/microbiología , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/genética , Genoma Viral , Virulencia , ARN Viral/genética
2.
Plant Dis ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744710

RESUMEN

Lippia (Phyla canescens) is a fast-growing, mat-forming, and prostrate perennial plant well adapted to infertile, high-saline, and drought environments (Leigh, et al. 2004). It arrived in China from Japan as a flowering ground cover in 2001 (Cai, et al. 2004). In June 2022, southern blight appeared in our nursery of the Floriculture Research Institute of Guangdong Academy of Agricultural Sciences. High temperature and damp environment are major factors for this disease. The symptoms of top-layer plants were not easily detected, but they were slightly yellowed. A yellowish-brown water-soak lesion appeared on the stems and lowest leaves exposed to soil. White mycelium appeared in the middle stage. Finally, the surface plants showed water-soak decay, and a mass of beige to black-brown rapeseed-shaped sclerotia appeared on the residue and surrounding soil; these plants died. Sclerotia and mycelia were collected from disease tissue, and after surface sterilization, sclerotia was cultured on potato dextrose agar (PDA) at 28±2°C in an incubator without light. Eight fungal isolates with similar colony morphologies were consistently isolated by purifying from different sampling areas. The isolates exhibited obvious septa and a clamp connection structure within the white mycelium. The average growth rate was 26.86±0.06 mm/day. Numerous white granular sclerotia were produced on the mycelium 6 days later. The sclerotia with a diameter of 1.24±0.07mm (n=189) gradually changed from diage to yellow to brown. A typical strain B1 was selected for further identification, targeting its 18S rRNA and LSU rRNA sequences (Yang, et al. 2011; Xue, et al. 2019). Its 18S rRNA sequence (GenBank Accession No. OR517233, 1626 bp) is 99.63% and 99.57% identical to Athelia rolfsii (AY665774, 1179bp; KC670714, 1775bp; JF819726, 1781bp). Its LSU rRNA sequence (OR539570, 757 bp) is 99.87% identical to Agroathelia rolfsii (OR526537, 904 bp). For Athelia rolfsii, a synonym of Agroathelia rolfsii, by combining the morphological characteristics and molecular identification, the isolate pathogen B1 was confirmed to be Agroathelia rolfsii (the teleomorph of Sclerotium rolfsii). To fullfill Koch's postulates, we inoculated the mycelial plugs to healthy lippia stems and leaves which has grown for one year, with PDA plugs free of mycelium as the control. All the plants were kept in a greenhouse at 28±2°C with a 14-h photoperiod and 80% relative humidity. Each treatment was repeated thrice and vaccinated with 6 points. At 7 d following inoculation, all plants inoculated with B1 showed typical symptoms, but the control group was asymptomatic, and sclerotia appeared 17d after inoculation. Using the same protocol mentioned above, pathogenic fungal was reisolated only from treated groups, but not from the control group. Chose three of the pathogens for 18S rRNA and LSU rRNA sequencing, the results showed 100% identity to B1, the same as its microstructure. There are few reports about the disease on P. canescens. Sosa (2007) investigated the pathogens on P. canescens in Argentina, 16 fungi were found but no A. rolfsii. Sclerotium rolfsii were identified on P. nodiflora or P. lanceolata (Michaux) Greene in America (Farr, et al. 1989). To our knowledge, this is the first report in China. Because this pathogen has wide-ranging hosts and causes serious damage, the results from this study will offer guidance for the prevention and treatment of this disease.

3.
Biosens Bioelectron ; 250: 116051, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301544

RESUMEN

Agroathelia rolfsii (A. rolfsii) is a fungal infection and poses a significant threat to over 500 plant species worldwide. It can reduce crop yields drastically resulting in substantial economic losses. While conventional detection methods like PCR offer high sensitivity and specificity, they require specialized and expensive equipment, limiting their applicability in resource-limited settings and in the field. Herein, we present an integrated workflow with nucleic acid extraction and isothermal amplification in a lab-on-a-chip cartridge based on immiscible filtration assisted by surface tension (IFAST) to detect A. rolfsii fungi in soil for point-of-need application. Our approach enabled both DNA extraction of A. rolfsii from soil and subsequent colorimetric loop-mediated isothermal amplification (LAMP) to be completed on a single chip, termed IFAST-LAMP. LAMP primers targeting ITS region of A. rolfsii were newly designed and tested. Two DNA extraction methods based on silica paramagnetic particles (PMPs) and three LAMP assays were compared. The best-performing assay was selected for on-chip extraction and detection of A. rolfsii from soil samples inoculated with concentrations of 3.75, 0.375 and 0.0375 mg fresh weight per 100-g soil (%FW). The full on-chip workflow was achieved within a 1-h turnaround time. The platform was capable of detecting as low as 3.75 %FW at 2 days after inoculation and down to 0.0375 %FW at 3 days after inoculation. The IFAST-LAMP could be suitable for field-applicability for A. rolfsii detection in low-resource settings.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Tensión Superficial , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN , Cartilla de ADN , Sensibilidad y Especificidad
4.
Plant Dis ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105447

RESUMEN

Cowpea (Vigna unguiculata L.) is a legume consumed as a high-quality plant protein source in many parts of the world. In August 2023, it was observed that a plant disease affected cowpea growth in Yiyang (28.34°N, 112.55°E), China. The average disease incidence was 10%, resulting in 8.5% economic losses in approximately 3,000 m2. The symptoms initially appeared as brown lesions near the stem-soil interface and the lesions were colonized by white mycelia. As the disease progressed, the disease symptoms included constriction and brown staining at the base of the stem, covered with a small amount of white mycelia. Eventually, the entire plants withered and collapsed and many sclerotia were scattered on the ground around the diseased stem. Twenty samples (10 sclerotia and 10 diseased tissue fragments) were collected from symptomatic plants for causal agent isolation. Samples were disinfected with 70% ethanol for 30 s, 5% NaClO for 1 min, rinsed three times with sterile water, dried and placed on potato dextrose agar (PDA) plates at 28℃ in the dark. In total, 20 isolates were obtained by the hyphal tip method (Terrones et al. 2022) and showed a consistent phenotype of white cottony mycelia on PDA with an growth rate of 12.9 to 21.3 mm/day (n = 20). Sclerotia formed at five to eight days post inoculation, were initially whitish, turning beige and eventually dark brown. The diameter of mature sclerotia ranged from 0.89 to 2.13 mm (mean = 1.64±0.29 mm; n =50). For pathogen identification, ITS1/ITS4 (White et al. 1990) and EF1-983F/EF1-2218R (Rehner and Buckley 2005) primers were used to amplify the internal transcribed spacer regions (ITS) and translation elongation factor-1 alpha gene (TEF-1α), respectively. The sequences of all 20 isolates showed 99% to 100% similarity with Agroathelia rolfsii sequences from GenBank by BLAST analysis. The sequences of two representative strains, ID1 and ID4, were deposited in GenBank. The ITS sequences of ID1 (OR689482) and ID4 (OR689481) were >99% similar to A. rolfsii strain QJ7 (593/596 bp; MZ750983) and A. rolfsii strain Kale078 (565/568 bp; MN872304), respectively. Also, TEF-1α sequences of ID1 (OR713735) and ID4 (OR713736) were >99% similar to the sequences of A. rolfsii strain HS-Sr (1073/1073 bp; OL416131) and A. rolfsii strain MSB1-2 (1070/1075 bp; MN702790), respectively. Phylogenetic analysis based on ITS and TEF1-α sequences indicated that ID1 and ID4 clustered into the A. rolfsii clade. Based on morphology and sequence analyses, the isolates ID1 and ID4 were identified as A. rolfsii (anamorph Sclerotium rolfsii). Pathogenicity tests were conducted three times on healthy 30-day-old cowpea seedlings. Five plants were inoculated with 6-day-old mycelial discs (6 mm) of ID1 or ID4 at the base of the seedlings (n = 30) while four plants were inoculated with a sterile PDA disc as a control (n = 12). All seedlings were cultivated in a greenhouse with a temperature of 26°C to 28°C and relative humidity 60% to 80% with a 14/10 h light/dark photoperiod. Eight days later, all the fungal inoculated seedlings showed symptoms including brown necrosis and collapse of the stems, and eventual withering of the seedlings. Control plants remained asymptomatic. The causal pathogens were reisolated in PDA plates and identified by ITS sequence analysis, completing Koch's postulates. To our knowledge, this is the first report of A. rolfsii causing southern blight on cowpea in China. Early accurate diagnosis will help farmers to adopt suitable practices to control disease outbreaks and reduce losses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA