Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174849, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39025150

RESUMEN

Halomethoxybenzenes (HMBs) and related halomethoxyphenols are produced naturally in the marine and terrestrial environment and some also have anthropogenic origins. They are relatively volatile and water soluble and undergo atmospheric exchange with water bodies and soil. Here we report air-surface exchange of HMB compounds brominated anisoles and chlorinated dimethoxybenzenes in a Subarctic lake and catchment in Sweden during September 2022. HMBs were isolated from water on solid-phase extraction cartridges and from ground litter/soil by solvent extraction and determined by capillary gas chromatography - quadrupole mass spectrometry. Identified compounds in lake and stream water in the 10-100 pg L-1 range were 1,2,4,5-tetrachloro-3,6-dimethoxybenzene (DAME) > 2,4-dibromoanisole (DiBA) ≥ 2,4,6-tribromoanisole (TriBA) > 1,2,3,4-tetrachloro-5,6-dimethoxybenzene (tetrachloroveratrole, TeCV). DAME and the related compound 2,3,5,6-tetrachloro-4-methoxyphenol (DA) are reported in Subarctic litter/soil in the range 0.005-1.1 mg kg-1 dry weight (dw), whereas DiBA and TriBA were not detected in any litter/soil sample and TeCV in only one. Exchanges were assessed from concentrations in water and soil, air concentrations from a monitoring station at Pallas, Finland, and the physicochemical properties of the HMBs. Fluxes to and from the lake were estimated using the two-film gas exchange model. Net loadings (deposition minus volatilization) for the month of September were - 23, -15 and - 68 g for DiBA, TriBA and DAME, respectively, which amounted to about 4-7 % of the estimated lake inventory. An exchange assessment for DAME from litter/soil showed significant net volatilization at five sites, net deposition at one site and near-equilibrium at one site. The Torneträsk catchment appeared close to steady state with respect to HMB exchange during September 2022. The situation could be different during the warmer and colder seasons, and extending the study to cover these periods is a suggested next step.

2.
Chemosphere ; 363: 142810, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986780

RESUMEN

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) cause significant environmental concerns. Atmospheric PCDD/Fs permeate water bodies and other ecosystems through wet and dry deposition. In an urban site, dry deposition flux samples of gaseous phase PCDD/Fs were collected by a water surface sampler (WSS) operated between June 2022 and June 2023. There is a conspicuous absence of literature on the direct measurement of dry deposition flux levels in the gaseous phase of PCDD/Fs. In the study, PCDD/Fs in the gas phase reaching the WSS dissolved in the water according to Henry's Law. The PCDD/Fs in the water were transferred to an XAD-2 resin column, sorbing the dissolved PCDD/Fs. The average monthly gas phase dry deposition flux was 34.07 ± 9.35 pg/m2-day (7.35 ± 2.16 pg I-TEQ/m2-day). The highest flux was measured in March (49.53 pg/m2-day), and the lowest was in August (18.64 pg/m2-day). These values indicated the direct flux from air to water. The atmospheric concentration of the gas-phase ranged from 68.38 to 126.88 fg/m3 (13.22-25.01 fg I-TEQ/m3). Dry deposition fluxes and concentrations of atmospheric PCDD/Fs were bigger in the colder months than in the warmer months. This was probably due to a significant increase in residential heating during the colder months, decreased photochemical reactions, and lower mixing heights. Regarding congeners in the dry deposition flux and concentration values in I-TEQ units, 2,3,7,8-TCDD compound predominated with the proportions of 31.61 ± 7.76% and 29.09 ± 12.34%, respectively. Concurrently measured dry deposition flux (Fg) and ambient air concentration (Cg) of PCDD/Fs were considered in the determination of mass transfer coefficient (MTC = Fg/Cg) calculation for each PCDD/F congener. The average MTC for targeted 17 PCDD/Fs was 0.45 ± 0.15 cm/s, and it fluctuated between 0.89 ± 0.30 cm/s for 2,3,7,8-TCDF and 0.2 ± 0.16 cm/s for OCDD.

3.
Chemosphere ; 341: 140013, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657701

RESUMEN

Given the increased load of waste plastic in the solid waste stream after the outbreak of the COVID-19 pandemic, we investigated the fate of selected plastic additives along open burning dumps, industrial and residential transects in tropical riverine catchments of India. Polyurethane foam disk passive air samples, surface water and community stored water (CSW) samples were collected along the Adyar River (AR), Cooum River (CR) and canals in Chennai and Daman Ganga River (DG) in Vapi. Among the quantified phthalic acid esters (PAEs), a widely used plastic additive, di(2-ethylhexyl) phthalate (DEHP), was ubiquitous across all the transects. More open drains and leaching of littered single-use plastic items can be the reason for significantly higher (p < 0.05) levels of PAEs in CR over other rivers with a dominance of di-n-butyl phthalate (DnBP). Prevalence of open burning of dumped plastic waste was the possible primary emission source of PAEs in these riverine catchments. Excluding highly soluble dimethyl phthalate (DMP), air-water exchange processes reflected the secondary emission of all the PAEs from the surface water along the open burning sites. Despite the cleansing effect of the oceanic air mass from the Bay of Bengal and the Indian Ocean, the average atmospheric PAE level was two-fold higher in Chennai than Vapi. Even though Vapi is a coastal city along the Arabian Sea, it was impacted by inland air masses during the sampling event. Open burning dumpsites showed a five-fold increase in atmospheric priority PAEs in Chennai city after the outbreak of the COVID-19 pandemic. DnBP was the major contributor to estrogenicity in CSW and DG, and also posed maximum risk for fishes in the open burning transect of these tropical rivers.


Asunto(s)
COVID-19 , Ácidos Ftálicos , Humanos , Agua , Pandemias , India/epidemiología , COVID-19/epidemiología , Dibutil Ftalato , Medición de Riesgo , Ésteres , China
4.
Ecotoxicol Environ Saf ; 263: 115286, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481858

RESUMEN

The comprehensive understanding of PCBs' fate has been impeded by the lack of simultaneous monitoring of PCBs in multiple environmental media in the background areas, which were considered long-term sinks for highly chlorinated PCBs. To address this gap, this study analyzed soils, willow tree barks, water, suspended particulate matter (SPM), and sediment samples collected from the middle reach of the Huaihe River in China for 27 PCBs. The results showed that the levels of ∑27PCBs in the soils were comparable to or lower than the background values worldwide. There were no significant correlations between organic matter and ∑27PCB concentrations in the soils and sediments. Additionally, the contamination of dioxin-like PCBs in the aquatic environment of the study area deserves more attention than in the soils. Applying the level III fugacity model to PCB 52, 77, 101, and 114 revealed that the soil was the primary reservoir, and air-soil exchange was the dominant intermedia transfer process, followed by air-water exchange. Furthermore, simulated results of air-soil and air-water diffusion were compared with those calculated from the field concentrations to predict the potential environmental behaviors of PCBs. Results indicated that the studied river would be a "secondary source" for PCB 52, 77, and 101. However, PCB 52, 77, 101, and 114 would continue to transfer from the air to the soil. This study combines multimedia field measurements and the fugacity model, providing a novel approach to predicting the potential environmental behaviors of PCBs.


Asunto(s)
Bifenilos Policlorados , Bifenilos Policlorados/análisis , Multimedia , Monitoreo del Ambiente/métodos , Agua , Suelo
5.
Environ Sci Ecotechnol ; 14: 100229, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36531934

RESUMEN

The historical annual loading to, removal from, and cumulative burden in the Arctic Ocean for ß-hexachlorocyclohexane (ß-HCH), an isomer comprising 5-12% of technical HCH, is investigated using a mass balance box model from 1945 to 2020. Over the 76 years, loading occurred predominantly through ocean currents and river inflow (83%) and only a small portion via atmospheric transport (16%). ß-HCH started to accumulate in the Arctic Ocean in the late 1940s, reached a peak of 810 t in 1986, and decreased to 87 t in 2020, when its concentrations in the Arctic water and air were ∼30 ng m-3 and ∼0.02 pg m-3, respectively. Even though ß-HCH and α-HCH (60-70% of technical HCH) are both the isomers of HCHs with almost identical temporal and spatial emission patterns, these two chemicals have shown different major pathways entering the Arctic. Different from α-HCH with the long-range atmospheric transport (LRAT) as its major transport pathway, ß-HCH reached the Arctic mainly through long-range oceanic transport (LROT). The much higher tendency of ß-HCH to partition into the water, mainly due to its much lower Henry's Law Constant than α-HCH, produced an exceptionally strong pathway divergence with ß-HCH favoring slow transport in water and α-HCH favoring rapid transport in air. The concentration and burden of ß-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.

6.
Sci Total Environ ; 862: 160845, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526193

RESUMEN

Coking industry has been considered as important source of volatile organic compounds (VOCs) emissions. However, few studies have emphasized the occurrence and adverse effects of VOCs from coking wastewater treatment processes. In this research, pollution profiles of both air and water phase VOCs in a typical coking wastewater treatment plant were investigated in terms of distribution characteristics, air-water exchange, ozone formation potential (OFP) and associated human health risks. Thirty VOCs were detected in the air phase, in which benzene and naphthalene were found to be the major VOCs with total contribution of 87.81 %. Nineteen VOCs were detected in the water phase, in which benzene, naphthalene and toluene contribute most to total VOCs with total contribution of 75.1 %. The regulating tank (RT) was the major source of VOCs, and the emission rate of total VOCs from all unites was 2711.03 g/d with annual emission of 0.99 t. The emission factor was estimated to be 1.36 g VOCs/m3 wastewater. The air-water exchange was assessed using the Fugacity model, and water-to-air volatilization was predominant based on the net flux of air-water exchange. OFP evaluated by emission factor indicated that the total OFP in RT was the highest (1.52 g O3/m3 wastewater), and toluene contributed 41.8 % of the total OFP, followed by naphthalene accounting for 38.7 % The total carcinogenic risks were in the range of 8.60 × 10-6 to 2.18 × 10-3, in which the RT exceeded the significant risk threshold (>1 × 10-4). The non-carcinogenic risks of hazard quotient value in RT also exceeded the risk threshold (>1), and naphthalene was the major contributor accounting for 79.02 %. These results not only provided comprehensive knowledge on pollution profiles and environmental risks of VOCs during coking wastewater treatment processes, but also facilitated the implement of VOCs regulation and occupational health protection strategies in coking industries.


Asunto(s)
Contaminantes Atmosféricos , Coque , Ozono , Compuestos Orgánicos Volátiles , Purificación del Agua , Humanos , Aguas Residuales , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Ozono/análisis , Benceno , Monitoreo del Ambiente/métodos , Medición de Riesgo , Naftalenos , Carcinógenos , Tolueno , China
7.
Environ Pollut ; 316(Pt 1): 120490, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273697

RESUMEN

Semi-volatile organic compounds like polychlorinated biphenyls (PCBs) undergo diffusive exchange flux between a water body and the overlying air. The magnitude of this exchange can be a substantial component of the overall pollutant mass balance and needs to be determined accurately to identify major pollutant sources to the water body and to plan appropriate remedies. For the PCB-impacted Anacostia River in Washington DC (USA), quantification of air-water exchange has been a major data gap. In the present study, polyethylene passive samplers were used to measure PCB concentrations in air phase at six locations in DC over a period of one year to capture spatial and seasonal variations. Concurrent water phase PCB measurements were used to quantify the direction and magnitude of air-water exchange in the Anacostia River. Two locations had nearly an order of magnitude higher air phase PCB concentrations that could be related to localized sources. Remaining four locations provided similar air phase PCB concentrations that averaged from 270 ± 44 pg/m3 (summer) to 32 ± 4.3 pg/m3 (winter). ∑PCB water-air exchange fluxes were positive across all seasons, with net PCB volatilization of 180 ± 19 g/year from the surface water. Volatilization rate was an order of magnitude lower than previously estimated from a fate and transport model. PCB load from atmospheric deposition based on previous studies in this watershed was an order of magnitude lower than the volatilization rate. Results refuted a long-standing understanding of the air phase serving as a source of PCBs to the river as per the currently approved Total Maximum Daily Load assessment. The study demonstrates the utility of passive air phase measurements in delineating local terrestrial sources of pollution as well as providing estimates for air-water exchange to complete a robust mass balance for semi-volatile pollutants in an urban river.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Químicos del Agua , Bifenilos Policlorados/análisis , Ríos , Estaciones del Año , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales/análisis , Agua
8.
Sci Total Environ ; 853: 158623, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36089023

RESUMEN

Organophosphate esters (OPEs) are well-known persistent organic pollutants with their ubiquitous environmental presence and adverse ecological and human health impacts. To study the transport and fate of OPEs in a subtropical environment, nine OPE compounds were analyzed in the gas phase (air samples), dissolved phase (water samples), and plankton samples collected over one year from or in the vicinity of an urban lake in Guangzhou, South China. The mean concentrations of ∑9OPEs were 2.93 ± 1.68 ng/m3 in the air, 455 ± 236 ng/L in the dissolved phase, 81.3 ± 41.2 ng/L in phytoplankton, and 4.79 ± 1.94 ng/L in zooplankton. Although the compositional profiles of OPEs varied among different media, tris (1-chloro-2-propyl) phosphate (TCPP) was the predominant OPE in most samples. Less hydrophobic OPEs such as TCPP and tris (2-chloroethyl) phosphate (TCEP) had lower bioaccumulation potential in the lake. The biological pump export played an important role in eliminating OPEs from the surface water, with fluxes ranging from 30.5 to 361 ng/m2/d. The more phytoplankton biomass in surface water, the greater the role of the biological pump. The fugacity fractions and air-water exchange fluxes suggested that TCPP and tris (1,3-dichloro-2-propyl) phosphate (TDCP) would enter the urban lake by gaseous deposition. Nevertheless, the lake acted as an important "secondary source" for TCEP and triphenyl phosphate (TPhP). The bio-pump might influence the air-water exchange processes of OPEs.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , China , Ésteres , Retardadores de Llama/análisis , Proteínas de Transporte de Membrana , Organofosfatos , Contaminantes Orgánicos Persistentes , Fosfatos , Lagos , Contaminantes Químicos del Agua
9.
Environ Res ; 204(Pt B): 112042, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34555404

RESUMEN

In this study, the occurrence and diffusive air-water exchange of POPs in Panguipulli Lake (39°42'S-72°13'W), an oligotrophic lake located in northern Patagonia (Chile), were determined. Air and water samples were collected between March and August 2017 (autumn-winter) and analyzed for concentrations of OCPs (α-HCH, ß-HCH, γ-HCH and HCB) and PCBs (PCB-28,-52,-101,-118,-153,-158,-180) using gas chromatography coupled with an electron capture detector. The direction of air-water exchange direction was evaluated using a fugacity approach (ƒw ƒa-1), and net diffusive exchange fluxes (FAW, ng m-2 d-1) were also estimated. Total ∑4OCP levels in air ranged from 0.31 to 37 pg m-3, with a maximum for ß-HCH, while Σ7PCB levels ranged from 3.05 to 43 pg m-3. The most abundant congener was PCB-153, accounting for 60% of the total PCBs in air. Surface water ∑4OCPs measured in this study ranged from 1.01 to 3.9 pg L-1, with γ-HCH predominating, while surface water Σ7PCB levels ranged from 0.32 to 24 pg L-1, with PCB-101, PCB-118, and PCB-153 presenting the highest levels. Diffusive air-water exchanges of HCB, α-HCH, γ-HCH and PCBs in the form of volatilization from the lake to air predominated; in contrast, for ß-HCH net deposition dominated during the sampling period. Estimates suggested faster microbial degradation in the dissolved phase compared to atmospheric degradation for all analyzed POPs. Overall, these results could indicate that the oligotrophic lakes of northern Patagonia act as a secondary source of atmospheric POPs, mainly PCBs and some OCPs. This study is a first attempt to understand the occurrence of POPs in air and water, as well as their dynamics in oligotrophic lakes in the southern hemisphere.


Asunto(s)
Contaminantes Atmosféricos , Plaguicidas , Bifenilos Policlorados , Contaminantes Químicos del Agua , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Lagos , Contaminantes Orgánicos Persistentes , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Agua , Contaminantes Químicos del Agua/análisis
10.
Ann Rev Mar Sci ; 14: 431-455, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34587456

RESUMEN

Aquatic eddy covariance (AEC) is increasingly being used to study benthic oxygen (O2) flux dynamics, organic carbon cycling, and ecosystem health in marine and freshwater environments. Because it is a noninvasive technique, has a high temporal resolution (∼15 min), and integrates over a large area of the seafloor (typically 10-100 m2), it has provided new insights on the functioning of aquatic ecosystems under naturally varying in situ conditions and has given us more accurate assessments of their metabolism. In this review, we summarize biogeochemical, ecological, and biological insightsgained from AEC studies of marine ecosystems. A general finding for all substrates is that benthic O2 exchange is far more dynamic than earlier recognized, and thus accurate mean values can only be obtained from measurements that integrate over all timescales that affect the local O2 exchange. Finally, we highlight new developments of the technique, including measurements of air-water gas exchange and long-term deployments.


Asunto(s)
Ecosistema , Oxígeno , Carbono , Ciclo del Carbono , Dióxido de Carbono , Oxígeno/metabolismo , Agua
11.
Chemosphere ; 291(Pt 1): 132708, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34715102

RESUMEN

Following spills into water, petroleum oils can spread widely and produce surface slicks. Resulting slicks may impede volatilization and possibly increase chemical persistence in water. While the influence of oil films on chemical air-water exchange has been examined through theoretical and laboratory studies, field studies have not been conducted to assess the relevance of these effects following actual oil spill events. Here we evaluated the effect of diluted bitumen (dilbit) experimentally spilled in limnocorrals installed in a boreal lake on the volatilization of sulfur hexafluoride (SF6), a non-reactive volatile tracer gas. Dilbit spills were monitored over 70 days and SF6 was introduced twice (after 7 and 48 days) to evaluate the influence of spilled dilbit on the loss of SF6 from water. Volatilization rate constants of SF6 (kVOL) significantly decreased by up to 80% with increasing total dilbit spill cover. Using a theoretical equation, decreases in kVOL were largely explained by a reduction in open water area where chemical exchange across the air-water interface occurs. Apparent effects of the slick on SF6 mass transfer were estimated to be smaller by comparison (20%).To account for this reduction in volatilization, oil spill fate models should include a correction to consider the impact of spill cover on the air-water exchange of organic chemicals.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Hidrocarburos , Lagos , Contaminación por Petróleo/análisis , Agua , Contaminantes Químicos del Agua/análisis
12.
Sci Total Environ ; 767: 144267, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429282

RESUMEN

Few studies have focus on size-segregated particulate polycyclic aromatic hydrocarbons (PAHs) in the oceanic atmosphere. To better understand the impacts of anthropogenic activities on atmospheric PAHs, a heavily human-impacted estuary, the Pearl River Estuary (PRE), was chosen as a case study. We collected gaseous and size-segregated particulate samples of ambient air at two sites in the PRE, as well as from the exhaust emissions of the cruise ship used in the sampling campaign. In addition, surface seawater samples were collected. Size distribution patterns of high molecular-weight (HMW) particulate PAHs were bimodal at one site and unimodal at the other, suggesting PAHs at the former site were derived not only from long-range atmospheric transport but also from local sources. Gas-particle partition coefficients of HMW PAHs in size-segregated particles varied with particle sizes, mostly higher in fine particles (<1.8 µm). Dry deposition flux of Σ23PAHs (defined as the sum of 23 PAHs) was contributed mainly from coarse particles (>1.8 µm), and HMW PAHs with lower dry deposition velocities could be transported farther away. With respect to air-water exchange, lower MW PAHs tended to have net volatilization, whereas higher MW PAHs were likely to have net deposition. This study sheds new lights on the origins and fate of atmospheric PAHs over the PRE, and suggests the emissions of maritime traffics should be regulated. Collected near the metropolitan regions, atmospheric PAHs over the PRE were highly affected by anthropogenic activities, especially for HMW PAHs, which could pose a long-lasting impact to the oceanic atmosphere and marine organisms.

13.
Bull Environ Contam Toxicol ; 106(1): 190-197, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32303814

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) pose great risks to lake ecosystem and human health. Comprehensive knowledge on PAHs in lakes is critical for their risk control. 118 samples were collected from different environmental medium to study the occurrence and fluxes of 16 PAH in Lake Taihu. The average ∑PAH16 in air, water, phytoplankton, zooplankton, suspended particle matter, and surface sediments were 122 ng m-3, 61.3 ng L-1, 6500 ng g-1, 4940 ng g-1, 27,900 ng g-1, and 522 ng g-1, respectively. Sediments were contaminated by PAHs from pyrogenic sources. The average fluxes of air-water, dry deposition, and sinking of the 16 individual PAHs were 2900, 300, and 251 ng m-2 d-1. In the air-water column-surface sediments system, air-water exchange was the main transport pathway. In order to ensure safety of drinking water resources for local residence, the governments are suggested to work together to reduce PAHs emission and implement new energy policy.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Lagos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 763: 143016, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139011

RESUMEN

The production and usage of polybrominated diphenyl ethers (PBDEs) has been gradually phased out and the application of alternative halogenated flame retardants (AHFRs) has been continuously increased. It is essential to understand how the evolving flame retardants industry has affected the occurrence and flux of legacy and alternative flame retardants so that better pollution control measures can be made accordingly. Air, rainwater, inflowing river water, pond water, pond sediment, fish feed, and fish collected from freshwater cultured fish ponds (FWCFPs) within the Pearl River Delta, South China were analyzed for PBDEs and AHFRs. Concentrations of AHFRs in air (range; median: 7.8-870; 210 pg m-3), rainwater (0.88-65; 4.8 ng L-1), and sediment (19-120; 54 ng g-1 dry weight (d.w.)) were one order of magnitude higher than those of PBDEs in air (12-98; 21 pg m-3), rainwater (0.18-15; 0.70 ng L-1), and sediment (1.5-9.6, 2.9 ng g-1 d.w.) (t-test; p < 0.05). Decabromodiphenyl ether and decabromodiphenylethane were the predominant BDE and AHFR components, respectively, agreeing well with the production and usage patterns of flame retardants in China. The average input fluxes of AHFRs to the FWCFPs via dry deposition, wet deposition, net air-water exchange, and feeding (38.6, 20.6, and 2.14, µg m-2 yr-1) were one order of magnitude higher than those of PBDEs (3.44, 5.17, and -10.1, µg m-2 yr-1). Elevated occurrence and input fluxes of AHFRs suggested that aquaculture production is potentially facing a new challenge from alternative flame retardants. Atmospheric dry and wet deposition are important input sources of AHFRs to the FWCFPs. Feeding is an important input pathway for both PBDEs and AHFRs. Pollution control measures should be modified to accommodate the evolving flame retardants industry.

15.
Environ Pollut ; 265(Pt A): 114956, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32806399

RESUMEN

Surface seawater and lower atmosphere gas samples were collected simultaneously between 18°N and 40°S in the open Pacific Ocean in 2006-2007. Samples were analyzed for organochlorine pesticides (OCPs) to assess their distribution patterns, the role of ocean in the long-range transport (LRT), and the air-water exchange directions in the open Pacific Ocean. Such open ocean studies can yield useful information such as establishing temporal and spatial trends and assessing primary vs secondary emissions of legacy OCPs. Target compounds included hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and its derivatives, and chlordane compounds. Concentrations for α-HCH, γ-HCH, trans-chlordane (TC), and cis-chlordane (CC) were higher in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in both gaseous and dissolved phases, while the distribution patterns of DDTs and heptachlor exo-epoxide (HEPX) showed a reversed pattern. In the N Pacific, concentrations of α-HCH and γ-HCH in the present work were lower by 63 and 16 times than those observed in 1989-1990. The distribution patterns of DDT suggested there was usage in the SH around 2006. Calculated fugacity ratios suggested that γ-HCH was volatilizing from surface water to the atmosphere, and the air-water exchange fluxes were 0.3-11.1 ng m-2 day-1. This is the first field study that reported the open Pacific Ocean has become the secondary source for γ-HCH and implied that ocean could affect LRT of OCPs by supplying these compounds via air-sea exchange.


Asunto(s)
Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Atmósfera , Monitoreo del Ambiente , Océano Pacífico , Agua
16.
Sci Total Environ ; 738: 139838, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531599

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are semivolatile organic compounds of environmental concern. This study aims to investigate the influence of local sources of anthropogenic PAHs and their air-water exchange fluxes in an oligotrophic North-Patagonian lake in Chile. The monitoring was carried out in Panguipulli Lake during a six-month period during the autumn and winter seasons (March to August 2017) using a high-volume air sampler and a pump system for water samples. We detected and quantified fifteen PAHs in the gas phase (mean ∑15PAHs = 11.6 ng m-3) and dissolved water phase (mean ∑15PAHs = 961.8 pg L-1). Methylphenanthrenes and pyrene dominated the concentrations of PAHs in the studied phases. To determine sources of PAHs we used the PAH ratios of Light Molecular Weight/Heavy Molecular Weight (∑LMW/∑HMW) and Phenanthrene/Anthracene (Phe/Ant). The PAH ratio results revealed a pyrogenic source. We estimated the air-water diffusive exchange fluxes and fugacity ratios for the studied compounds. In general, air-water diffusive exchanges of PAHs showed a net volatilization for the less hydrophobic (log KOW < 4) and lighter PAHs (MW ≤ 170 g mol-1), and a net deposition trend for the more hydrophobic (log KOW 4-7) and higher molecular weight PAHs (MW ≥ 178 g mol-1). We found a significant correlation between log water/air fugacity ratios and log KOW of PAHs. Therefore, it is suggested that this oligotrophic lake acts as a sink by accumulating hydrophobic and mid-high molecular weight PAHs derived mainly from pyrogenic sources. This study is the first attempt to understand the sources and behavior of PAHs in oligotrophic lakes in the Southern Chile where information is scarce regarding the occurrence of PAHs.

17.
Sci Total Environ ; 708: 134441, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31796293

RESUMEN

We investigated the tidal variability of polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) in water dissolved phase from a coastal area of Dalian, China, as well as their air-water exchange trends. The concentrations of PAHs and OPEs in water were in the range of 50.5-74.7 ng/L and 21.6-61.5 ng/L, respectively. Phenanthrene (PHE) was the dominant congener followed by fluorene (FLU) for PAHs, while tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP) dominated for OPEs. PAHs in coastal water showed a tidal variability, but not for OPEs, which may due to the influence of occasional wastewater discharges of OPEs. The source apportionments using principle component analysis and positive matrix factorization suggested that PAHs in the coastal water mainly came from oil spill from ships, coal combustion, and petroleum combustion, while OPEs were derived from diverse sources. The fugacity fractions (ff) suggested that ACY, ACE, FLU, PHE, TCEP, and TPHP volatilized from water into air, while TNBP, TCIPP, and TDCIPP deposited from air into water, and FLA, PYR, BaA, CHR, and EHDPP reached equilibrium. The ff values varied slightly with tidal circle, but the variations were not enough to alter the air-water exchange directions of those compounds. Although the influences of tide on the air-water exchange of PAHs and OPEs were limited, tide still played an important role on the transports and diffusions of those chemicals in the coastal water, which requires further studies.

18.
Chemosphere ; 240: 124762, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31568940

RESUMEN

The emission of polychlorinated biphenyls (PCBs) in South Asian countries is one of the great environmental concerns and has resulted in the contamination of surrounding high altitude regions such as Azad Jammu and Kashmir (AJK), Pakistan. This first investigation of Polychlorinated Biphenyl (PCBs) concentrations in the ambient air, water and surface soil was conducted along the extensive stream network in the AJK valley of the Himalayan Region. In 2014, surface soil samples were taken and passive air and water samplers were deployed along the four main rivers, namely Jhelum, Neelum, Poonch and Kunhar, and analysed for PCBs (33 congeners) using GC-MS/MS. The ∑33PCBs concentrations ranged from 31.17 to 175.2 (mean ±â€¯SD: 81 ±â€¯46.4 pg/L), ND to 1908 (1054 ±â€¯588.5 pg/g), and 29.8 to 94.4 (52.9 ±â€¯22.7 pg/m3) in surface water, soil and air matrices, respectively. The levels of dioxin-like PCBs (∑8DL-PCBs) contributed considerably towards the total PCBs concentrations: 60.63% (water), 43.87% (air) and 13.76% (soil). The log transformed air-water fugacity (log fa/fw) ratios ranged from -9.37 to 2.58; with 86.3% of the sampling sites showing net volatilization of selected PCB congeners. Similarly, the fugacity fractions for air-soil exchange exhibited narrow variation (0.8 to < 1) indicating net volatilization of PCBs. The ecological risk assessment showed low potential ecological risks (Eri  = 1.58-7.63) associated with PCB contamination. The present findings provide baseline data that suggest cold trapping of POPs in the remote mountainous areas of Pakistan and can support environmental management of POPs at the regional level. This pioneer investigation campaign to assess the PCBs concentrations in Himalayan Riverine Network of Azad Jammu and Kashmir, Pakistan helps to develop baseline data of PCBs from the strategically important riverine environment that would help in future regional as well as global ecological studies. However, the effects of temperature variations on the sampling rates of chemicals across a wide spectrum of volatility along the elevation gradient were not taken under consideration for PCBs atmospheric concentrations.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Bifenilos Policlorados/análisis , Pakistán , Ríos , Suelo , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Volatilización , Agua/análisis , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 26(6): 6023-6037, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30613874

RESUMEN

Organochlorine pesticides (OCPs) pose a considerable threat to human and environmental health. Despite most OCPs have been banned, they are still reported to be used in developing countries, including Pakistan. We aimed to identify the distribution, origin, mobility, and potential risks from OCPs in three major environmental compartments, i.e., air, water, and soil, across Azad Jammu and Kashmir valley, Pakistan. The sums of OCPs ranged between 66 and 530 pg/g in soil, 5 and 13 pg/L in surface water, and 14 and 191 pg/m3 in air, respectively. The highest sum of OCPs was observed in the downstream zone of a river that was predominantly influenced by peri-urban and urban areas. The OCP isomers ratios (α-HCH/γ-HCH and o,p'-DDT/p,p'-DDT) indicate use of lindane and technical DDTs mixture as a source of HCH and DDT in the riverine environment. Similarly, the ratios of DDE and DDD/the sum of DDTs, α-endosulfan/ß-endosulfan, and cis-chlordane/trans-chlordane indicate recent use of DDTs, endosulfan, and chlordane in the region. The air-water exchange fugacity ratios indicate net volatilization (fw/fa > 1) of α-endosulfan and trans-chlordane, and net deposition (fw/fa < 1) of ß-endosulfan, α-HCH, γ-HCH p,p'-DDD, p,p'-DDE, and p,p'-DDT. Based on the risk quotient (RQ) method, we consider the acute ecological risks for fish associated with the levels of OCPs as negligible. However, more studies are recommended to evaluate the chronic ecological risks to other riverine-associated aquatic and terrestrial species as well as human health risks to the POPs exposure through food chain transfer in forthcoming years.


Asunto(s)
Monitoreo del Ambiente/métodos , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , DDT/análisis , Diclorodifenil Dicloroetileno/análisis , Ecosistema , Endosulfano/análisis , Hexaclorociclohexano/análisis , Pakistán , Ríos , Suelo
20.
Environ Pollut ; 244: 405-413, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30352355

RESUMEN

The concentrations and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in air and seawater dissolved samples from the coastal area of Dalian were investigated, as well as their air-water exchanges. The average concentrations of PAHs were 27.5 ±â€¯14.6 ng/m3 and 49.5 ±â€¯20.5 ng/L in the air and water, respectively. Phenanthrene was the dominant congener in both air and water dissolved phase. Seasonality was discovered in the air with the concentrations higher in winter than in summer, but not in the water dissolved phase. Air-water exchange trends also displayed apparent seasonality with 3-4 ring PAHs generally being volatilization or equilibrium in summer but deposition in winter, which highlighted the important influence of temperature on the air-water exchange direction of PAHs. The air-water exchange fluxes of individual PAH congeners ranged from -24331 to 6541 ng/m2/d, and the highest deposition and volatilization fluxes both appeared at the industrial areas, which emphasized the influence of point source emission to the magnitude of air-water diffusion flux of PAHs. Multivariate source apportionment approaches, including principle component analysis, diagnostic ratios, and positive matrix factorization, were conducted, which suggested that PAHs in water originated from multiple sources. Frequent port transport correlated vehicle/ship emission rather than coal combustion may be the primary contributor of PAHs to the coastal air and water.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis , Contaminantes Químicos del Agua/análisis , China , Carbón Mineral/análisis , Fenantrenos/análisis , Estaciones del Año , Agua de Mar , Volatilización , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA