Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413652, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39323376

RESUMEN

Enantioselective transition metal-catalyzed C-H alkylation emerges as one of the most atom- and step-economical routes to chiral quaternary carbons, while big challenges still remain with acyl C-H alkylations. Herein, we use a Ni-Al bimetallic catalyst to facilitate a highly regioselective and highly enantioselective C-H alkylation of formamides with alkenes, constructing various oxindoles bearing a chiral quaternary carbon in up to 94% yield and up to 95% ee.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125114, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39288604

RESUMEN

A number of new substances were included into the (5Z)-5-[(2-piperidinequinoline-3-yl)methyl]-2-chloroquinoline structural framework. The condensation process 2-chloroquinoline, which served as a crucial reagent in the reaction with 3-carbaldehydes to produce 2,4-thiazolidinedione, allowed for the production of 1,3-thiazolidine-2,4-dione. The newly developed substances were described by means of their reactions with halide compounds, particularly those pertaining to substituted N-alkylation. Elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), and proton nuclear magnetic resonance spectroscopy (1H NMR) were used to identify the chemical. Furthermore, the antibacterial activity of the produced compounds was evaluated in vitro against a range of pathogens, including Bacillus subtilis, and Escherichia coli. Moreover, docking experiments were conducted using the PDF enzyme of E. coli to improve our understanding of the binding mechanism between the synthesized 5(A-N) compounds and the enzyme.

3.
Carbohydr Res ; 545: 109279, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39326206

RESUMEN

Stereoselective synthesis of 2,3-diazido-2,3-dideoxy-ß-d-mannosides has been accomplished via Cs2CO3-mediated anomeric O-alkylation of 2,3-diazido-2,3-dideoxy-ß-d-mannoses with primary electrophiles. Selective oxidation of the C6 primary alcohol of the 2,3-diazido-2,3-dideoxy-ß-d-mannoside successfully produced corresponding 2,3-diazido-2,3-dideoxy-ß-d-mannuronic acid.

4.
Biosensors (Basel) ; 14(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39329802

RESUMEN

The ability of aquatic mesofauna representatives involved in trophic chains to sorb and accumulate toxicants is important for understanding the functioning of aquatic ecosystems and for fishing industry. This study investigated the capacity of marine amphipod Gammarus oceanicus and freshwater amphipods Eulimnogammarus vittatus and Gammarus lacustris to absorb the DNA-alkylating agent methyl methanesulfonate (MMS). The presence of alkylating agents in the environment and in the tissues of the amphipods was determined using whole-cell lux-biosensor Escherichia coli MG1655 pAlkA-lux, in which the luxCDABE genes from Photorhabdus luminescens, enabling the luminescence of the cell culture, are controlled by the PalkA promoter of DNA glycosylase. It was shown that within one day of incubation in water containing MMS at a concentration above 10 µM, the amphipods absorbed the toxicant and their tissues produce more alkylation damage to biosensor cells than the surrounding water. Concentrations of MMS above 1 mM in the environment caused the death of the amphipods before the toxicant could be significantly concentrated in their tissues. The sensitivity and the capacity to absorb MMS were found to be approximately the same for the marine amphipod G. oceanicus and the freshwater amphipods E. vittatus and G. lacustris.


Asunto(s)
Anfípodos , Técnicas Biosensibles , Metilmetanosulfonato , Animales , Anfípodos/metabolismo , Escherichia coli , Contaminantes Químicos del Agua
5.
Curr Issues Mol Biol ; 46(9): 10462-10491, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39329974

RESUMEN

Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.

6.
R Soc Open Sci ; 11(9): 230975, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39263456

RESUMEN

Recent work on the diazonium ion metabolite of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKDI) suggests that 5-(pyridin-3-yl)-3,4-dihydro-2H-furan-1-ium (NNKFI) may form from NNKDI via an intramolecular reaction. NNKDI is an important carcinogen whose role as an alkylating agent has received significant attention. While there is some experimental evidence supporting NNKFI's production in vitro, it has not yet been directly observed. Little is known about NNKFI's structure and reactivity. We report the first in silico examination of this ion. Our study utilized Kohn-Sham density functional theory (B3LYP/6-311G**) and coupled cluster theory (CCSD/6-31G*) to produce energy-optimized structures, vibrational normal modes and molecular orbitals for NNKFI. To gain insight into the chemical properties of this species, we calculated electrostatic potential surfaces, natural population analysis charges and local Fukui indices. We report data and results for NNKFI's cis and trans conformers. Our work confirms C5 as the preferred site for nucleophilic attack in NNKFI. Stretching motions and predicted bond lengths near O1 are consistent with a somewhat weakened carbonyl structure in this ion. Partial charges, electrostatic potential surfaces and local Fukui indices reveal delocalization of cationic charge on the furanium moiety and notable carbocation character at C5.

7.
Molecules ; 29(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275113

RESUMEN

A novel approach for the α-alkylation of ketones was developed using Brønsted acid-catalyzed C-C bond cleavage. Both aromatic and aliphatic ketones reacted smoothly with 2-substituted 1,3-diphenylpropane-1,3-diones to afford α-alkylation products with high yields and with excellent regioselectivity, in which the 1,3-dicarbonyl group acted as a leaving group in the presence of the catalyst TfOH. Mechanism experiments showed that the ß-C-C bond cleavage of diketone and the shift of the equilibrium towards the enol formation from ketone are driving forces that induce the desired products.

8.
DNA Repair (Amst) ; 141: 103732, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094381

RESUMEN

The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA and is overexpressed in several cancers. However, there are no known inhibitors available for this crucial DNA repair enzyme. The aim of this study was to examine whether the first-generation HIV protease inhibitors having strong anti-cancer activity can be repurposed as inhibitors of ALKBH2. We selected four such inhibitors and performed in vitro binding analysis against ALKBH2 based on alterations of its intrinsic tryptophan fluorescence and differential scanning fluorimetry. The effect of these HIV protease inhibitors on the DNA repair activity of ALKBH2 was also evaluated. Interestingly, we observed that one of the inhibitors, ritonavir, could inhibit ALKBH2-mediated DNA repair significantly via competitive inhibition and sensitized cancer cells to alkylating agent methylmethane sulfonate (MMS). This work may provide new insights into the possibilities of utilizing HIV protease inhibitor ritonavir as a DNA repair antagonist.


Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Reparación del ADN , Inhibidores de la Proteasa del VIH , Metilmetanosulfonato , Ritonavir , Humanos , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Ritonavir/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Metilmetanosulfonato/farmacología , Daño del ADN , Alquilación , Línea Celular Tumoral
9.
ChemSusChem ; : e202401279, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107238

RESUMEN

Aromatic components of C8-C15 are playing indispensable roles in multi-functional properties of jet fuel. Here, we reported the controllable alkylation of benzene with mixed olefins of ethylene and propylene toward C8-C15 aromatic hydrocarbons for jet fuels over the bifunctional Ga/ZSM-5 catalyst. The resultant 2Ga/ZSM-5 exhibited a superior selectivity of 86.4% (yield of 55.5%) to C8-C15 range aromatics, at benzene conversion of 40.3%, ethylene and propylene conversion of 99.5% and 99.2%, respectively. The incorporation of Ga species could effectively weaken the strong acid sites of ZSM-5 and endow 2Ga/ZSM-5 catalyst with appropriate acidity, therefore facilitating the benzene alkylation process and suppressing the undesired hydrogen transfer or aromatization side reactions as well, thus improving the yield of desired C8-C15aromatics for jet fuels. This work provided insight into the development of promising bifunctional catalyst for the oriented transformation of biomass-derived chemicals to aviation fuels.

10.
Chem Asian J ; : e202400635, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109591

RESUMEN

The distinct roles of different chemical species are essential for the discovery of novel chemical transformations in organic synthesis. Here, we have designed a potential strategy for the synthesis of triarylmethanes (TRAMs) using the dual C(aryl)-alkylation process. This protocol was influenced by 1,1,1,3,3,3-hexafluoro isopropanol (HFIP) as a pivotal reagent and proceeds through the selective para C-H functionalization method. The described approach has been proven to be highly efficient in terms of substrate scope with excellent functional group tolerance and gram scale synthesis of the desired product with 90% yield. The recyclability and reusability of HFIP has enhanced the feasibility of this protocol towards the sustainable synthesis of TRAMs.

11.
Molecules ; 29(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124868

RESUMEN

As an important class of nitrogen-containing fused heterocyclic compounds, imidazo[1,2-a]pyridines often exhibit significant biological activities, such as analgesic, anticancer, antiosteoporosis, anxiolytic, etc. Using Y(OTf)3 as a Lewis acid catalyst, a simple and efficient method has been developed for the synthesis of C3-alkylated imidazo[1,2-a]pyridines through the three-component aza-Friedel-Crafts reaction of imidazo[1,2-a]pyridines, aldehydes, and amines in the normal air atmosphere without the protection of inert gas and special requirements for anhydrous and anaerobic conditions. A series of imidazo[1,2-a]pyridine derivatives were obtained with moderate to good yields, and their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Furthermore, this conversion has the advantages of simple operation, excellent functional group tolerance, high atomic economy, broad substrate scope, and can achieve gram-level reactions. Notably, this methodology may be conveniently applied to the further design and rapid synthesis of potential biologically active imidazo[1,2-a]pyridines with multifunctional groups.

12.
Angew Chem Int Ed Engl ; : e202408820, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058627

RESUMEN

A general phase-transfer catalyst (PTC) mediated enantioselective alkylation of N-acylsulfenamides is reported. Essential to achieving high selectivity was the use of the triethylacetyl sulfenamide protecting group along with aqueous KOH as the base under biphasic aqueous conditions to enable the reaction to be performed at -40 °C. With these key parameters, enantiomeric ratios up to 97.5:2.5 at the newly generated chiral sulfur center were achieved with an inexpensive cinchona alkaloid derived PTC. Broad scope and excellent functional group compatibility was observed for a variety of S-(hetero)aryl and branched and unbranched S-alkyl sulfenamides. Moreover, to achieve high selectivity for the opposite enantiomer, a pseudoenantiomeric catalyst was designed and synthesized from inexpensive cinchonidine. Given that sulfoximines are a bioactive pharmacophore of ever-increasing interest, selected product sulfilimines were oxidized to the corresponding sulfoximines with subsequent reductive cleavage affording the free-NH sulfoximines in high yields. The utility of the disclosed method was further demonstrated by the efficient asymmetric synthesis of atuveciclib, a phase I clinical candidate for which only chiral HPLC separation had previously been reported for isolation of the desired (R)-sulfoximine stereoisomer.

13.
Molecules ; 29(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998927

RESUMEN

2-methylfuran is a significant organic chemical raw material which can be produced by hydrolysis, dehydration, and selective hydrogenation of biomass hemicellulose. 2-methylfuran can be converted into value-added chemicals and liquid fuels. This article reviews the latest progress in the synthesis of liquid fuel precursors through hydroxyalkylation/alkylation reactions of 2-methylfuran and biomass-derived carbonyl compounds in recent years. 2-methylfuran reacts with olefins through Diels-Alder reactions to produce chemicals, and 2-methylfuran reacts with anhydrides (or carboxylic acids) to produce acylated products. In the future application of 2-methylfuran, developing high value-added chemicals and high-density liquid fuels are two good research directions.

14.
Angew Chem Int Ed Engl ; : e202407497, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012156

RESUMEN

A new concept for the synthesis of dialkyl chloronium cations [R‒Cl‒R]+ is described (R = CH3, CH2CF3), that allows the formation of fluorinated derivatives. By utilizing the xenonium salt [XeOTeF5][M(OTeF5)n] (M = Sb, n = 6; M = Al, n = 4) chlorine atoms of chloroalkanes or the deactivated chlorofluoroalkane CH2ClCF3 are oxidized and removed as ClOTeF5 leading to the isolation of the corresponding chloronium salt. Since the resulting highly electrophilic cation [Cl(CH2CF3)2]+ is able to alkylate weak nucleophiles, this compound can be utilized for the introduction of a fluorinated alkyl group to those. In addition, the fluorinated alkyl chloronium cation displays a high hydride ion affinity, enabling the activation of linear hydrocarbons by hydride abstraction even at low temperatures ultimately leading to the formation of branched carbocations.

15.
ChemistryOpen ; : e202400108, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989712

RESUMEN

This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.

16.
Chemistry ; : e202402021, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037004

RESUMEN

Alumoxanes are typically produced via controlled hydrolysis of short-chain alkyl aluminium compounds which leads to oligomeric species that are usually difficult to obtain in crystalline form. Simultaneously, various alternative non-hydrolytic approaches to alumoxanes have also been used. In this work, we report on a new methylalumoxane scaffold derived from the alkylation of a series of dicarboxylic acids: itaconic acid (HO2CCH2C(=CH2)CO2H), succinic acid (HO2CCH2CH2CO2H) and homophthalic acid (HO2CCH2C6H4CO2H). The reactions of AlMe3 with a selected dicarboxylic acid in the molar ratio 4:1 conducted at elevated temperature occur with double methylation of each carboxylic group and provide to the formation of a new methylalumoxane aggregate, Me10Al6O4, flanked by methylaluminium diolate units. We also aimed to obtain dialkylaluminium derivatives of dicarboxylic acids by the controlled reaction of the appropriate acid with AlMe3 in the 1:2 stoichiometry. While the synthesis of organoaluminium derivatives of flexible aliphatic dicarboxylic acids (itaconic and succinic acids) is challenging due to their insolubility, the related homophtalate compound readily forms a molecular tetranuclear cluster, [(homophtalate)(AlMe2)2]2. The molecular and crystal structures of the resulting compounds were determined via NMR spectroscopic analysis and single crystal X-ray diffraction crystallography.

17.
Appl Microbiol Biotechnol ; 108(1): 421, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023782

RESUMEN

Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: • RePT catalyzes prenylation of diverse aromatic substrates. • RePT enables O-prenylation of phenolics, especially stilbenes. • The novel RePT remains active in 20% methanol or DMSO.


Asunto(s)
Aminoácidos Aromáticos , Dimetilaliltranstransferasa , Fenoles , Prenilación , Aminoácidos Aromáticos/metabolismo , Dimetilaliltranstransferasa/metabolismo , Dimetilaliltranstransferasa/genética , Fenoles/metabolismo , Especificidad por Sustrato , Estilbenos/metabolismo , Triptófano/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
18.
Chem Asian J ; : e202400557, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993064

RESUMEN

Herein, we have reported a new series of NNS-donor ligands coordinated Ni(II) complexes and utilized them as catalytic activator to synthesize N-alkylated aminesand 1,2-disubstituted benzimidazoles. The separate reaction of  [C9H6N-NH-C(O)-CH2-S-Ar] [Ar = C6H5 (L1); C6H4Cl-4 (L2);C6H4Me-4 (L3) and C6H4-OMe-4 (L4)] with Ni(OAc)2 in methanol at 80°C for 3 hours resulted in octahedral nickel complexes [(L1-H)2Ni] (C1), [(L2-H)2Ni] (C2), [(L3-H)2Ni] (C3), and [(L4-H)2Ni] (C4), respectively. All compounds have been characterized by micro and spectroscopic analysis. The molecular structure of complexes C1-C3 has also been determined by single crystal X-ray diffraction data. The utility of complexes C1-C4 were evaluated for the N-alkylation of aniline with benzyl alcohols, and for 1,2-disubstituted benzimidazoles synthesis. The obtained results indicate that complex C1 showed better catalytic activity in both N-alkylation of amines with benzyl alcohols [catalyst loading: 2.0 mol%; Yield up to 92%], and for 1,2-disubstituted benzimidazoles derivatives [catalyst loading: 2.0 mol%; Yield up to 94%)]. The mechanistic studies suggested that the reaction works through hydrogen borrowing from benzyl alcohol and its subsequent utilization for in situ reduction of imine. The experimentally observed catalytic reactivity patterns of complexes C1-C4 have found in good agreement with the HOMO-LUMO energy gaps obtained by DFT analysis of corresponding complexes.

19.
Chemistry ; 30(54): e202402348, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39073176

RESUMEN

Triphenylene derivatives are highly investigated for their electronic, supramolecular and photophysical properties, but the direct modification of the central aromatic core is particularly challenging especially in the internal positions 1, 4, 5, 8, 9, and 12. Herein we present an efficient alkylation method of 2,3,6,7,10,11-hexasubstituted triphenylene derivatives leading to tris-alkylated C3-symmetric derivatives in good yields using N-(hydroxymethyl)carboxamide or N-(alkoxylmethyl)carboxamide alkylating agents.

20.
Biochem Pharmacol ; 226: 116405, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969301

RESUMEN

Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,ß-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKß, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPß) and other structural and signaling molecules (GFAP, ß-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4ß-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,ß-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.


Asunto(s)
Cisteína , Witanólidos , Witanólidos/metabolismo , Witanólidos/química , Cisteína/metabolismo , Cisteína/química , Humanos , Animales , Unión Proteica/fisiología , Proteínas/metabolismo , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA