Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Appl Environ Microbiol ; : e0034824, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324814

RESUMEN

Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl ß-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.

2.
J Bacteriol ; : e0039923, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315799

RESUMEN

The cell cycle is a fundamental process involved in bacterial reproduction and cellular differentiation. For Sinorhizobium meliloti, cell cycle outcomes depend on its growth environment. This bacterium shows a tight coupling of DNA replication initiation with cell division during free-living growth. In contrast, it undergoes a novel program of endoreduplication and terminal differentiation during symbiosis within its host. While several DivK regulators at the top of its CtrA pathway have been shown to play an important role in this differentiation process, there is a lack of resolution regarding the downstream molecular activities required and whether they could be unique to the symbiosis cell cycle. The DivK kinase CbrA is a negative regulator of CtrA activity and is required for successful symbiosis. In this work, spontaneous symbiosis suppressors of ΔcbrA were identified as alleles of divL and cckA. In addition to rescuing symbiotic development, they restore wild-type cell cycle progression to free-living ΔcbrA cells. Biochemical characterization of the S. meliloti hybrid histidine kinase CckA in vitro demonstrates that it has both kinase and phosphatase activities. Specifically, CckA on its own has autophosphorylation activity, and phosphatase activity is induced by the second messenger c-di-GMP. Importantly, the CckAA373S suppressor protein of ΔcbrA has a significant loss in kinase activity, and this is predicted to cause decreased CtrA activity in vivo. These findings deepen our understanding of the CbrA regulatory pathway and open new avenues for further molecular characterization of a network pivotal to the free-living cell cycle and symbiotic differentiation of S. meliloti.IMPORTANCESinorhizobium meliloti is a soil bacterium able to form a nitrogen-fixing symbiosis with certain legumes, including the agriculturally important Medicago sativa. It provides ammonia to plants growing in nitrogen-poor soils and is therefore of agricultural and environmental significance as this symbiosis negates the need for industrial fertilizers. Understanding mechanisms governing symbiotic development is essential to either engineer a more effective symbiosis or extend its potential to non-leguminous crops. Here, we identify mutations within cell cycle regulators and find that they control cell cycle outcomes during both symbiosis and free-living growth. As regulators within the CtrA two-component signal transduction pathway, this study deepens our understanding of a regulatory network shaping host colonization, cell cycle differentiation, and symbiosis in an important model organism.

3.
J Bacteriol ; : e0022524, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291979

RESUMEN

In almost all bacteria, the tubulin-like GTPase FtsZ polymerizes to form a "Z-ring" that marks the site of division. FtsZ recruits other proteins, collectively known as the divisome, that together remodel and constrict the envelope. Constriction is driven by peptidoglycan (PG) cell wall synthesis by the glycosyltransferase FtsW and the transpeptidase FtsI (FtsWI), but these enzymes require activation to function. How recruitment of FtsZ to the division site leads to FtsWI activation and constriction remains largely unknown. Previous work in our laboratory demonstrated that an FtsZ-binding protein, FzlA, is essential for activation of FtsWI in the alphaproteobacterium Caulobacter crescentus. Additionally, we found that FzlA binds to a DNA translocase called FtsK, suggesting that it may link constriction activation to chromosome segregation. FzlA is conserved throughout Alphaproteobacteria but has only been examined in detail in C. crescentus. Here, we explored whether FzlA function is conserved in diverse Alphaproteobacteria. We assessed FzlA homologs from Rickettsia parkeri and Agrobacterium tumefaciens, and found that, similar to C. crescentus FzlA, they bind directly to FtsZ and localize to midcell. The FtsZ-FzlA interaction interface is conserved, as we demonstrated that FzlA from each of the three species examined can bind to FtsZ from any of the three in vitro. Finally, we determined that A. tumefaciens FzlA can fulfill the essential function of FzlA when produced in C. crescentus, indicating conservation of function. These results suggest that FzlA serves as an important regulator that coordinates chromosome segregation with envelope constriction across diverse Alphaproteobacteria.IMPORTANCECell division is essential for bacterial replication and must be highly regulated to ensure robust remodeling of the cell wall in coordination with segregation of the genome to daughter cells. In Caulobacter crescentus, FzlA plays a major role in regulating this process by activating cell wall synthesis in a manner that couples constriction to chromosome segregation. FzlA is broadly conserved in Alphaproteobacteria, suggesting that it plays a similar function across this class of bacteria. Here, we have shown that, indeed, FzlA biochemical interactions and function are conserved in diverse Alphaproteobacteria. Because FzlA is conserved in Alphaproteobacterial human pathogens, understanding this protein and its interactome could present therapeutic benefits by identifying potential antibiotic targets to treat infections.

4.
mBio ; 15(8): e0152424, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953632

RESUMEN

The hydroxyacid glycolate is a highly abundant carbon source in the environment. Glycolate is produced by unicellular photosynthetic organisms and excreted at petagram scales to the environment, where it serves as growth substrate for heterotrophic bacteria. In microbial metabolism, glycolate is first oxidized to glyoxylate by the enzyme glycolate oxidase. The recently described ß-hydroxyaspartate cycle (BHAC) subsequently mediates the carbon-neutral assimilation of glyoxylate into central metabolism in ubiquitous Alpha- and Gammaproteobacteria. Although the reaction sequence of the BHAC was elucidated in Paracoccus denitrificans, little is known about the regulation of glycolate and glyoxylate assimilation in this relevant alphaproteobacterial model organism. Here, we show that regulation of glycolate metabolism in P. denitrificans is surprisingly complex, involving two regulators, the IclR-type transcription factor BhcR that acts as an activator for the BHAC gene cluster, and the GntR-type transcriptional regulator GlcR, a previously unidentified repressor that controls the production of glycolate oxidase. Furthermore, an additional layer of regulation is exerted at the global level, which involves the transcriptional regulator CceR that controls the switch between glycolysis and gluconeogenesis in P. denitrificans. Together, these regulators control glycolate metabolism in P. denitrificans, allowing the organism to assimilate glycolate together with other carbon substrates in a simultaneous fashion, rather than sequentially. Our results show that the metabolic network of Alphaproteobacteria shows a high degree of flexibility to react to the availability of multiple substrates in the environment.IMPORTANCEAlgae perform ca. 50% of the photosynthetic carbon dioxide fixation on our planet. In the process, they release the two-carbon molecule glycolate. Due to the abundance of algae, massive amounts of glycolate are released. Therefore, this molecule is available as a source of carbon for bacteria in the environment. Here, we describe the regulation of glycolate metabolism in the model organism Paracoccus denitrificans. This bacterium uses the recently characterized ß-hydroxyaspartate cycle to assimilate glycolate in a carbon- and energy-efficient manner. We found that glycolate assimilation is dynamically controlled by three different transcriptional regulators: GlcR, BhcR, and CceR. This allows P. denitrificans to assimilate glycolate together with other carbon substrates in a simultaneous fashion. Overall, this flexible and multi-layered regulation of glycolate metabolism in P. denitrificans represents a resource-efficient strategy to make optimal use of this globally abundant molecule under fluctuating environmental conditions.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Glicolatos , Paracoccus denitrificans , Paracoccus denitrificans/metabolismo , Paracoccus denitrificans/genética , Glicolatos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Redes y Vías Metabólicas/genética , Glioxilatos/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Familia de Multigenes
5.
Artículo en Inglés | MEDLINE | ID: mdl-38995165

RESUMEN

A Gram-negative, non-motile, and creamy-white coloured bacterium, designated CAU 1616T, was isolated from sea sand collected at Ayajin Beach, Goseong-gun, Republic of Korea. The bacterium was found to grow optimally at 37 °C, pH 8.0-8.5, and with 1-5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain CAU 1616T within the order Rhodospirillales. The highest 16S rRNA gene sequence similarity was to Fodinicurvata fenggangensis YIM D812T (94.1 %), Fodinicurvata sediminis YIM D82T (93.7 %), Fodinicurvata halophila BA45ALT (93.6 %) and Algihabitans albus HHTR 118T (92.3 %). Comparing strain CAU 1616T with closely related species (Fodinicurvata fenggangensis YIM D812T and Fodinicurvata sediminis YIM D82T), the average nucleotide identity based on blast+ values were 69.7-69.8 %, the average amino acid identity values were 61.3-61.4 %, and the digital DNA-DNA hybridization values were 18.4-18.5 %. The assembled draft genome of strain CAU 1616T had 29 contigs with an N50 value of 385.8 kbp, a total length of 3 490 371 bp, and a DNA G+C content of 65.1 mol%. The predominant cellular fatty acids were C18 : 1 2-OH, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major respiratory quinone was Q-10. Based on phenotypic, phylogenetic, and chemotaxonomic evidence, strain CAU 1616T represents a novel genus in the family Rhodovibrionaceae, for which the name Aquibaculum arenosum gen. nov., sp. nov. is proposed. The type strain is CAU 1616T (=KCTC 82428T=MCCC 1K06089T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Arena , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , ADN Bacteriano/genética , República de Corea , Arena/microbiología , Agua de Mar/microbiología , Ubiquinona
6.
mSystems ; 9(7): e0063424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38934538

RESUMEN

Transovarial transmission is the most reliable way of passing on essential nutrient-providing endosymbionts from mothers to offspring. However, not all endosymbiotic microbes follow the complex path through the female host tissues to oocytes on their own. Here, we demonstrate an unusual transmission strategy adopted by one of the endosymbionts of the planthopper Trypetimorpha occidentalis (Hemiptera: Tropiduchidae) from Bulgaria. In this species, an Acetobacteraceae endosymbiont is transmitted transovarially within deep invaginations of cellular membranes of an ancient endosymbiont Sulcia-strikingly resembling recently described plant virus transmission. However, in males, Acetobacteraceae colonizes the same bacteriocytes as Sulcia but remains unenveloped. Then, the unusual endobacterial localization of Acetobacteraceae observed in females appears to be a unique adaptation to maternal transmission. Further, the symbiont's genomic features, including encoding essential amino acid biosynthetic pathways and its similarity to a recently described psyllid symbiont, suggest a unique combination of the ability to horizontally transmit among species and confer nutritional benefits. The close association with Acetobacteraceae symbiont correlates with the so-far-unreported level of genomic erosion of ancient nutritional symbionts of this planthopper. In Sulcia, this is reflected in substantial changes in genomic organization, reported for the first time in the symbiont renowned for its genomic stability. In Vidania, substantial gene loss resulted in one of the smallest genomes known, at 108.6 kb. Thus, the symbionts of T. occidentalis display a combination of unusual adaptations and genomic features that expand our understanding of how insect-microbe symbioses may transmit and evolve.IMPORTANCEReliable transmission across host generations is a major challenge for bacteria that associate with insects, and independently established symbionts have addressed this challenge in different ways. The facultatively endobacterial localization of Acetobacteraceae symbiont, enveloped by cells of ancient nutritional endosymbiont Sulcia in females but not males of the planthopper Trypetimorpha occidentalis, appears to be a unique adaptation to maternal transmission. Acetobacteraceae's genomic features indicate its unusual evolutionary history, and the genomic erosion experienced by ancient nutritional symbionts demonstrates the apparent consequences of such close association. Combined, this multi-partite symbiosis expands our understanding of the diversity of strategies that insect symbioses form and some of their evolutionary consequences.


Asunto(s)
Hemípteros , Simbiosis , Animales , Hemípteros/microbiología , Hemípteros/fisiología , Femenino , Masculino , Acetobacteraceae/genética , Acetobacteraceae/fisiología , Genoma Bacteriano/genética , Filogenia , Adaptación Fisiológica
7.
Appl Environ Microbiol ; 90(4): e0209923, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445905

RESUMEN

Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed nod genes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria, rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribe nod, but at lower relative abundance than UBA11136 in the upper ODZ. The nod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named ptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world's largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribe nod at lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Óxido Nítrico/metabolismo , Bacterias/genética , Oxígeno/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Citocromos/metabolismo , Nitrógeno/metabolismo , Porinas/metabolismo , Oxidación-Reducción , Agua de Mar/microbiología , Desnitrificación
8.
Appl Environ Microbiol ; 90(3): e0099023, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38315021

RESUMEN

Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.


Asunto(s)
Cefalópodos , Microbiota , Humanos , Animales , Femenino , Cefalópodos/genética , Filogenia , ARN Ribosómico 16S/genética , Decapodiformes/microbiología , Genitales/microbiología , Bacterias/genética , Simbiosis
9.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365227

RESUMEN

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Asunto(s)
Bacteriófagos , Vitis , Tumores de Planta/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Pseudomonas aeruginosa , Bacteriófagos/genética , Vitis/microbiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-38285488

RESUMEN

In this study, we report a Gram-stain-negative, rod-shaped, atrichous and aerobic bacterial strain named CSW1921T, which was isolated from the deep-sea water of a cold seep in South China Sea. Growth of strain CSW1921T occurred at 10.0-35.0 °C (optimum, 30 °C), pH 5.0-10.0 (optimum, pH 8.0-9.0) and with 0-9.0 % (w/v) NaCl (optimum, 1.0-2.0 %). Phylogenetic tree analysis based on 16S rRNA gene sequence or the genomic sequence indicated that strain CSW1921T belonged to the family Rhodobacteraceae and was closely related to Rhodophyticola porphyridii MA-7-27T (97.5 % sequence similarity). Genomic analysis indicated that strain CSW1921T contains a circular chromosome of 3 592 879 bp with G+C content of 60.5 mol%. The predominant respiratory quinone of CSW1921T was ubiquinone-10. The polar lipids of CSW1921T contained phosphatidylglycerol, three unidentified aminolipids, two unidentified phospholipids and two unidentified lipids. The major fatty acids of strain CSW1921T contained C16 : 0, C18 : 1 ω7c 11-methyl and summed feature 8 (C18 : 1 ω7c). The average nucleotide identity, DNA-DNA hybridization and average amino acid identity values between strain CSW1921T and members of its related species were 68.02-69.08 %, 12.7-12.9 % and 46.87-48.08 %, respectively, which were lower than the recommended threshold values for bacterial species or genus delineation. Phylogenetic, physiological, biochemical and morphological analyses suggested that strain CSW1921T represents a novel genus and a novel species of the family Rhodobacteraceae, and the name Fontisubflavum oceani gen. nov., sp. nov. is proposed with the type strain CSW1921T (=MCCC 1K08371T=KCTC 92834T).


Asunto(s)
Ácidos Grasos , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , China
11.
Microbiol Spectr ; 12(1): e0282723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991376

RESUMEN

IMPORTANCE: This study reports the results of the largest analysis of genome sequences from phages that infect the Alphaproteobacteria class of bacterial hosts. We analyzed over 100 whole genome sequences of phages to construct dotplots, categorize them into genetically distinct clusters, generate a bootstrapped phylogenetic tree, compute protein orthologs, and predict packaging strategies. We determined that the phage sequences primarily cluster by the bacterial host family, phage morphotype, and genome size. We expect that the findings reported in this seminal study will facilitate future analyses that will improve our knowledge of the phages that infect these hosts.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Filogenia , Genómica , Genoma Viral , Secuenciación Completa del Genoma
12.
Microbiol Resour Announc ; 12(12): e0069023, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37909726

RESUMEN

Rhodomicrobium vannielii is a multicellular and differentiating member of the order Hyphomicrobiales in the class Alphaproteobacteria. Here, we report the complete genome of strain DSM166 obtained by PacBio SMRT sequencing. The results suggest that this strain is closely related to Rhodomicrobium lacus.

13.
mBio ; : e0200323, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37850753

RESUMEN

The nitrogen (N) status transduced via the NtrBC two-component system is a major signaling cue in the root nodule endosymbiosis of diazotrophic rhizobia with legumes. NtrBC is upregulated in the N-limiting rhizosphere environment at the onset of nodulation but silenced in nodules to favor the assimilation of the fixed N into plant biomass. We reported that the trans-acting sRNA NfeR1 (Nodule Formation Efficiency RNA) broadly influences the symbiotic performance of the α-rhizobium Sinorhizobium meliloti. Here, we show that NfeR1 is indeed an N-responsive sRNA that fine-tunes NtrBC output during the symbiotic transition. Biochemical and genetic approaches unveiled that NtrC and the LysR-type symbiotic regulator LsrB bind at distinct nearby sites in the NfeR1 promoter, acting antagonistically as repressor and activator of transcription, respectively. This complex transcriptional control specifies peak NfeR1 steady-state levels in N-starved and endosymbiotic bacteria. Furthermore, NfeR1 base pairs the translation initiation region of the histidine kinase coding mRNA ntrB, causing a decrease in both NtrB and NtrC abundance as assessed by double-plasmid genetic assays. In the context of endogenous regulation, NfeR1-mediated ntrBC silencing most likely amends the effective strength of the known operon autorepression exerted by NtrC. Accordingly, a lack of NfeR1 shifts the wild-type NtrBC output, restraining the fitness of free-living rhizobia under N stress and plant growth upon nodulation. The mixed NtrBC-NfeR1 double-negative feedback loop is thus an unprecedented adaptive network motif that helps α-rhizobia adjust N metabolism to the demands of an efficient symbiosis with legume plants. IMPORTANCE Root nodule endosymbioses between diazotrophic rhizobia and legumes provide the largest input of combined N to the biosphere, thus representing an alternative to harmful chemical fertilizers for sustainable crop production. Rhizobia have evolved intricate strategies to coordinate N assimilation for their own benefit with N2 fixation to sustain plant growth. The rhizobial N status is transduced by the NtrBC two-component system, the seemingly ubiquitous form of N signal transduction in Proteobacteria. Here, we show that the regulatory sRNA NfeR1 (nodule formation efficiency RNA) of the alfalfa symbiont Sinorhizobium meliloti is transcribed from a complex promoter repressed by NtrC in a N-dependent manner and feedback silences ntrBC by complementary base-pairing. These findings unveil a more prominent role of NtrC as a transcriptional repressor than hitherto anticipated and a novel RNA-based mechanism for NtrBC regulation. The NtrBC-NfeR1 double-negative feedback loop accurately rewires symbiotic S. meliloti N metabolism and is likely conserved in α-rhizobia.

14.
mBio ; : e0148723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37905909

RESUMEN

Reduced genome bacteria are genetically simplified systems that facilitate biological study and industrial use. The free-living alphaproteobacterium Zymomonas mobilis has a naturally reduced genome containing fewer than 2,000 protein-coding genes. Despite its small genome, Z. mobilis thrives in diverse conditions including the presence or absence of atmospheric oxygen. However, insufficient characterization of essential and conditionally essential genes has limited broader adoption of Z. mobilis as a model alphaproteobacterium. Here, we use genome-scale CRISPRi-seq (clustered regularly interspaced short palindromic repeats interference sequencing) to systematically identify and characterize Z. mobilis genes that are conditionally essential for aerotolerant or anaerobic growth or are generally essential across both conditions. Comparative genomics revealed that the essentiality of most "generally essential" genes was shared between Z. mobilis and other Alphaproteobacteria, validating Z. mobilis as a reduced genome model. Among conditionally essential genes, we found that the DNA repair gene, recJ, was critical only for aerobic growth but reduced the mutation rate under both conditions. Further, we show that genes encoding the F1FO ATP synthase and Rhodobacter nitrogen fixation (Rnf) respiratory complex are required for the anaerobic growth of Z. mobilis. Combining CRISPRi partial knockdowns with metabolomics and membrane potential measurements, we determined that the ATP synthase generates membrane potential that is consumed by Rnf to power downstream processes. Rnf knockdown strains accumulated isoprenoid biosynthesis intermediates, suggesting a key role for Rnf in powering essential biosynthetic reactions. Our work establishes Z. mobilis as a streamlined model for alphaproteobacterial genetics, has broad implications in bacterial energy coupling, and informs Z. mobilis genome manipulation for optimized production of valuable isoprenoid-based bioproducts. IMPORTANCE The inherent complexity of biological systems is a major barrier to our understanding of cellular physiology. Bacteria with markedly fewer genes than their close relatives, or reduced genome bacteria, are promising biological models with less complexity. Reduced genome bacteria can also have superior properties for industrial use, provided the reduction does not overly restrict strain robustness. Naturally reduced genome bacteria, such as the alphaproteobacterium Zymomonas mobilis, have fewer genes but remain environmentally robust. In this study, we show that Z. mobilis is a simplified genetic model for Alphaproteobacteria, a class with important impacts on the environment, human health, and industry. We also identify genes that are only required in the absence of atmospheric oxygen, uncovering players that maintain and utilize the cellular energy state. Our findings have broad implications for the genetics of Alphaproteobacteria and industrial use of Z. mobilis to create biofuels and bioproducts.

15.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37662258

RESUMEN

Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts have the potential to form the backbone of the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis, show particular promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify inducible promoters with strong, regulated activity in both organisms. Combining Tn7 integration with promoters from our library, we establish CRISPR interference systems for N. aromaticivorans and R. sphaeroides that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these industrially important species and other Alphaproteobacteria.

16.
Antonie Van Leeuwenhoek ; 116(12): 1285-1294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37751033

RESUMEN

Methylorubrum extorquens is an important model methylotroph and has enormous potential for the development of C1-based microbial cell factories. During strain construction, regulated promoters with a low background expression level are important genetic tools for expression of potentially toxic genes. Here we present an accordingly optimised promoter, which can be used for that purpose. During construction and testing of terpene production strains harbouring a recombinant mevalonate pathway, strong growth defects were observed which made strain development impossible. After isolation and characterisation of suppressor mutants, we discovered a variant of the cumate-inducible promoter PQ2148 used in this approach. Deletion of 28 nucleotides resulted in an extremely low background expression level, but also reduced the maximal expression strength to about 30% of the original promoter. This tightly repressed promoter version is a powerful module for controlled expression of potentially toxic genes in M. extorquens.


Asunto(s)
Methylobacterium extorquens , Regiones Promotoras Genéticas , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Metanol/metabolismo
17.
Microbiol Resour Announc ; 12(9): e0036023, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37607062

RESUMEN

Here, we report the complete, circular genome sequence of a potential novel species from the underexplored Alphaproteobacterial genus Bosea. Bosea sp. NBC_00550 was isolated from a soil sample collected in Lyngby, Denmark. We explore the biosynthetic potential of Bosea sp. NBC_00550 and compare it with that of other Bosea species.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37486324

RESUMEN

A novel member of class Alphaproteobacteria was isolated from marine sediment of the South China Sea. Cells of strain LMO-2T were Gram-stain negative, greyish in colour, motile, with a single lateral flagellum and short rod in shape with a slight curve. Strain LMO-2T was positive for oxidase and negative for catalase. The bacterium grew aerobically at 10-40 °C (optimum, 25-30 °C), pH 5.5-10.0 (optimum, pH 7.0) and 0-9 % NaCl (w/v; optimum, 2-3 %). Phylogenetic analysis of the 16S rRNA gene sequence and phylogenomic analysis of the whole genome sequence indicated that strain LMO-2T represents a new genus and a new species within the family Devosiaceae, class Alphaproteobacteria, phylum Pseudomonadota. Comparisons of the 16S rRNA gene sequences of strain LMO-2T showed 94.8 % similarity to its closest relative. The genome size is ~3.45 Mbp with a DNA G+C content of 58.17 mol%. The strain possesses potential capability for the degradation of complex organic matter, i.e. fatty acid and benzoate. The predominant cellular fatty acids (>10 %) were C16 : 0 and C18 : 1 ω7c 11-methyl. The sole respiratory quinone was ubiquinone-10. The major identified polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phospholipid. Based on the polyphasic taxonomic data, strain LMO-2T represents a novel genus and a novel species for which the name Mariluticola halotolerans gen. nov., sp. nov., was proposed in the family Devosiaceae. The type strain is LMO-2T (=CGMCC 1.19273T=JCM 34934T).


Asunto(s)
Alphaproteobacteria , Ácidos Grasos , Ácidos Grasos/química , Agua de Mar/microbiología , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Fosfolípidos/química , China
19.
Arch Microbiol ; 205(8): 279, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420141

RESUMEN

A novel bacterium, designated as strain RS5-5T, was isolated from lake water in northwestern China. Cells of the isolate were observed to be rod shaped and Gram stain negative. Its growth occurred at 4-37 â„ƒ, pH 6.5-9.0 and in the presence of 0-5% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain RS5-5T was most closely related to Qipengyuania sediminis GDMCC 1.2497T (97.5%), followed by Erythrobacter dokdonensis DSW-74T (97.3%) and Qipengyuania algicida GDMCC 1.2535T (97.0%). Phylogenomic analysis revealed that strain RS5-5T formed a distinct branch with the genus Parerythrobacter. The sole quinone was ubiquinone-10, and the major fatty acids (≥ 10%) were unsaturated fatty acids including C17:1 ω6c, summed feature 3 (C16:1 ω7c/C16:1 ω6c) and summed feature 8 (C18:1 ω7c/C18:1 ω6c). The polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, one unidentified sphingoglycolipid, three unidentified glycolipids, one unidentified aminoglycolipid, one unidentified aminolipid, two unidentified phospholipids and four unidentified polar lipids. Chemotaxonomic characteristics of strain RS5-5T were coincident with those of the genus Parerythrobacter members. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between strain RS5-5T and two Parerythrobacter reference strains were in the ranges of 73.2-77.7%, 69.0-78.0% and 18.9-20.4%, respectively. The genomic DNA G + C content of strain RS5-5T was 64.1%. The results of phenotypic, phylogenetic and genomic analyses suggested that strain RS5-5T represents a novel species in the genus Parerythrobacter, for which the name Parerythrobacter lacustris sp. nov. is proposed. The type strain is RS5-5T (= GDMCC 1.3163T = KCTC 92277T).


Asunto(s)
Lagos , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Fosfolípidos/química , Ácidos Grasos/química , Ubiquinona/química , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN
20.
Pathogens ; 12(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513797

RESUMEN

Pathogen environmental stability is an often-neglected research priority for pathogens that are known to be vector-transmitted. Bartonella henselae, the etiologic agent of Cat Scratch Disease, has become a "pathogen of interest" in several serious human illnesses, which include neoplastic, cardiovascular, neurocognitive, and rheumatologic conditions. Survival in the flea gut and feces as well as the association with a biofilm in culture-negative endocarditis provides insight into this organism's ability to adjust to environmental extremes. The detection of B. henselae DNA in blood and tissues from marine mammals also raises questions about environmental stability and modes of pathogen transmission. We investigated the ability of B. henselae to survive in fluid matrices chosen to mimic potential environmental sources of infective materials. Feline whole blood, serum and urine, bovine milk, and physiologic saline inoculated with a laboratory strain of B. henselae San Antonio 2 were subsequently evaluated by culture and qPCR at specified time intervals. Bacterial viability was also assessed following desiccation and reconstitution of each inoculated fluid matrix. Bartonella henselae SA2 was cultured from feline urine up to 24 h after inoculation, and from blood, serum, cow's milk, and physiologic saline for up to 7 days after inoculation. Of potential medical importance, bacteria were cultured following air-desiccation of all fluid inoculates. The viability and stability of Bartonella within biological and non-biological fluids in the environment may represent a previously unrecognized source of infection for animals and human beings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA