Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.179
Filtrar
1.
Integr Zool ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086179

RESUMEN

Different substrates pose varied biomechanical challenges that select specific morphologies, such as long limbs for faster running and short limbs for balanced posture while climbing narrow substrates. We tested how gecko locomotion is affected by the microhabitat they occupy and by a key adaptation-adhesive toepads-through analyzing how those are related to limb morphology. We collected microhabitat and toepads data for over 90% of limbed gecko species, and limb measurements for 403 species from 83 of the 121 limbed gecko genera, which we then used in phylogenetic comparative analyses. Our data highlight the association of adhesive toepads with arboreality, but a phylogenetic analysis shows that this relationship is not significant, suggesting that these traits are phylogenetically constrained. Comparative analyses reveal that pad-bearing species possess shorter hindlimbs and feet, more even limb lengths, and lower crus: thigh ratios, than padless geckos, across microhabitats. Saxicolous geckos have the longest limbs and limb segments. This is probably influenced by selection for long strides, increased takeoff velocity, and static stability on inclined surfaces. Terrestrial geckos have more even hind- and forelimbs than arboreal geckos, unlike patterns found in other lizards. Our findings underline the difficulty to infer on microhabitat-morphology relationships from one taxon to another, given their differing ecologies and evolutionary pathways. We emphasize the importance of key innovation traits, such as adhesive toepads, in shaping limb morphology in geckos and, accordingly, their locomotion within their immediate environment.

2.
Evolution ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982617

RESUMEN

Extant birds stand out among vertebrates in the diversity of parental care types they present, spanning absence of care to uniparental care by either sex, biparental or even cooperative care. Despite years of research, key questions remain regarding parental care evolution in birds. Firstly, the parental care type in the most recent ancestor of extant birds is a matter of controversy, with proposed ancestral states including no care, uniparental male or female care, and biparental care. Another unsolved question is the direction, order, and frequency of transitions between parental care types. We address these key questions using a database of 5,438 bird species (~50% of extant diversity) and modern phylogenetic comparative methods controlling simultaneously for model and phylogenetic uncertainty as well as potential confounding effects of state-dependent diversification. Our results indicate that the most likely ancestral state for extant birds is male-only care, with a posterior probability of 0.8. Transition rates across parental care types were generally low and heterogenous; loss of parental care virtually never occurs and transitions away from female only or cooperative care most often lead to biparental care. Given the low transition rates, future research should analyze the factors favoring the maintenance of care types.

3.
Genome Biol Evol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004885

RESUMEN

New protein-coding genes can evolve from previously non-coding genomic regions through a process known as de novo gene emergence. Evidence suggests that this process has likely occurred throughout evolution and across the tree of life. Yet, confidently identifying de novo emerged genes remains challenging. Ancestral Sequence Reconstruction (ASR) is a promising approach for inferring whether a gene has emerged de novo or not, as it can enable us to inspect whether a given genomic locus ancestrally harbored protein-coding capacity. However, the use of ASR in the context of de novo emergence is still in its infancy and its capabilities, limitations, and overall potential are largely unknown. Notably, it is difficult to formally evaluate the protein-coding capacity of ancestral sequences, particularly when new gene candidates are short. How well-suited is ASR as a tool for the detection and study of de novo genes? Here, we address this question by designing an ASR workflow incorporating different tools and sets of parameters and by introducing a formal criterion that allows to estimate, within a desired level of confidence, when protein-coding capacity originated at a particular locus. Applying this workflow on ∼2,600 short, annotated budding yeast genes (<1,000 nucleotides), we found that ASR robustly predicts an ancient origin for most widely conserved genes, which constitute "easy" cases. For less robust cases, we calculated a randomization-based empirical P-value estimating whether the observed conservation between the extant and ancestral reading frame could be attributed to chance. This formal criterion allowed us to pinpoint a branch of origin for most of the less robust cases, identifying 49 genes that can unequivocally be considered de novo originated since the split of the Saccharomyces genus, including 37 S. cerevisiae-specific genes. We find that for the remaining equivocal cases, we cannot rule out different evolutionary scenarios including rapid evolution and multiple losses, or a recent de novo origin. Overall, our findings suggest that ASR is a valuable tool to study de novo gene emergence but should be applied with caution and awareness of its limitations.

4.
J Fish Biol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007200

RESUMEN

The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.

5.
Animals (Basel) ; 14(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38997956

RESUMEN

Inbreeding is unavoidable in small populations. However, the deleterious effects of inbreeding on fitness-related traits (inbreeding depression) may not be an inevitable phenomenon, since deleterious recessive alleles causing inbreeding depression might be purged from populations through inbreeding and selection. Inbreeding purging has been of great interest in conservation biology and animal breeding, because populations manifesting lower inbreeding depression could be created even with a small number of breeding animals, if inbreeding purging exists. To date, many studies intending to detect inbreeding purging in captive and domesticated animal populations have been carried out using pedigree analysis. Ballou's ancestral inbreeding coefficient (FBAL-ANC) is one of the most widely used measurements to detect inbreeding purging, but the theoretical basis for FBAL-ANC has not been fully established. In most of the published works, estimates from stochastic simulation (gene-dropping simulation) have been used. In this report, the author provides a mathematical basis for FBAL-ANC and proposes a new estimate by hybridizing stochastic and deterministic computation processes. A stochastic simulation suggests that the proposed method could considerably reduce the variance of estimates, compared to ordinary gene-dropping simulation, in which whole gene transmissions in a pedigree are stochastically determined. The favorable property of the proposed method results from the bypass of a part of the stochastic process in the ordinary gene-dropping simulation. Using the proposed method, the reliability of the estimates of FBAL-ANC could be remarkably enhanced. The relationship between FBAL-ANC and other pedigree-based parameters is also discussed.

6.
Mol Phylogenet Evol ; 199: 108147, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986755

RESUMEN

Parasitengona (velvet mites, chiggers and water mites) is a highly diverse and globally distributed mite lineage encompassing over 11,000 described species, inhabiting terrestrial, freshwater and marine habitats. Certain species, such as chiggers (Trombiculidae), have a great medical and veterinary importance as they feed on their vertebrate hosts and vector pathogens. Despite extensive previous research, the classification of Parasitengona is still contentious, particularly regarding the boundaries between superfamilies and families, exacerbated by the absence of a comprehensive phylogeny. The ontogeny of most Parasitengona is distinct by the presence of striking metamorphosis, with parasitic larvae being heteromorphic compared to the predatory free-living deutonymphs and adults. The enigmatic superfamily Allotanaupodoidea is an exception, with larvae and active post-larval stages being morphologically similar, suggesting that the absence of metamorphosis may be either an ancestral state or a secondary reversal. Furthermore, there is disagreement in the literature on whether Parasitengona had freshwater or terrestrial origin. Here, we inferred phylogenetic relationships of Parasitengona (89 species, 36 families) and 307 outgroups using five genes (7,838 nt aligned). This phylogeny suggests a terrestrial origin of Parasitengona and a secondary loss of metamorphosis in Allotanaoupodoidea. We recovered the superfamily Trombidioidea (Trombidioidea sensu lato) as a large, well-supported, higher-level clade including 10 sampled families. We propose a new classification for the terrestrial Parasitengona with three new major divisions (epifamilies) of the superfamily Trombidioidea: Trombelloidae (families Audyanidae, Trombellidae, Neotrombidiidae, Johnstonianidae, Chyzeriidae); Trombidioidae (Microtrombidiidae, Neothrombiidae, Achaemenothrombiidae, Trombidiidae, Podothrombiidae); and Trombiculoidae (=Trombiculidae sensu lato). Adding them to previously recognized superfamilies Allotanaupodoidea, Amphotrombioidea, Calyptostomatoidea, Erythraeoidea, Tanaupodoidae and Yurebilloidae.

7.
Alzheimers Dement ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39030740

RESUMEN

The under-representation of non-European cohorts in neurodegenerative disease genome-wide association studies (GWAS) hampers precision medicine efforts. Despite the inherent genetic and phenotypic diversity in these diseases, GWAS research consistently exhibits a disproportionate emphasis on participants of European ancestry. This study reviews GWAS up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. We conducted a systematic review of GWAS results and publications up to 2022, focusing on non-European or multi-ancestry neurodegeneration studies. Rigorous article inclusion and quality assessment methods were employed. Of 123 neurodegenerative disease (NDD) GWAS reviewed, 82% predominantly featured European ancestry participants. A single European study identified over 90 risk loci, compared to a total of 50 novel loci in identified in all non-European or multi-ancestry studies. Notably, only six of the loci have been replicated. The significant under-representation of non-European ancestries in NDD GWAS hinders comprehensive genetic understanding. Prioritizing genomic diversity in future research is crucial for advancing NDD therapies and understanding. HIGHLIGHTS: Eighty-two percent of neurodegenerative genome-wide association studies (GWAS) focus on Europeans. Only 6 of 50 novel neurodegenerative disease (NDD) genetic loci have been replicated. Lack of diversity significantly hampers understanding of NDDs. Increasing diversity in NDD genetic research is urgently required. New initiatives are aiming to enhance diversity in NDD research.

8.
J Exp Bot ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066622

RESUMEN

Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, suggesting that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.

9.
Methods Mol Biol ; 2833: 121-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38949706

RESUMEN

Going back in time through a phylogenetic tree makes it possible to evaluate ancestral genomes and assess their potential to acquire key polymorphisms of interest over evolutionary time. Knowledge of this kind may allow for the emergence of key traits to be predicted and pre-empted from currently circulating strains in the future. Here, we present a novel genome-wide survival analysis and use the emergence of drug resistance in Mycobacterium tuberculosis as an example to demonstrate the potential and utility of the technique.


Asunto(s)
Mycobacterium tuberculosis , Filogenia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Genoma Bacteriano , Humanos , Evolución Molecular , Farmacorresistencia Bacteriana/genética , Tuberculosis/microbiología , Tuberculosis/genética
10.
Proc Natl Acad Sci U S A ; 121(30): e2319628121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012821

RESUMEN

Heterotrophic protists are vital in Earth's ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes' evolutionary history and ecological significance in Earth's ecosystems, using testate amoebae as a proxy.


Asunto(s)
Ecosistema , Fósiles , Procesos Heterotróficos , Filogenia , Biodiversidad , Evolución Biológica , Amebozoos/genética , Amebozoos/clasificación , Amoeba/genética , Amoeba/clasificación , Amoeba/fisiología , Eucariontes/genética , Eucariontes/clasificación
11.
Genetics ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013109

RESUMEN

As a result of recombination, adjacent nucleotides can have different paths of genetic inheritance and therefore the genealogical trees for a sample of DNA sequences vary along the genome. The structure capturing the details of these intricately interwoven paths of inheritance is referred to as an ancestral recombination graph (ARG). Classical formalisms have focused on mapping coalescence and recombination events to the nodes in an ARG. However, this approach is out of step with some modern developments, which do not represent genetic inheritance in terms of these events or explicitly infer them. We present a simple formalism that defines an ARG in terms of specific genomes and their intervals of genetic inheritance, and show how it generalizes these classical treatments and encompasses the outputs of recent methods. We discuss nuances arising from this more general structure, and argue that it forms an appropriate basis for a software standard in this rapidly growing field.

12.
ISME J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073917

RESUMEN

Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin-Benson-Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophic, neither its genome nor Acidimicrobiia metagenome-assembled genomes (MAGs) from the enrichment culture encode genes necessary for the CBB cycle. Instead, genomic, transcriptomic, enzymatic, and stable-isotope probing data hinted at the activity of the reversed oxidative TCA (roTCA) coupled with the oxidation of sulfide as the electron donor. Phylogenetic analysis and ancestral character reconstructions of Acidimicrobiia suggested that the essential CBB gene rbcL was acquired through multiple horizontal gene transfer events from diverse microbial taxa. In contrast, genes responsible for sulfide- or hydrogen-dependent roTCA carbon fixation were already present in the last common ancestor of extant Acidimicrobiia. These findings imply the possibility of roTCA carbon fixation in Acidimicrobiia and the ecological importance of Acidimicrobiia. Further research in the future is necessary to confirm whether these characteristics are truly widespread across the clade.

13.
Angew Chem Int Ed Engl ; : e202409746, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073275

RESUMEN

Non-natural building blocks (BBs) present a vast reservoir of chemical diversity for molecular recognition and drug discovery. However, leveraging evolutionary principles to efficiently generate bioactive molecules with a larger number of diverse BBs poses challenges within current laboratory evolution systems. Here, we introduce programmable chemical evolution (PCEvo) by integrating chemoinformatic classification and high-throughput array synthesis/screening. PCEvo initiates evolution by constructing a diversely combinatorial library to create ancestral molecules, streamlines the molecular evolution process and identifies high-affinity binders within 2-4 cycles. By employing PCEvo with 108 BBs and exploring >10^17 chemical space, we identify bicyclic peptidomimetic binders against targets SAR-CoV-2 RBD and Claudin18.2, achieving nanomolar affinity. Remarkably, Claudin18.2 binders selectively stain gastric adenocarcinoma cell lines and patient samples. PCEvo achieves expedited evolution in a few rounds, marking a significant advance in utilizing non-natural building blocks for rapid chemical evolution applicable to targets with or without prior structural information and ligand preference.

14.
R Soc Open Sci ; 11(5): 240233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076823

RESUMEN

The Triassic radiation of vertebrates saw the emergence of the modern vertebrate groups, as well as numerous extinct animals exhibiting conspicuous, unique anatomical characteristics. Among these, members of Tanystropheidae (Reptilia: Archosauromorpha) displayed cervical vertebral elongation to an extent unparalleled in any other vertebrate. Tanystropheids were exceptionally ecologically diverse and had a wide spatial and temporal distribution. This may have been related to their neck anatomy, yet its evolution and functional properties remain poorly understood. We used geometric morphometrics to capture the intraspecific variation between the vertebrae comprising the cervical column among early archosauromorphs, to trace the evolutionary history of neck elongation in these animals. Our results show that the cervical series of these reptiles can be divided into modules corresponding to those of extant animals. Tanystropheids achieved neck elongation through somite elongation and a shift between cervical and thoracic regions, without presacral vertebrae count increase-contrary to crown archosaurs. This suggests a peculiar developmental constraint that strongly affected the evolution of tanystropheids. The data obtained just at the base of the archosauromorph phylogenetic tree are crucial for further studies on the modularity of vertebral columns of not only Triassic reptile groups but extant and other extinct animals as well.

15.
BMC Genomics ; 25(1): 599, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877397

RESUMEN

BACKGROUND: Tubulins play crucial roles in numerous fundamental processes of plant development. In flowering plants, tubulins are grouped into α-, ß- and γ-subfamilies, while α- and ß-tubulins possess a large isotype diversity and gene number variations among different species. This circumstance leads to insufficient recognition of orthologous isotypes and significantly complicates extrapolation of obtained experimental results, and brings difficulties for the identification of particular tubulin isotype function. The aim of this research is to identify and characterize tubulins of an emerging biofuel crop Camelina sativa. RESULTS: We report comprehensive identification and characterization of tubulin gene family in C. sativa, including analyses of exon-intron organization, duplicated genes comparison, proper isotype designation, phylogenetic analysis, and expression patterns in different tissues. 17 α-, 34 ß- and 6 γ-tubulin genes were identified and assigned to a particular isotype. Recognition of orthologous tubulin isotypes was cross-referred, involving data of phylogeny, synteny analyses and genes allocation on reconstructed genomic blocks of Ancestral Crucifer Karyotype. An investigation of expression patterns of tubulin homeologs revealed the predominant role of N6 (A) and N7 (B) subgenomes in tubulin expression at various developmental stages, contrarily to general the dominance of transcripts of H7 (C) subgenome. CONCLUSIONS: For the first time a complete set of tubulin gene family members was identified and characterized for allohexaploid C. sativa species. The study demonstrates the comprehensive approach of precise inferring gene orthology. The applied technique allowed not only identifying C. sativa tubulin orthologs in model Arabidopsis species and tracking tubulin gene evolution, but also uncovered that A. thaliana is missing orthologs for several particular isotypes of α- and ß-tubulins.


Asunto(s)
Evolución Molecular , Genoma de Planta , Familia de Multigenes , Filogenia , Tubulina (Proteína) , Tubulina (Proteína)/genética , Brassicaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenía , Regulación de la Expresión Génica de las Plantas , Duplicación de Gen , Intrones/genética , Exones/genética
16.
Curr Res Food Sci ; 8: 100768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860264

RESUMEN

This work compares the ancestral method for elaborating sparkling wines with the most widely used traditional method. Ancestral method is a single fermentation procedure in which the fermenting grape must is bottled before the end of alcoholic fermentation whereas traditional method involves a second fermentation of a base wine inside a bottle. Macabeo grapes were used to elaborate a traditional sparkling wine and two ancestral sparkling wines, one with a low yeast population and one with a high yeast population. The findings indicate that ancestral sparkling wines have lower ethanol content and can be elaborated using lower sulphur dioxide levels. In general, ancestral sparkling wines showed similar protein concentration, higher polysaccharide content, similar or better foamability (HM) than the traditional sparkling wine., No differences were found in the foam stability (HS). In addition, the sensory analysis indicated that ancestral sparkling wines have smaller bubble size, lower CO2 aggressivity, they seemed to have longer ageing time and were scored better than the traditional sparkling wine. These results therefore indicate that the ancestral method is of great interest for the elaboration of high-quality sparkling wines.

17.
Econ Hum Biol ; 54: 101410, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38908266

RESUMEN

This paper studies the potential link between the biological evolution of populations and present-day economic interactions by estimating the correlation of shared ancestry among populations with cross-border capital and human flows. To this end, we employ the new concept of genetic distance, based on (dis)similarity of neutral gene alleles, to quantify shared ancestry. We then incorporate the genetic distance measure into an augmented gravity model, traditionally used to analyze the effect of geographical distance on bilateral exchange. Our analysis focuses on bilateral foreign direct investment (FDI) and migration across 135 countries and we use both linear regression techniques as well as the Poisson Pseudo-Maximum Likelihood Estimator to account for any non-linearities in the model. Our results show that a 1% increase in genetic distance reduces FDI flows by 0.08% while controlling for other distance constructs and factors associated with global capital and human movement. Genetic distance also has a negative effect on migration, where a 1% increase in genetic distance reduces migration flows by 0.22%, with all other things remaining constant. Our study, therefore, links shared ancestry with economic behavior, showing how historical connections are associated with current economic exchanges among nations. Additionally, recognizing that ancestral ties are outside human control, we examine policy measures that help nations overcome such distance barriers. Our findings show that strengthening a nation's institutional quality and adherence to the rule of law can effectively mitigate any negative correlation of distance constructs with economic exchanges. These insights suggest that prudent policies to foster a stable business environment are essential for any nation to attract FDI and human capital, even from geographically or genetically distant nations.

18.
Genes (Basel) ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927678

RESUMEN

The Old-World quails, Coturnix coturnix (common quail) and Coturnix japonica (Japanese quail), are morphologically similar yet occupy distinct geographic ranges. This study aimed to elucidate their evolutionary trajectory and ancestral distribution patterns through a thorough analysis of their mitochondrial genomes. Mitogenomic analysis revealed high structural conservation, identical translational mechanisms, and similar evolutionary pressures in both species. Selection analysis revealed significant evidence of positive selection across the Coturnix lineage for the nad4 gene tree owing to environmental changes and acclimatization requirements during its evolutionary history. Divergence time estimations imply that diversification among Coturnix species occurred in the mid-Miocene (13.89 Ma), and their current distributions were primarily shaped by dispersal rather than global vicariance events. Phylogenetic analysis indicates a close relationship between C. coturnix and C. japonica, with divergence estimated at 2.25 Ma during the Pleistocene epoch. Ancestral range reconstructions indicate that the ancestors of the Coturnix clade were distributed over the Oriental region. C. coturnix subsequently dispersed to Eurasia and Africa, and C. japonica to eastern Asia. We hypothesize that the current geographic distributions of C. coturnix and C. japonica result from their unique dispersal strategies, developed to evade interspecific territoriality and influenced by the Tibetan Plateau's geographic constraints. This study advances our understanding of the biogeographic and evolutionary processes leading to the diversification of C. coturnix and C. japonica, laying important groundwork for further research on this genus.


Asunto(s)
Coturnix , Evolución Molecular , Genoma Mitocondrial , Filogenia , Animales , Coturnix/genética , Selección Genética , Filogeografía
19.
Trends Biochem Sci ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880687

RESUMEN

The dynamics behavior of a protein is essential for its functionality. Here, Doucet et al. demonstrate how the evolutionary analysis of conformational pathways within a protein family serves to identify common core scaffolds that accommodate branch-specific functional regions controlled by flexibility switches, offering a model for evolutionary-dynamics based protein design.

20.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913681

RESUMEN

Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family has gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamics simulations, we found that the thermal stability of these enzymes correlates with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.


Asunto(s)
Evolución Molecular , Simulación de Dinámica Molecular , Estabilidad Proteica , Cristalografía por Rayos X , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Estabilidad de Enzimas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA