Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Mol Med Rep ; 30(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39129298

RESUMEN

Subsequently to the publication of the above paper, the authors drew to the attention of the Editorial Office that they had assembled the data shown for the cell migration assay experiments in Fig. 4F (on p. 8), incorrectly; essentially, the 'Control' data panel had inadvertently been copied across for the '10 µg/ml' data panel. The revised version of Fig. 4, showing the correct data panel for the '10 µg/ml' experiment in Fig. 4F,  is shown on the next page. Note that the replacement of the erroneous data does not affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this Corrigendum. The authors are grateful to the Editor of Molecular Medicine Reports for granting them this opportunity to publish a Corrigendum, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 27: 88, 2023; DOI: 10.3892/mmr.2023.12975].

2.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39204111

RESUMEN

Sea anemones are an important source of bioactive compounds with potential pharmacological applications. Their toxins are produced and stored in organelles called nematocysts and act on specific targets, including voltage-gated ion channels. To date, sea anemone toxins have demonstrated effects on voltage-gated sodium and potassium channels, facilitating investigations into the structure and function of these proteins. In this study, we evaluated the effect of Bunodeopsis globulifera sea anemone crude extract, and of a low molecular weight fraction, on voltage-gated sodium and calcium channels within the murine nervous system. Notably, the crude extract led to a significant reduction in total sodium current, while also triggering calcium-dependent glutamate release. Furthermore, the low molecular weight fraction, in particular, enhanced total calcium currents and current density. These findings underscore the existence of sea anemone toxins with diverse mechanisms of action beyond those previously documented.

3.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38980277

RESUMEN

Many animals share a lifelong capacity to adapt their growth rates and body sizes to changing environmental food supplies. However, the cellular and molecular basis underlying this plasticity remains only poorly understood. We therefore studied how the sea anemones Nematostella vectensis and Aiptasia (Exaiptasia pallida) respond to feeding and starvation. Combining quantifications of body size and cell numbers with mathematical modelling, we observed that growth and shrinkage rates in Nematostella are exponential, stereotypic and accompanied by dramatic changes in cell numbers. Notably, shrinkage rates, but not growth rates, are independent of body size. In the facultatively symbiotic Aiptasia, we show that growth and cell proliferation rates are dependent on the symbiotic state. On a cellular level, we found that >7% of all cells in Nematostella juveniles reversibly shift between S/G2/M and G1/G0 cell cycle phases when fed or starved, respectively. Furthermore, we demonstrate that polyp growth and cell proliferation are dependent on TOR signalling during feeding. Altogether, we provide a benchmark and resource for further investigating the nutritional regulation of body plasticity on multiple scales using the genetic toolkit available for Nematostella.


Asunto(s)
Tamaño Corporal , Proliferación Celular , Anémonas de Mar , Animales , Anémonas de Mar/citología , Anémonas de Mar/fisiología , Ciclo Celular/fisiología , Conducta Alimentaria/fisiología , Transducción de Señal , Simbiosis , Serina-Treonina Quinasas TOR/metabolismo
4.
Phytochemistry ; 226: 114217, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38972442

RESUMEN

Anemone vitifolia is a small herb found in Asia that is used to treat a range of diseases in Chinese traditional medicine. GNPS-based molecular networking of an Anemone vitifolia specimen revealed the presence of a network containing numerous ions indicating the presence of lignans, several of which suggested that there might be previously undescribed compounds in the extract. Fractionation of the organic extract yielded five undescribed lignans, the vitifolignans, together with one known. The structures were identified based on extensive spectroscopic data analysis (NMR, HR-ESI-MS, and UV), coupling constant calculation and comparison with reported data. Their absolute configurations were determined by comparison of experimental ECD spectra with calculated spectra. Compounds 4/5 showed weak inhibition of LPS-induced NO production in mouse mononuclear macrophages.


Asunto(s)
Anemone , Lignanos , Lipopolisacáridos , Óxido Nítrico , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/farmacología , Animales , Ratones , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Anemone/química , Estructura Molecular , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Furanos/química , Furanos/aislamiento & purificación , Furanos/farmacología
5.
Nat Prod Res ; : 1-8, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824422

RESUMEN

Regenerative effects of sea anemone-derived exosomes on human foreskin fibroblasts (HFFs) were investigated. Water-based extracts from regenerating Aulactinia stella tissue were collected at various time points, and exosomes were extracted after inducing wounds. Both the extract and exosomes were tested on HFF for proliferation and in vitro wound healing. In silico analysis explored protein-protein docking between regenerative exosome proteins and HFF receptors. The MTT (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide proliferation assay and in vitro wound healing test of aquatic extract showed proliferative effects on HFF cell lines, with the 60 µg/mL concentration significantly enhancing cell migration. Exosomes were characterised. Exosomes showed a significantly positive effect on cell proliferation and migration at the 50 µg/mL concentration 48 h post-wound induction. In silico analysis revealed potential binding affinities between exosome proteins and HFF receptors. In conclusion, optimised concentrations of A. stella-derived exosomes exhibited positive effects on HFF regeneration and migration, suggesting their potential in accelerating wound healing.

6.
J Fish Biol ; 105(2): 603-618, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38747400

RESUMEN

Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.


Asunto(s)
Moco , Perciformes , Anémonas de Mar , Simbiosis , Animales , Anémonas de Mar/fisiología , Perciformes/fisiología , Moco/química , Moco/fisiología , Piel/metabolismo , Aclimatación , Proteínas de Peces/metabolismo
7.
Clin Imaging ; 111: 110151, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754178

RESUMEN

The sea anemone sign is a radiologic sign seen on magnetic resonance imaging (MRI) studies that indicates the morphological development of serous borderline ovarian tumors (SBOTs), as papillary projections originating from the wall of the cystic lesion. The presence of T2 hypointense fibrous stroma in the center of the papilla is a helpful tip in the diagnosis of SBOTs. Those projections might also be assumed to have a frond-like appearance which can be seen as branching papillary projections, especially on T2-weighted imaging. The term "sea anemone" sign is described by Tanaka et al. who deemed it as a "hallmark" feature of surface SBOTs.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Imagen por Resonancia Magnética/métodos , Adulto , Persona de Mediana Edad
8.
Ecol Evol ; 14(4): e11222, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628921

RESUMEN

In nearly all animals, light-sensing mediated by opsin visual pigments is important for survival and reproduction. Eyeless light-sensing systems, though vital for many animals, have received relatively less attention than forms with charismatic or complex eyes. Despite no single light-sensing organ, the sea anemone Nematostella vectensis has 29 opsin genes and multiple light-mediated behaviors throughout development and reproduction, suggesting a deceptively complex light-sensing system. To characterize one aspect of this light-sensing system, we analyzed larval swimming behavior at high wavelength resolution across the ultraviolet and visual spectrum. N. vectensis larvae respond to light at least from 315 to 650 nm, which is a broad sensitivity range even compared to many animals with complex eyes. Planktonic swimming is induced by ultraviolet (UV) and violet wavelengths until 420 nm. Between 420 and 430 nm a behavioral switch occurs where at wavelengths longer than 430 nm, larvae respond to light by swimming down. Swimming down toward the substrate is distinct from light avoidance, as animals do not exhibit positive or negative phototaxis at any wavelength tested. At wavelengths longer than 575 nm, animals in the water column take increasingly longer to respond and this behavior is more variable until 650 nm where larval response is no different from the dark, suggesting these longer wavelengths lie outside of their sensitivity range. Larval swimming is the only motile stage in the life history of N. vectensis, and increased planktonic swimming could lead to greater dispersal range in potentially damaging shallow environments with short-wavelength light exposure. Longer wavelength environments may indicate more suitable substrates for metamorphosis into the polyp stage, where the individual will remain for the rest of its life. Future work will test whether this robust behavior is mediated by multiple opsins.

9.
Mar Pollut Bull ; 202: 116352, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604080

RESUMEN

Artificial light at night (ALAN) is becoming a widespread stressor in coastal ecosystems, affecting species that rely on natural day/night cycles. Yet, studies examining ALAN effects remain limited, particularly in the case of sessile species. This study assessed the effects of ALAN upon the feeding activity and two molecular indicators in the widespread plumose sea anemone Metridium senile. Anemones were exposed to either natural day/night or ALAN conditions to monitor feeding activity, and tissue samples were collected to quantify proteins and superoxide dismutase (SOD) enzyme concentrations. In day/night conditions, sea anemones showed a circadian rhythm of activity in which feeding occurs primarily at night. This rhythm was altered by ALAN, which turned it into a reduced and more uniform pattern of feeding. Consistently, proteins and SOD concentrations were significantly lower in anemones exposed to ALAN, suggesting that ALAN can be harmful to sea anemones and potentially other marine sessile species.


Asunto(s)
Luz , Anémonas de Mar , Superóxido Dismutasa , Animales , Anémonas de Mar/fisiología , Superóxido Dismutasa/metabolismo , Conducta Alimentaria , Ritmo Circadiano
10.
Mar Drugs ; 22(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38535452

RESUMEN

Sea anemone venom, abundant in protein and peptide toxins, serves primarily for predatory defense and competition. This study delves into the insulin-like peptides (ILPs) present in sea anemones, particularly focusing on their role in potentially inducing hypoglycemic shock in prey. We identified five distinct ILPs in Exaiptasia diaphana, exhibiting varied sequences. Among these, ILP-Ap04 was successfully synthesized using solid phase peptide synthesis (SPPS) to evaluate its hypoglycemic activity. When tested in zebrafish, ILP-Ap04 significantly reduced blood glucose levels in a model of diabetes induced by streptozotocin (STZ) and glucose, concurrently affecting the normal locomotor behavior of zebrafish larvae. Furthermore, molecular docking studies revealed ILP-Ap04's unique interaction with the human insulin receptor, characterized by a detailed hydrogen-bonding network, which supports a unique mechanism for its hypoglycemic effects. Our findings suggest that sea anemones have evolved sophisticated strategies to activate insulin receptors in vertebrates, providing innovative insights into the design of novel drugs for the treatment of diabetes.


Asunto(s)
Venenos de Cnidarios , Diabetes Mellitus , Anémonas de Mar , Humanos , Animales , Insulina , Hipoglucemiantes , Pez Cebra , Simulación del Acoplamiento Molecular , Péptidos Similares a la Insulina
11.
Mar Drugs ; 22(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535477

RESUMEN

Recent studies have elucidated the diversity of genes encoding venom in Sea anemones. However, most of those genes are yet to be explored in an evolutionary context. Insulin is a common peptide across metazoans and has been coopted into a predatory venom in many venomous lineages. In this study, we focus on the diversity of insulin-derived venoms in Sea anemones and on elucidating their evolutionary history. We sourced data for 34 species of Sea anemones and found sequences belonging to two venom families which have Insulin PFAM annotations. Our findings show that both families have undergone duplication events. Members of each of the independently evolving clades have consistent predicted protein structures and distinct dN/dS values. Our work also shows that sequences allied with VP302 are part of a multidomain venom contig and have experienced a secondary gain into the venom system of cuticulate Sea anemones.


Asunto(s)
Insulina , Anémonas de Mar , Humanos , Animales , Conducta Predatoria
12.
Eur Heart J Case Rep ; 8(3): ytae095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38449781

RESUMEN

Background: Optical coherence tomography (OCT) can be used to characterize the details of calcified plaques because it allows high-resolution evaluation of coronary plaques, thrombi, and calcium. Case summary: A 72-year-old man on haemodialysis who had stenosis with a severe calcified lesion at the left anterior descending artery underwent percutaneous coronary intervention. Pre-intervention OCT imaging identified a nodular calcification (NC) that protruded into the lumen of the left anterior descending artery. To treat this lesion, we performed orbital atherectomy using the Diamondback 360 coronary orbital atherectomy system. After ablation of the nodular lesions at low and high speed, OCT showed newly emerged granular and filamentous structures that resembled sea anemone tentacles (these represented calcified nodule-like OCT findings). These structures appeared to extend from the proximal part of the ablated small NC, and shifted distally after balloon dilatation. Stent implantation was performed to entirely cover these structures, with no resulting complications. However, early in-stent restenosis occurred at 4 months follow-up. Discussion: A tentacle-like OCT appearance in calcified lesions has not been previously reported. This represents a very rare and interesting imaging finding that reflects the relationship and origins of NCs and calcified nodules. The maturity of the NC lesions and the lateral sanding style of the orbital atherectomy system may have contributed to this striking OCT finding.

13.
Environ Sci Pollut Res Int ; 31(17): 26036-26051, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491242

RESUMEN

Bunodosoma zamponii is the most abundant anemone in Mar del Plata (Buenos Aires, Argentina). Given that the presence of persistent organic pollutants (organochlorine pesticides and PCBs) and the organophosphate pesticide chlorpyrifos has recently been reported in this species, two wild populations living under different anthropogenic pressures were studied and compared regarding basic aspects of their ecology and physiological response to oxidative stress. A population from an impacted site (Las Delicias, LD) and another from a reference site (Punta Cantera, PC) were monitored seasonally (spring, summer, autumn, and winter), for one year. Anemones from PC were larger and more abundant than those from LD for most sampling periods. During winter, glutathione-S-transferase and catalase activities were higher in LD. Moreover, protein content and antioxidant defenses were higher in anemones from PC during winter as well. Taking into account their ecology (size and abundance) and biomarker responses, the population from PC was comparatively healthier. Furthermore, such differences are in agreement with recent studies indicating a higher concentration of pollutants in anemones from LD (specially during the winter sampling). In this sense, considering that B. zamponii can bioaccumulate the aforementioned pollutants, its resilience to their presence, and the fact that biomarker response differed between sites, this species can be regarded as a proper sentinel species of environmental pollution. Overall, this anemone seems to be a good bioindicator to be considered in future biomonitoring and ecotoxicological studies.


Asunto(s)
Contaminantes Ambientales , Anémonas de Mar , Animales , Anémonas de Mar/metabolismo , Efectos Antropogénicos , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Monitoreo del Ambiente
14.
Mar Pollut Bull ; 202: 116240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522134

RESUMEN

Samples of Anemonia sulcata were collected in 2022 from different areas of the Canary Islands affected by different natural contamination sources, such sandstorms, submarine volcanic activity, continuous rainfall, upwelling and dinoflagellate blooms. Significant differences were observed between the zones for the metals and trace elements analyzed (Al, Zn, Cd, Pb, Ni, Co, Fe, B, Cu, Mg and Li). Anemones from volcanic areas showed higher levels of Cd, Pb and Ni. Individuals from sandstorm areas showed elevated levels of Al, Zn and Fe. Samples collected from areas affected by upwelling processes had higher concentrations of Cu, Mg and Li. Finally, the areas affected by dinoflagellates showed lower levels of Zn, Pb, Fe, Mg and Li. The study reveals how natural phenomena dramatically influence metal accumulation in A. sulcata, which is of great value for anticipating and managing potential problems associated with public health.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Metales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Animales , Metales/análisis , Metales/metabolismo , Anémonas de Mar , Dinoflagelados , España , Metales Pesados/análisis
15.
Mar Pollut Bull ; 200: 116120, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335636

RESUMEN

In this study, we investigated metal concentrations in Anemonia sulcata specimens from various locations in the Atlantic Ocean and the Mediterranean Sea. A total of 84 individuals were sampled from specific zones, and their tissue samples were processed for metal analysis using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The results revealed notable differences in metal concentrations among the studied regions. The Atlantic Ocean and the Mediterranean Sea were found to have distinct patterns of marine pollution, influenced by a complex interplay of geographical, demographic, industrial, and environmental policy factors. Conversely, the semi-enclosed Mediterranean Sea has a lower natural dilution capacity, leading to the accumulation and prolonged presence of pollutants. Population density and industrial activities in coastal areas play a significant role in pollution disparities between the Mediterranean Sea and the Atlantic Ocean. The Mediterranean coasts, with higher population densities and intensive industrial operations, experience greater strain on marine ecosystems due to increased pollution sources. Additionally, environmental policies and management approaches differ between the two regions, contributing to variations in pollution response and regulation.


Asunto(s)
Ecosistema , Metales , Humanos , Mar Mediterráneo , Océano Atlántico , Contaminación Ambiental , Monitoreo del Ambiente
16.
Toxins (Basel) ; 16(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38393163

RESUMEN

While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.


Asunto(s)
Anémonas de Mar , Toxinas Biológicas , Animales , Anémonas de Mar/genética , Ponzoñas/genética , Toxinas Biológicas/genética , Transcriptoma , ARN
17.
Mar Drugs ; 22(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38393042

RESUMEN

The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Toxinas Biológicas , Animales , Ponzoñas/metabolismo , Anémonas de Mar/metabolismo , Proteómica/métodos , Péptidos/genética , Péptidos/metabolismo , Venenos de Cnidarios/química
18.
Proteins ; 92(2): 192-205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794633

RESUMEN

Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/química , Péptidos/farmacología , Péptidos/química , Canales de Potasio/metabolismo , Simulación de Dinámica Molecular , Relación Estructura-Actividad
19.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140952, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37640250

RESUMEN

Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N-labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch-clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.


Asunto(s)
Anémonas de Mar , Animales , Humanos , Anémonas de Mar/química , Proteómica , Drosophila melanogaster/metabolismo , Australia , Péptidos/química , Disulfuros , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 326(1): H89-H95, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947435

RESUMEN

Long QT syndrome (LQTS) type 3 although less common than the first two forms, differs in that arrhythmic events are less likely triggered by adrenergic stimuli and are more often lethal. Effective pharmacological treatment is challenged by interindividual differences, mutation dependence, and adverse effects, translating into an increased use of invasive measures (implantable cardioverter-defibrillator, sympathetic denervation) in patients with LQTS type 3. Previous studies have demonstrated the therapeutic potential of polyclonal KCNQ1 antibody for LQTS type 2. Here, we sought to identify a monoclonal KCNQ1 antibody that preserves the electrophysiological properties of the polyclonal form. Using hybridoma technology, murine monoclonal antibodies were generated, and patch clamp studies were performed for functional characterization. We identified a monoclonal KCNQ1 antibody able to normalize cardiac action potential duration and to suppress arrhythmias in a pharmacological model of LQTS type 3 using human-induced pluripotent stem cell-derived cardiomyocytes.NEW & NOTEWORTHY Long QT syndrome is a leading cause of sudden cardiac death in the young. Recent research has highlighted KCNQ1 antibody therapy as a new treatment modality for long QT syndrome type 2. Here, we developed a monoclonal KCNQ1 antibody that similarly restores cardiac repolarization. Moreover, the identified monoclonal KCNQ1 antibody suppresses arrhythmias in a cellular model of long QT syndrome type 3, holding promise as a first-in-class antiarrhythmic immunotherapy.


Asunto(s)
Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Humanos , Ratones , Animales , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/tratamiento farmacológico , Arritmias Cardíacas , Miocitos Cardíacos , Inmunoterapia , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA