Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.713
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119813, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142522

RESUMEN

INTRODUCTION: Angiogenesis is closely related to renal fibrosis; however, its basic mechanism remains unclear. In our study, we found that nuclear receptor 4A1 (NR4A1) inhibits vascular endothelial growth factor A (VEGFA)-induced angiogenesis, ameliorating renal fibrosis. METHODS: We prepared a renal fibrosis animal model with unilateral ureteral obstruction (UUO) and NR4A1 knockdown UUO mice model, Using Human umbilical vein endothelial cells (HUVECs) to conduct all in vitro experiments. We then detected and analyzed the expression levels of NR4A1 and other genes related to angiogenesis and fibrosis. RESULTS: The angiogenesis related genes, such as VEGFA, vascular endothelial growth factor receptor-2 (VEGFR-2), endoglin (CD105), as well as the expression of fibrosis related genes that included, α-smooth muscle actin (α-SMA), Vimentin, and Collagen I are all significantly increased in the UUO rat model. In addition, the expression of NR4A1 of the kidney tissue of UUO rats was significantly reduced. Therefore, according to the above results, we speculated that angiogenesis may exacerbate renal fibrosis and NR4A1 may repress renal fibrosis by inhibiting angiogenesis. To further verify the above results, we used VEGFA to stimulate HUVECs with (or without) overexpression or knockdown of NR4A1. The results showed that with prolonged stimulation using VEGFA, the expression of NR4A1 decreases. Overexpression of NR4A1 significantly inhibits the expression of related indicators of angiogenesis and renal fibrosis. Furthermore, knockdown of NR4A1 induces endothelial cell proliferation and migration; therefore, exacerbating angiogenesis and fibrosis. Finally, the results of NR4A1 knockdown UUO mice showed that knockdown of NR4A1 can aggravating kidney damage and induce the expression of angiogenesis and renal fibrosis related indicators, while UUO can significantly induce kidney damage, angiogenesis and renal fibrosis. When knockdown of NR4A1, renal kidney damage, angiogenesis and fibrosis becomes more severe than UUO. Thus, all of these results indicate that NR4A1 can ameliorate renal fibrosis by inhibiting angiogenesis. CONCLUSIONS: NR4A1 can inhibit angiogenesis to ameliorate renal fibrosis.

2.
J Adv Res ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127098

RESUMEN

INTRODUCTION: Angiogenesis plays a significant role in the development of tumor progression and inflammatory diseases. The role of IL-28A in angiogenesis and its precise regulatory mechanisms remain rarely elucidated. OBJECTIVES: We report the novel regulatory role of IL-28A in physiological angiogenesis. The study aimed to elucidate the regulatory mechanisms involved in IL-28A-mediated angiogenesis and identify key genes associated with IL-28A-induced angiogenic responses. METHODS: To know the effect of IL-28A on angiogenesis, HUVECs were applied to perform proliferation, migration, invasion, tube formation, immunoblot, and EMSA. Gene expression changes in HUVECs following IL-28A treatment were analyzed by NGS. The functional role of HSP70-1 and IL-10Rß in IL-28A-induced angiogenic responses was evaluated using PCR and siRNA knockdown. Animal studies were conducted by aortic ring ex vivo assays, Matrigel plug in vivo assays, and immunochemistry using HSP70-1 knockout and transgenic mice models. The efficacy of IL-28A in angiogenesis was confirmed in a hind-limb ischemia model. RESULTS: Autocrine/paracrine actions in HUVECs regulated IL-28A protein expression. Exogenous IL-28A increased the proliferation of HUVECs via eNOS/AKT and ERK1/2 signaling. IL-28A treatment promoted migration, invasion, and capillary tube formation of HUVECs through induction of the AP-1/NF-κB/MMP-2 network, which was associated with eNOS/AKT and ERK1/2 signaling. The efficacy of IL-28A-induced angiogenic potential was confirmed by aortic ring and Matrigel plug assay. HSP70-1 was identified as an IL-28A-mediated angiogenic effector gene using bioinformatics. Knockdown of HSP70-1 abolished angiogenic responses and eNOS/AKT signaling in IL-28A-treated HUVECs. IL-28A-induced microvessel sprouting formation was testified in HSP70-1-deficient and HSP70-1 transgenic mice. Flow recovery in hind-limb ischemia mice was accelerated by IL-28A injection. Finally, ablation of the IL-10Rß gene impeded the angiogenic responses and eNOS/AKT signaling stimulated by IL-28A in HUVECs. CONCLUSION: HSP70-1 drives the progression of angiogenesis by the IL-28A/IL-10Rß axis via eNOS/AKT signaling and the AP-1/NF-κB/MMP-2 network.

3.
Eur J Pharmacol ; 981: 176883, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128809

RESUMEN

Glaucine is an aporphine alkaloid with anti-inflammatory, bronchodilator and anti-cancer activities. However, the effects of glaucine in the regulation of age-related macular degeneration (AMD) remain unclear. Herein, we aimed to investigate the anti-angiogenetic and anti-inflammatory effects of glaucine in ARPE-19 cells. ARPE-19 cells were treated with N-(methoxyoxoacetyl)-glycine, methyl ester (DMOG) and cobalt chloride (CoCl2) for induction of hypoxia, while lipopolysaccharide (LPS) treatment was used for elicitation of inflammatory response. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The expression of hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by Western blot. The secretion of VEGF, interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was detected using enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were used for tube formation analysis. Expression of HIF-1α and secretion of VEGF were significantly increased under DMOG and CoCl2 induction, whereas glaucine significantly attenuated both HIF-1α expression and VEGF secretion by DMOG- and CoCl2-induced ARPE-19 cells. In addition, glaucine suppressed the tube formation by DMOG- and CoCl2-induced HUVEC cells. Moreover, glaucine also attenuated the production of IL-6 and MCP-1 by LPS-induced ARPE-19 cells. This study indicated that glaucine exhibited anti-angiogenic and anti-inflammatory effects, suggesting that glaucine might have benefits for the treatment of AMD.

4.
Mol Med Rep ; 30(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39129298

RESUMEN

Subsequently to the publication of the above paper, the authors drew to the attention of the Editorial Office that they had assembled the data shown for the cell migration assay experiments in Fig. 4F (on p. 8), incorrectly; essentially, the 'Control' data panel had inadvertently been copied across for the '10 µg/ml' data panel. The revised version of Fig. 4, showing the correct data panel for the '10 µg/ml' experiment in Fig. 4F,  is shown on the next page. Note that the replacement of the erroneous data does not affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this Corrigendum. The authors are grateful to the Editor of Molecular Medicine Reports for granting them this opportunity to publish a Corrigendum, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 27: 88, 2023; DOI: 10.3892/mmr.2023.12975].

5.
Heliyon ; 10(12): e32311, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39183849

RESUMEN

Background: Traumatic injuries, surgery, and chronic diseases lead to soft tissue wounds. Stimulating normal wound healing (WH) is important for tissue repair and restoration of homeostasis. Lack of angiogenesis impedes wound healing and is noted in chronic wounds. The goal of this investigation was to thoroughly assess the present state and patterns of investigations on angiogenesis in WH by the use of bibliometric analysis. Methods: Studies examining angiogenesis and WH were sourced from the database of the Web of Science Core Collection. Only studies that fulfilled the inclusion criteria were chosen for the purpose of investigation. To analyze the publications included in this research, bibliometric and visual analysis techniques were applied utilizing tools like VOSviewer and CiteSpace. Results: For the analysis, 11,558 papers were considered. The number of publications increased annually from 2013 to 2023. China, the USA, and South Korea were the top nations in this subject, accounting for 41.1 %, 19.4 %, and 5.8 % of published articles, respectively. The author and institution with the greatest number of publications were found to be Chang J and Shanghai Jiao Tong University. PLOS One had the greatest publication count among journals, whereas Biomaterials had the greatest number of citations and was often mentioned in co-citations. Angiogenesis-related biomedical engineering and tissue engineering were the topics that received the most research attention. Recent studies have focused on vascular endothelial growth factor and carboxymethyl chitosan as emerging areas of interest. Conclusion: In this investigation, we compiled the features of publications and determined the most impactful nations, organizations, writers, periodicals, popular subjects, and patterns concerning the process of angiogenesis in the context of WH.

6.
Heliyon ; 10(12): e32692, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39183847

RESUMEN

Mounting evidence suggests that intraplaque angiogenesis is associated with the progression of atherosclerotic plaques and the development of intraplaque hemorrhage. The specificity of intraplaque immune cell infiltration may be associated with abnormalities in the structure and function of the nascent capillaries. Here, we analyzed expression levels of angiogenesis-associated genes in early and advanced carotid atheromatous plaque tissues as well as in stable and intraplaque hemorrhage plaques. Expression profiles of advanced arterial plaques based on angiogenesis-associated genes were classified into subtypes by performing a consensus clustering analysis. The correlation between the immune microenvironment of plaques and expression of angiogenesis-associated genes was also explored using the single sample gene set enrichment analysis method and the CIBERSORT algorithm. We identified hub angiogenesis-associated genes showing similar expression patterns throughout plaque adverse progression, and constructed a prediction model using the random forest algorithm. Receiver operating curves were constructed to evaluate efficacy in identification of intraplaque hemorrhage in a plaque. Our results suggest that heterogeneity of angiogenesis-related genes may promote the malignant development of plaques and cause plaque rupture. In conclusion, we propose a model based on expression of angiogenesis-related genes to predict the risk of plaque rupture.

7.
Exp Eye Res ; 247: 110051, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151775

RESUMEN

Mechanical stress regulates various biological processes in cells, tissues, and organs as well as contributes to the pathogenesis of various diseases. The retina is subjected to mechanical stress imposed by intraocular pressure as well as by retinal hemorrhage and edema. Responses to mechanical stress have been studied in retinal pigment epithelial cells and Müller cells of the retina, with the former cells having been found to undergo a stress-induced increase in the expression of vascular endothelial growth factor (VEGF), which plays a key role in physiological and pathological angiogenesis in the retina. We here examined the effects of stretch stimulation on the expression of angiogenic factors in cultured human Müller cells. Reverse transcription and quantitative PCR analysis revealed that expression of the VEGF-A gene was increased by such stimulation in Müller cells, whereas that of the angiopoietin 1 gene was decreased. An enzyme-linked immunosorbent assay showed that stretch stimulation also increased VEGF secretion from these cells. Expression of the transcription factor HIF-1α (hypoxia-inducible factor-1α) was increased at both mRNA and protein levels by stretch stimulation, and the HIF-1α inhibitor CAY10585 prevented the effects of mechanical stress on VEGF-A gene expression and VEGF secretion. Furthermore, RNA-sequencing analysis showed that the expression of angiogenesis-related pathway genes was upregulated by stretch stimulation. Our results thus suggest that mechanical stress induces VEGF production in Müller cells in a manner dependent on HIF-1α, and that HIF-1α is therefore a potential therapeutic target for conditions such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion.

8.
Sci Rep ; 14(1): 19373, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169073

RESUMEN

Wound healing is a complex process orchestrated by interactions between a variety of cell types, including keratinocytes, fibroblasts, endothelial cells, inflammatory cells, and bioactive factors such as extracellular matrix (ECM) components, growth factors, and cytokines. Chronic wounds exhibit delayed proliferative phase initiation, reduced angiogenesis, impaired ECM synthesis, and persistent inflammatory response. Chronic wounds are one of the main challenges to the healthcare system worldwide, with a high cost for medical services. Hence, investigation of new approaches to accelerate wound healing is essential. Phytomedicines are considered as potential agents for improving the wound healing by accelerating epithelization, collagen synthesis, and angiogenesis. These natural compounds have various advantages including availability, ease of application, and high effectiveness in wound managment. This study aimed to investigate the biological effects of saffron or Crocus sativus L. (C. sativus) petal extract on cell survival, migration, and angiogenesis using MTT, scratch and in vitro tube formation assays. Moreover, the expression of collagen type I alpha 1 (COL1A1) and vascular endothelial growth factor (VEGF) were evaluated in human dermal fibroblasts (HDF)s and human umbilical vein endothelial cells (HUVEC)s, respectively. The effect of the C. sativus extract on the skin of diabetic mice was also monitored. The results showed that C. sativus petal extract promoted the viability and migration of HDFs and HUVECs. Moreover, C. sativus petal extract enhanced the formation of tube-like structures by HUVECs cultured on the Matrigel basement membrane matrix, indicating its potential to stimulate angiogenesis. Gene expression studies have shown the the C. sativus extract increases wound healing by upregulation of COL1A1 and VEGF, which are crucial factors involved in collagen deposition, epithelialization, and angiogenesis. Histological analysis revealed that C. sativus petal extract enhanced vascularity and increased the number of fibroblasts and collagen synthesis, ultimately accelerating wound closure compared to wounds treated with eucerin and commercial ointment in diabetic mice. Therefore, C. sativus petal extract has potential as a herbal treatment to improve the healing of diabetic wounds.


Asunto(s)
Crocus , Fibroblastos , Células Endoteliales de la Vena Umbilical Humana , Extractos Vegetales , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Crocus/química , Animales , Humanos , Extractos Vegetales/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ratones , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cadena alfa 1 del Colágeno Tipo I , Flores/química , Neovascularización Fisiológica/efectos de los fármacos , Masculino
9.
ACS Nano ; 18(33): 22390-22403, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105734

RESUMEN

An imbalanced system of angiogenesis-osteoblasts-osteoclasts is regarded as the main factor in bone remodeling dysfunction diseases or osseointegration loss. Osteoclast precursors are the key cells that accelerate bone-specific angiogenesis and maintain normal osteoblast and osteoclast function. Graphene oxide is an effective scaffold surface modification agent with broad application prospects in bone tissue engineering. However, the effect of graphene oxide on the interaction between osteoclasts and angiogenesis has not yet been elucidated. In this study, a rat calvarial defect model was established and treated with an electrochemically derived nanographene oxide (ENGO) hydrogel. Higher angiogenesis and platelet-derived growth factor (PDGF) B in preosteoclasts were observed in the ENGO group compared with that in the control group. Moreover, in vitro experiments demonstrate the efficacy of ENGO in substantially reducing the expression of the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast-associated markers and inhibiting bone resorption activity. Additionally, ENGO enhances the secretion of the osteoclast-derived coupling factor PDGF-BB and promotes angiogenesis. Our investigation revealed the crucial role of isocitrate dehydrogenase 1 (IDH1) in the ENGO-mediated regulation of osteoclast differentiation and PDGF-BB secretion. The decreased expression of IDH1 reduces the level of histone lysine demethylase 7A (KDM7A) and subsequently increases the H3K9me2 level in the cathepsin K promoter region. In summary, we found that ENGO promotes angiogenesis by inhibiting the maturity of RANKL-induced osteoclasts and enhancing PDGF-BB secretion. These results indicate that ENGO holds promise for the application in fostering osteoclast-endothelial cell crosstalk, providing an effective strategy for treating bone resorption and osteoclast-related bone loss diseases.


Asunto(s)
Angiogénesis , Diferenciación Celular , Grafito , Osteoclastos , Animales , Masculino , Ratones , Ratas , Angiogénesis/efectos de los fármacos , Becaplermina/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Grafito/química , Grafito/farmacología , Isocitrato Deshidrogenasa/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ratas Sprague-Dawley
10.
Proteoglycan Res ; 2(3)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184370

RESUMEN

Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.

11.
Sci Rep ; 14(1): 19809, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191802

RESUMEN

Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.


Asunto(s)
Adhesión Celular , Proteínas de la Membrana , Proteínas de Neoplasias , Neoplasias de la Próstata , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Humanos , Animales , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ratones , Movimiento Celular , Proliferación Celular , Integrinas/metabolismo
12.
Sci Rep ; 14(1): 19837, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191829

RESUMEN

Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis , Aprepitant , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana , Nanopartículas , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Aprepitant/farmacología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Tamaño de la Partícula , Movimiento Celular/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
CNS Neurosci Ther ; 30(8): e70000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161158

RESUMEN

AIMS: This study aimed to explore the effects of long noncoding RNA (lncRNA) H19 knockdown on angiogenesis and blood-brain barrier (BBB) integrity following cerebral ischemia/reperfusion (I/R) and elucidate their underlying regulatory mechanisms. METHODS: A middle cerebral artery occlusion/reperfusion model was used to induce cerebral I/R injury. The cerebral infarct volume and neurological impairment were assessed using 2,3,5-triphenyl-tetrazolium chloride staining and neurobehavioral tests, respectively. Relevant proteins were evaluated using western blotting and immunofluorescence staining. Additionally, a bioinformatics website was used to predict the potential target genes of lncRNA H19. Finally, a rescue experiment was conducted to confirm the potential mechanism. RESULTS: Silencing of H19 significantly decreased the cerebral infarct volume, enhanced the recovery of neurological function, mitigated BBB damage, and stimulated endothelial cell proliferation following ischemic stroke. Insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) is predicted to be a potential target gene for lncRNA H19. H19 knockdown increased IMP2 protein expression and IMP2 inhibition reversed the protective effects of H19 inhibition. CONCLUSION: Downregulation of H19 enhances angiogenesis and mitigates BBB damage by regulating IMP2, thereby alleviating cerebral I/R injury.


Asunto(s)
Angiogénesis , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , ARN Largo no Codificante , Proteínas de Unión al ARN , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Técnicas de Silenciamiento del Gen/métodos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/patología , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Modelos Animales de Enfermedad
14.
J Cosmet Dermatol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166480

RESUMEN

OBJECTIVE: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of tumor necrosis factor superfamily, can bind to fibroblast growth factor-inducible 14 (Fn14) receptor and stimulate angiogenesis. The interaction between epidermal growth factor receptor (EGFR) and endothelial growth factor (EGF) leads to EGFR signal transduction and promotes angiogenesis. The objective of this study was to explore whether TWEAK participated in the diabetic skin wound healing by regulating Fn14/EGFR signaling. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with 35 mmol/L d-glucose and classified into the Control Group, High Glucose (HG) Group and HG + TWEAK Group. Then, the TWEAK expression and the proliferation, migration and tubule formation of HUVECs were detected, respectively. In vivo experiment, the diabetic model was established by injecting streptozotocin (STZ, 50 mg/kg) into male BALB/c mice. On the back of successfully modeled diabetic mice, a full-thickness skin wound of 6 mm diameter was formed. Then, the mice were randomly assigned into three groups: Blank Group, Phosphate Buffer Saline (PBS) Group, and TWEAK Group. Subsequently, expression levels of TWEAK, Fn14, EGFR and vascular endothelial growth factor (VEGF)-A were measured, and the CD31 expression in the wounded skin tissue of mice was checked by immunohistochemistry staining. RESULTS: The expression level of TWEAK in HUVECs of HG Group decreased significantly, as well as the viability, migration, and tubule formation of cells. After over-expression of TWEAK, the cell viability, migration, and tubule formation abilities of HUVECs recovered remarkably. In vivo, the wound healing rate of diabetic mice was raised, the neovascularization was increased, and the CD31 expression in the wounded tissue was obviously upregulated after injection with recombinant TWEAK antibody. CONCLUSION: TWEAK stimulates angiogenesis and accelerates the wound healing of diabetic skin by regulating Fn14/EGFR signaling.

15.
Development ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166965

RESUMEN

The microvascular system consists of two cell types: endothelial and mural (pericytes and vascular smooth muscle cells; VSMCs) cells. Communication between endothelial and mural cells plays a pivotal role in the maintenance of vascular homeostasis; however, in vivo molecular and cellular mechanisms underlying mural cell development remain unclear. In this study, we found that macrophages played a crucial role in TGFß-dependent pericyte-to-VSMC differentiation during retinal vasculature development. In mice with constitutively-active Foxo1-overexpression, substantial accumulation of TGFß1-producing macrophages and pericytes around the angiogenic front region was observed. Additionally, the TGFß-SMAD pathway was activated in pericytes adjacent to macrophages, resulting in an excess ectopic α-smooth muscle actin-positive VSMCs. Furthermore, we identified endothelial SEMA3C as an attractant for macrophages. In vivo neutralization of SEMA3C rescued macrophage accumulation and ectopic VSMC phenotypes in the mice, as well as drug-induced macrophage depletion. Therefore, macrophages play an important physiological role in VSMC development via the FOXO1-SEMA3C pathway.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39167416

RESUMEN

The assessment of biodegradable materials, such as bioactive glass, under the existing ISO 10993 standard test methods poses a significant challenge due to potential cell viability impairment caused by the accumulation of degraded products in a static environment. Therefore, innovative methodologies are urgently needed to tailor the unique biodegradation characteristics of these materials, providing more precise and scientific insights into biosafety and efficacy verification. Motivation by its bidirectional regulation of angiogenesis and immunity, zinc (Zn) was incorporated into sol-gel-derived borosilicate bioactive glasses (SBSGs) to fabricate Zn-incorporated borosilicate bioactive glasses (SBSG-Zn) to complement the tissue repair capabilities of bioactive glasses. Both SBSG and SBSG-Zn glasses consist of nanosized particles, slit mesoporous pores, high specific surface areas, and bioreactivity. In vitro comparative analysis, conducted according to ISO 10993 standards, demonstrates that only at suitable dilution rates─such as the 8-fold dilution employed in this study─do extracts of SBSG and SBSG-Zn glasses exhibit low cytotoxicity when cultured with human umbilical vein endothelial cells (HUVECs). Notably, SBSG-Zn glasses show optimal promotion of angiogenic gene expression in HUVECs. Furthermore, within an appropriate concentration range of released ions, SBSG-Zn glass extracts not only promote cell survival but also modulate the expression of anti-inflammatory genes while simultaneously inhibiting pro-inflammatory genes concurrently. After being implanted in rat subcutaneous defect models, both SBSG and SBSG-Zn glasses demonstrated the local immunoregulation and angiogenic effects. SBSG-Zn stands out by demonstrating superior modulation of M1/M2 polarization in macrophages as validated by altered secretion of key factors in macrophages and expression of relevant growth factors in HUVECs. These findings underscore the potential for convenient manipulation of localized angiogenic and immunoregulation through the incorporation of zinc into bioactive glass, emphasizing the importance of ensuring the appropriate ion doses are applied for achieving optimal therapeutic efficiency.

17.
Sci Rep ; 14(1): 19027, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152229

RESUMEN

Pulsed electromagnetic field (PEMF) therapy has been extensively investigated in clinical studies for the treatment of angiogenesis-related diseases. However, there is a lack of research on the impact of PEMFs on energy metabolism and mitochondrial dynamics during angiogenesis. The present study included tube formation and CCK-8 assays. A Seahorse assay was conducted to analyze energy metabolism, and mitochondrial membrane potential assays, mitochondrial imaging, and reactive oxygen species assays were used to measure changes in mitochondrial structure and function in human umbilical vein endothelial cells (HUVECs) exposed to PEMFs. Real-time polymerase chain reaction was used to analyze the mRNA expression levels of antioxidants, glycolytic pathway-related genes, and genes associated with mitochondrial fission and fusion. The tube formation assay demonstrated a significantly greater tube network in the PEMF group compared to the control group. The glycolysis and mitochondrial stress tests revealed that PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis. Mitochondrial imaging revealed a wire-like mitochondrial morphology in the control group, and treatment with PEMFs led to shorter and more granular mitochondria. Our major findings indicate that exposure to PEMFs accelerates angiogenesis in HUVECs, likely by inducing energy metabolism reprogramming and mitochondrial fission.


Asunto(s)
Angiogénesis , Campos Electromagnéticos , Reprogramación Metabólica , Dinámicas Mitocondriales , Humanos , Angiogénesis/efectos de la radiación , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Potencial de la Membrana Mitocondrial , Reprogramación Metabólica/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Dinámicas Mitocondriales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
18.
J Orthop Surg Res ; 19(1): 485, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152460

RESUMEN

BACKGROUND: Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in children and adolescents under the age of 20. Dysregulation of microRNAs (miRNAs) is an important factor in the occurrence and progression of OS. MicroRNA miR-744-5p is aberrantly expressed in various tumors. However, its roles and molecular targets in OS remain unclear. METHODS: Differentially expressed miRNAs in OS were analyzed using the Gene Expression Omnibus dataset GSE65071, and the potential hub miRNA was identified through weighted gene co-expression network analysis. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-744-5p in OS cell lines. In vitro experiments, including CCK-8 assays, colony formation assays, flow cytometry apoptosis assays, and tube formation assays, were performed to explore the effects of miR-744-5p on OS cell biological behaviors. The downstream target genes of miR-744-5p were predicted through bioinformatics, and the binding sites were validated by a dual-luciferase reporter assay. RESULTS: The lowly expressed miRNA, miR-744-5p, was identified as a hub miRNA involved in OS progression through bioinformatic analysis. Nuclear factor I X (NFIX) was confirmed as a direct target for miR-744-5p in OS. In vitro studies revealed that overexpression of miR-744-5p could restrain the growth of OS cells, whereas miR-744-5p inhibition showed the opposite effect. It was also observed that treatment with the conditioned medium from miR-744-5p-overexpressed OS cells led to poorer proliferation and angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, NFIX overexpression restored the suppression effects of miR-744-5p overexpression on OS cell growth and HUVECs angiogenesis. CONCLUSION: Our results indicated that miR-744-5p is a potential tumor-suppressive miRNA in OS progression by targeting NFIX to restrain the growth of OS cells and angiogenesis in HUVECs.


Asunto(s)
Neoplasias Óseas , Proliferación Celular , MicroARNs , Factores de Transcripción NFI , Neovascularización Patológica , Osteosarcoma , Humanos , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Patológica/genética , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología
19.
Matrix Biol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154854

RESUMEN

Collagens have dual functions in the extracellular matrix (ECM), acting as both structural components and signaling molecules in matricellular communication. Although collagen molecules share a common triple helix motif, the supramolecular organization helps classify them into nearly 30 different types of collagens. Collagen type VIII is a non-fibrillar, short-chain, network-forming collagen that is expressed throughout the vasculature. Collagen VIII expression is aberrant in cardiovascular, lung, and renal disease, as well as in several different types of cancer. It plays active roles in angiogenesis, vessel injury repair, maintenance of arterial compliance, atherosclerotic plaque formation and stability modulation, fibrosis, and ECM remodeling. This review presents an overview of the characteristics of collagen VIII in vascular-related disorders, from clinical significance to laboratory studies, with a major focus on highlighting the signaling properties of collagen VIII in the vascular ECM. The expression patterns of collagen VIII in human diseases and experimental animal models highlight the protein's important yet underexplored functions. A deeper understanding of its mechanisms and downstream signaling pathways may pave the way for translational and tissue engineering applications of collagen VIII.

20.
Front Oncol ; 14: 1355202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156707

RESUMEN

Introduction: Glioblastoma IDH-wildtype (GBM) is the most malignant brain tumor in adults, with a poor prognosis of approximately 15 months after diagnosis. Most patients suffer from a recurrence in <1 year, and this renders GBM a life-threatening challenge. Among molecular mechanisms driving GBM aggressiveness, angiogenesis mediated by GBM endothelial cells (GECs) deserves consideration as a therapeutic turning point. In this scenario, calpains, a family of ubiquitously expressed calcium-dependent cysteine proteases, emerged as promising targets to be investigated as a novel therapeutic strategy and prognostic tissue biomarkers. Methods: To explore this hypothesis, GECs were isolated from n=10 GBM biopsies and characterized phenotypically by immunofluorescence. The expression levels of calpains were evaluated by qRT-PCR and Western blot, and their association with patients' prognosis was estimated by Pearson correlation and Kaplan-Meier survival analysis. Calpain targeting efficacy was assessed by a time- and dose-dependent proliferation curve, MTT assay for viability, caspase-3/7 activity, migration and angiogenesis in vitro, and gene and protein expression level modification. Results: Immunofluorescence confirmed the endothelial phenotype of our primary GECs. A significant overexpression was observed for calpain-1/2/3 (CAPN) and calpain-small-subunits-1/2 (CAPNS1), whereas calpastatin gene, the calpain natural inhibitor, was reported to be downregulated. A significant negative correlation was observed between CAPN1/CAPNS1 and patient overall survival. GEC challenging revealed that the inhibition of calpain-1 exerts the strongest proapoptotic efficacy, so GEC mortality reached the 80%, confirmed by the increased activity of caspase-3/7. Functional assays revealed a strong affection of in vitro migration and angiogenesis. Gene and protein expression proved a downregulation of MAPK, VEGF/VEGFRs, and Bcl-2, and an upregulation of caspases and Bax-family mediators. Conclusion: Overall, the differential expression of calpains and their correlation with patient survival suggest a novel promising target pathway, whose blockade showed encouraging results toward precision medicine strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA