Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39009933

RESUMEN

Glioblastoma (GBM) is the deadliest adult brain cancer. The current standard-of-care chemotherapy using orally administered temozolomide (TMZ) presents poor improvement in patient survival, emphasizing the compelling need for new therapies. A possible chemotherapeutic alternative is docetaxel (DTX), which possesses higher tumoricidal potency against GBM cells. However, its limited blood-brain barrier (BBB) permeability poses a constraint on its application. Nonetheless, nanomedicine offers promising avenues for overcoming this challenge. Angiopep-2 (ANG2) is a peptide that targets the BBB-overexpressed low-density lipoprotein receptor (LDLR). In this work, we managed, for the first time, to employ a pioneering approach of covalently linking zein protein with polyethylene glycol (PEG) and ANG2 prior to its formulation into nanoparticles (ZNPs) with enhanced stability and LDLR-mediated brain targetability, respectively. Carbodiimide and click chemistry approaches were optimized, resulting in functional modification of zein with around 25% PEG, followed by functional modification of PEG with nearly 100% ANG2. DTX-loaded ZNPs presented 100 nm average size, indicating high suitability for BBB crossing through receptor-mediated transcytosis. ZNPs maintained the cytotoxic effect of the loaded DTX against GBM cells, while demonstrating a safe matrix against BBB cells. Importantly, these brain-targeted ZNPs showcased up to fourfold enhancement in blood-to-brain permeability in a BBB in vitro model, highlighting the potential of this novel approach of BBB targeting in significantly improving therapeutic outcomes for GBM patients. The versatility of the system and the possibility of significantly increasing drug concentration in the brain open the door to its future application in a wide range of other brain-related diseases.

2.
ACS Appl Mater Interfaces ; 16(10): 12161-12174, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416873

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain cancer with high malignancy and resistance to conventional treatments, resulting in a bleak prognosis. Nanoparticles offer a way to cross the blood-brain barrier (BBB) and deliver precise therapies to tumor sites with reduced side effects. In this study, we developed angiopep-2 (Ang2)-functionalized lipid cubosomes loaded with cisplatin (CDDP) and temozolomide (TMZ) for crossing the BBB and providing targeted glioblastoma therapy. Developed lipid cubosomes showed a particle size of around 300 nm and possessed an internal ordered inverse primitive cubic phase, a high conjugation efficiency of Ang2 to the particle surface, and an encapsulation efficiency of more than 70% of CDDP and TMZ. In vitro models, including BBB hCMEC/D3 cell tight monolayer, 3D BBB cell spheroid, and microfluidic BBB/GBM-on-a-chip models with cocultured BBB and glioblastoma cells, were employed to study the efficiency of the developed cubosomes to cross the BBB and showed that Ang2-functionalized cubosomes can penetrate the BBB more effectively. Furthermore, Ang2-functionalized cubosomes showed significantly higher uptake by U87 glioblastoma cells, with a 3-fold increase observed in the BBB/GBM-on-a-chip model as compared to that of the bare cubosomes. Additionally, the in vivo biodistribution showed that Ang2 modification could significantly enhance the brain accumulation of cubosomes in comparison to that of non-functionalized particles. Moreover, CDDP-loaded Ang2-functionalized cubosomes presented an enhanced toxic effect on U87 spheroids. These findings suggest that the developed Ang2-cubosomes are prospective for improved BBB crossing and enhanced delivery of therapeutics to glioblastoma and are worth pursuing further as a potential application of nanomedicine for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Péptidos , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Barrera Hematoencefálica/patología , Distribución Tisular , Estudios Prospectivos , Línea Celular Tumoral , Temozolomida , Neoplasias Encefálicas/patología , Nanopartículas/uso terapéutico , Lípidos/uso terapéutico
3.
J Biomater Appl ; 38(6): 743-757, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000075

RESUMEN

3Glioblastoma multiforme is the most aggressive malignant brain tumor. However, the treatment of glioblastoma multiforme faces great challenges owing to difficult penetration of the blood-brain barrier. Therefore, more effective treatment strategies are desired quite urgently. In our study, a dual-targeting drug delivery system for co-loading with hydrophobic Gambogenic acid and hydrophilic PLHSpT was developed by cubosomes with angiopep-2 decorating. The Ang-cubs-(GNA + PLHSpT) was prepared by high-temperature emulsification-low-temperature solidification demonstrating excellent physical properties.Transmission electron microscopy revealed that Ang-cubs-(GNA + PLHSpT) was nearly spherical with a "core-shell" double-layer structure. Differential scanning calorimetry suggested that a new phase was formed. Small-angle X-ray scattering also verified that Ang-cubs-(GNA + PLHSpT) retains the Pn3m cubic. Moreover, laser confocal indicated that Ang-cubs-(GNA + PLHSpT) was capable of crossing BBB via binding to lipoprotein receptor-related protein-1, likely suggesting the potential tumor-specific targeting characteristic. Compared to free drug and cubs-(GNA + PLHSpT), Ang-cubs-(GNA + PLHSpT) was easily taken up by C6 cell and exhibited better anti-glioma effects in vitro. Importantly, GNA and PLHSpT co-loaded Ang-cubs could suppress tumor growth and significantly prolong survival in vivo. In conclusion, Ang-cubs-(GNA + PLHSpT) acts as a new dual-targeting drug delivery system for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Péptidos/química , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Línea Celular Tumoral
4.
Front Med (Lausanne) ; 10: 1199881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324130

RESUMEN

Boron neutron capture therapy (BNCT) induces intracellular nuclear reaction to destroy cancer cells during thermal neutron irradiation. To selectively eliminate cancer cells but avoid harmful effects on normal tissues, novel boron-peptide conjugates with angiopep-2, namely ANG-B, were constructed and evaluated in preclinical settings. Boron-peptide conjugates were synthesized using solid-phase peptide synthesis, and the molecular mass was validated by mass spectrometry afterwards. Boron concentrations in 6 cancer cell lines and an intracranial glioma mouse model after treatments were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Phenylalanine (BPA) was tested in parallel for comparison. In vitro treatment with boron delivery peptides significantly increased boron uptake in cancer cells. BNCT with 5 mM ANG-B caused 86.5% ± 5.3% of clonogenic cell death, while BPA at the same concentration caused 73.3% ± 6.0% clonogenic cell death. The in vivo effect of ANG-B in an intracranial glioma mouse model was evaluated by PET/CT imaging at 31 days after BNCT. The mouse glioma tumours in the ANG-B-treated group were shrunk by 62.9% on average, while the BPA-treated tumours shrank by only 23.0%. Therefore, ANG-B is an efficient boron delivery agent, which has low cytotoxicity and high tumour-to-blood ratio. Based on these experimental results, we expected that ANG-B may leverage BNCT performance in clinical applications in future.

5.
ACS Biomater Sci Eng ; 9(7): 4288-4301, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37307155

RESUMEN

The present study was aimed to synthesize, characterize, and evaluate the angiopep-2 grafted PAMAM dendrimers (Den, G 3.0 NH2) with and without PEGylation for the targeted and better delivery approach of temozolomide (TMZ) for the management of glioblastoma multiforme (GBM). Den-ANG and Den-PEG2-ANG conjugates were synthesized and characterized by 1H NMR spectroscopy. The PEGylated (TMZ@Den-PEG2-ANG) and non-PEGylated (TMZ@Den-ANG) drug loaded formulations were prepared and characterized for particle size, zeta potential, entrapment efficiency, and drug loading. An in vitro release study at physiological (pH 7.4) and acidic pH (pH 5.0) was performed. Preliminary toxicity studies were performed through hemolytic assay in human RBCs. MTT assay, cell uptake, and cell cycle analysis were performed to evaluate the in vitro efficacy against GBM cell lines (U87MG). Finally, the formulations were evaluated in vivo in a Sprague-Dawley rat model for pharmacokinetics and organ distribution analysis. The 1H NMR spectra confirmed the conjugation of angiopep-2 to both PAMAM and PEGylated PAMAM dendrimers, as the characteristic chemical shifts were observed in the range of 2.1 to 3.9 ppm. AFM results revealed that the surface of Den-ANG and Den-PEG2-ANG conjugates were rough. The particle size and zeta potential of TMZ@Den-ANG were observed to be 229.0 ± 17.8 nm and 9.06 ± 0.4 mV, respectively, whereas the same for TMZ@Den-PEG2-ANG were found to be 249.6 ± 12.9 nm and 10.9 ± 0.6 mV, respectively. The entrapment efficiency of TMZ@Den-ANG and TMZ@Den-PEG2-ANG were calculated to be 63.27 ± 5.1% and 71.48 ± 4.3%, respectively. Moreover, TMZ@Den-PEG2-ANG showed a better drug release profile with a controlled and sustained pattern at PBS pH 5.0 than at pH 7.4. The ex vivo hemolytic study revealed that TMZ@Den-PEG2-ANG was biocompatible in nature as it showed 2.78 ± 0.1% hemolysis compared to 4.12 ± 0.2% hemolysis displayed by TMZ@Den-ANG. The outcomes of the MTT assay inferred that TMZ@Den-PEG2-ANG possessed maximum cytotoxic effects against U87MG cells with IC50 values of 106.62 ± 11.43 µM (24 h) and 85.90 ± 9.12 µM (48 h). In the case of TMZ@Den-PEG2-ANG, the IC50 values were reduced by 2.23-fold (24 h) and 1.36-fold (48 h) in comparison to pure TMZ. The cytotoxicity findings were further confirmed by significantly higher cellular uptake of TMZ@Den-PEG2-ANG. Cell cycle analysis of the formulations suggested that the PEGylated formulation halts the cell cycle at G2/M phase with S-phase inhibition. In the in vivo studies, the half-life (t1/2) values of TMZ@Den-ANG and TMZ@Den-PEG2-ANG were enhanced by 2.22 and 2.76 times, respectively, than the pure TMZ. After 4 h of administration, the brain uptake values of TMZ@Den-ANG and TMZ@Den-PEG2-ANG were found to be 2.55 and 3.35 times, respectively, higher than that of pure TMZ. The outcomes of various in vitro and ex vivo experiments promoted the use of PEGylated nanocarriers for the management of GBM. Angiopep-2 grafted PEGylated PAMAM dendrimers can be potential and promising drug carriers for the targeted delivery of antiglioma drugs directly to the brain.


Asunto(s)
Dendrímeros , Glioblastoma , Ratas , Animales , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Dendrímeros/química , Dendrímeros/uso terapéutico , Hemólisis , Línea Celular Tumoral , Ratas Sprague-Dawley
6.
J Drug Target ; 31(6): 634-645, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37203195

RESUMEN

The blood-brain barrier (BBB) is a barrier that maintains brain homeostasis, but it is also one of the major problems that must be overcome in the development of Alzheimer's disease (AD) drugs. To solve this problem, Salidroside (Sal) and Icariin (Ica), drugs with neuroprotective effects were loaded into liposomes, and the targeting molecule Angiopep-2 was modified on the surface of liposomes (Ang-Sal/Ica-Lip), so that the constructed nano-drug delivery system could effectively cross the BBB and exert anti-AD effects. The prepared liposomes exhibited ideal physicochemical properties. In vitro and in vivo targeting studies showed that Ang-Sal/Ica liposome could cross the BBB to increase drug accumulation in the brain, and increase the uptake of N2a cells and bEnd.3 cells. The pharmacodynamic analysis in vivo showed that Ang-Sal/Ica liposome could reverse neuronal and synaptic damage, inhibit neuroinflammation and oxidative stress and improve learning and cognitive function. Therefore, Ang-Sal/Ica liposome may be a promising therapeutic strategy for mitigating AD-related symptoms.


Asunto(s)
Enfermedad de Alzheimer , Liposomas , Ratones , Animales , Liposomas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Células Endoteliales , Encéfalo , Barrera Hematoencefálica
7.
Nanomedicine ; 50: 102673, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37044193

RESUMEN

Herein, we fabricated gold surface-coated iron titanium core-shell (FeTi@Au) nanoparticles (NPs) with conjugation of angiopep-2 (ANG) (FeTi@Au-ANG) NPs for targeted delivery and improved NPs penetration by receptor-mediated endocytosis to achieve hyperthermic treatment of gliomas. The synthesized "core-shell" FeTi@Au-ANG NPs exhibited spherical in shape with around 16 nm particle size and increased temperature upon alternating magnetic field (AMF) stimulation, rendering them effective for localized hyperthermic therapy of cancer cells. Effective targeted delivery of FeTi@Au-ANG NPs was demonstrated in vitro by improved transport and cellular uptake, and increased apoptosis in glioma cells (C6) compared with normal fibroblast cells (L929). FeTi@Au-ANG NPs exhibited higher deposition in brain tissues and a superior therapeutic effect in an orthotopic intracranial xenograft mouse model. Taken together, our data indicate that FeTi@Au-ANG NPs hold significant promise as a targeted delivery strategy for glioma treatment using hyperthermia.


Asunto(s)
Glioma , Hipertermia Inducida , Nanopartículas , Humanos , Ratones , Animales , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Oro/uso terapéutico
8.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834514

RESUMEN

The blood-brain barrier (BBB) is a semipermeable system, and, therefore, most of the active substances are poorly transported through this barrier, resulting in decreased therapeutic effects. Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipoprotein receptor-related protein-1 (LRP1), which can cross the BBB via receptor-mediated transcytosis and simultaneously target glioblastomas. Angiopep-2 contains three amino groups that have previously been used to produce drug-peptide conjugates, although the role and importance of each position have not yet been investigated. Thus, we studied the number and position of drug molecules in Angiopep-2 based conjugates. Conjugates containing one, two, and three daunomycin molecules conjugated via oxime linkage in all possible variations were prepared. The in vitro cytostatic effect and cellular uptake of the conjugates were investigated on U87 human glioblastoma cells. Degradation studies in the presence of rat liver lysosomal homogenates were also performed in order for us to better understand the structure-activity relationship and to determine the smallest metabolites. Conjugates with the best cytostatic effects had a drug molecule at the N-terminus. We demonstrated that the increasing number of drug molecules does not necessarily increase the efficacy of the conjugates, and proved that modification of the different conjugation sites results in differing biological effectiveness.


Asunto(s)
Citostáticos , Glioblastoma , Ratas , Animales , Humanos , Daunorrubicina/metabolismo , Péptidos/química , Barrera Hematoencefálica/metabolismo , Glioblastoma/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral
9.
ACS Chem Neurosci ; 14(2): 226-234, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36599050

RESUMEN

The reliable and dynamic detection of amyloid ß-protein (Aß) deposition using imaging technology is necessary for preclinical Alzheimer's disease (AD), which may significantly improve prognosis. The present study aimed to evaluate the feasibility of applying angiopep-2 (ANG), a chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) biomarker, for monitoring Aß deposition in vivo. ANG exerted a good chemical exchange saturation transfer (CEST) effect and displayed a moderate binding affinity to Aß1-42 in vitro. Six-month-old mice with AD injected with ANG exhibited a significantly enhanced CEST effect than controls in vivo; this effect gradually became more apparent at 8, 10, and 12 months. Spatial learning impairment caused by abundant Aß deposition (representing mild cognitive impairment in AD patients) develops at 12 months in APPswe/PSEN1dE9 (line 85) AD mice. To conclude, the CEST of ANG could display very earlier age-related Aß pathological progress in mice with AD, consistent with immunohistochemistry. ANG has extraordinary potential for clinical transformation as an imaging biomarker to diagnose early AD and track its progress dynamically and nonradiationally.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Imagen por Resonancia Magnética , Biomarcadores/metabolismo , Ratones Transgénicos , Encéfalo/metabolismo
10.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430705

RESUMEN

Modulations in cell surface receptor ectodomain proteolytic shedding impact on receptor function and cancer biomarker expression. As such, heavily pursued therapeutic avenues have exploited LDL receptor-related protein-1 (LRP-1)-mediated capacity in internalizing Angiopep-2 (An2), a brain-penetrating peptide that allows An2-drug conjugates to cross the blood-brain tumor barrier (BBTB). Given that LRP-1 is proteolytically shed from the cell surface through matrix metalloproteinase (MMP) activity, the balance between MMP expression/function and LRP-1-mediated An2 internalization is unknown. In this study, we found that membrane type-1 (MT1)-MMP expression increased from grade 1 to 4 brain tumors, while that of LRP-1 decreased inversely. MMP pharmacological inhibitors such as Ilomastat, Doxycycline and Actinonin increased in vitro An2 internalization by up to 2.5 fold within a human grade IV-derived U87 glioblastoma cell model. Transient siRNA-mediated MT1-MMP gene silencing resulted in increased basal An2 cell surface binding and intracellular uptake, while recombinant MT1-MMP overexpression reduced both cell surface LRP-1 expression as well as An2 internalization. The addition of Ilomastat to cells overexpressing recombinant MT1-MMP restored LRP-1 expression at the cell surface and An2 uptake to levels comparable to those observed in control cells. Collectively, our data suggest that MT1-MMP expression status dictates An2-mediated internalization processes in part by regulating cell surface LRP-1 functions. Such evidence prompts preclinical evaluations of combined MMP inhibitors/An2-drug conjugate administration to potentially increase the treatment of high-MT1-MMP-expressing brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Metaloproteinasa 14 de la Matriz , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/metabolismo , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología
11.
Molecules ; 27(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36235232

RESUMEN

BACKGROUND: The family of synthetic peptide angiopeps, and particularly angiopep-2 (ANG-2) demonstrated the ability preclinically and clinically to shuttle active molecules across the blood-brain barrier (BBB) and selectively toward brain tumor cells. The literature has also proved that the transport occurs through a specific receptor-mediated transcytosis of the peptide by LRP-1 receptors present both on BBB and tumor cell membranes. However, contradictory results about exploiting this promising mechanism to engineer complex delivery systems, such as nanoparticles, are being obtained. METHODOLOGY: For this reason, we applied a molecular docking (MD)-based strategy to investigate the molecular interaction of ANG-2 and the LRP-1 ligand-binding moieties (CR56 and CR17), clarifying the impact of peptide conjugation on its transport mechanism. RESULTS: MD results proved that ANG-2/LRP-1 binding involves the majority of ANG-2 residues, is characterized by high binding energies, and that it is site-specific for CR56 where the binding to 929ASP recalls a transcytosis mechanism, resembling the binding of the receptor to the receptor-associated protein. On the other hand, ANG-2 binding to CR17 is less site-specific but, as proved for apolipoprotein internalization in physiological conditions, it involves the ANG-2 lysin residue. CONCLUSIONS: Overall, our results proved that ANG-2 energetic interaction with the LRP-1 receptor is not hindered if specific residues of the peptide are chemically crosslinked to simple or complex engineered delivery systems.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Humanos , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/química
12.
Anal Sci ; 38(11): 1425-1431, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36112325

RESUMEN

Glioma is one of the most frequent brain tumors with substantial mortality and morbidity, thus designing a simple sensor for achieving highly efficient determination of glioma cell is of great importance. In this work, by preparing 3,4,9,10-perylene tetracarboxylic acid (PTCA) non-covalently functionalized carbon black (CB) nanohybrids (CB-PTCA) as matrix and using angiopep-2 peptide (Ang-2) as receptor to recognize selectively glioma cell, a simple and free-labeled voltammetry sensor was developed for the first time to detect glioma cell by using Ang-2 and CB-PTCA modified glassy carbon electrode (Ang-2/CB/GCE): via introducing typical [Fe(CN)6]4-/3- as the signal probe, its electrochemical signal would be suppressed when glioma cells were recognized by Ang-2, and the values of peak current difference varied along with the concentrations of glioma cells. After optimizing the related testing conditions (the amounts of CB-PTCA, concentration of Ang-2 and recognition time of Ang-2 towards glioma cells), a wide linearity from 102 to 106 cells mL-1 and a low analytic limitation of 30 cells mL-1 were achieved for glioma cell. Furthermore, the application of the proposed immunosensor in human serum was also studied, revealing that the results are reliable and the designed proposal offers a significant clinical application for glioma detection.


Asunto(s)
Técnicas Biosensibles , Glioma , Perileno , Humanos , Técnicas Biosensibles/métodos , Hollín , Inmunoensayo , Glioma/patología , Carbono , Péptidos
13.
Pharmaceutics ; 14(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36145687

RESUMEN

The therapeutic modalities for glioblastoma multiforme fail badly due to the limitations of poor penetration through the blood-brain barrier and the lack of tumor targeting. In this study, we synthesized a neuropeptide (ANGIOPEP-2)-functionalized gold nanorod (GNR-ANGI-2) and systemically evaluated the cellular uptake and photothermal effects enhanced by the neuropeptide functionalization of the gold nanorod under laser or sham exposure. The expression of LRP1, the specific ligand for ANGIOPEP-2, was the highest in C6 cells among five studied glioma cell lines. The cellular internalization studies showed higher uptake of gold nanorods functionalized with ANGIOPEP-2 than of those functionalized with scrambled ANGIOPEP-2. The in vitro photothermal studies of C6 cells treated with GNR-ANGI-2 and laser showed a higher rate of apoptosis at early and late stages than cells treated with GNR-ANGI-2 without laser. Correspondingly, in vitro ROS evaluation showed a higher intensity of ROS production in cells treated with GNR-ANGI-2 under laser irradiation. The Western blotting results indicated that GNR-ANGI-2 with laser exposure activated the caspase pathway of apoptosis, and GNR-ANGI-2 with sham exposure induced autophagy in C6 cells. The current study provides in-depth knowledge on the effective time point for maximum cellular uptake of GNR-ANGI-2 to achieve a better anti-glioma effect. Moreover, by exploring the molecular mechanism of cell death with GNR-ANGI-2-mediated photothermal therapy, we could modify the nanoshuttle with multimodal targets to achieve more efficient anti-glioma therapy in the future.

14.
J Control Release ; 351: 8-21, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122894

RESUMEN

Conjugation of angiopep-2 (Ang2) with drugs/compounds is known to increase plasma membrane permeability across endothelial barriers. The inner blood-retinal barrier (BRB) regulates retinal drug distribution and is formed by retinal capillary endothelial cells, supported by Müller cells and retinal pericytes. To elucidate the potential of Ang2 conjugation in promoting retinal drug distribution after peripheral administration across the inner BRB, an in vivo administration study and in vitro transport experiments using newly developed multicellular inner BRB spheroids were performed. After intravenous administration of Ang2-linked green fluorescence protein (GFP-Ang2) in mice, GFP-derived signals were observed in the neural retina. In contrast, GFP-derived signals were not observed after intravenous GFP administration, suggesting the promotion of the retinal distribution of substances by Ang2 conjugation. To overcome the limitations of in vitro studies using cells cultured on dishes, inner BRB spheroids were established using conditionally immortalized rat retinal capillary endothelial cells, Müller cells, and retinal pericytes. Immunocytochemistry of marker molecules suggests that the central part of the spheroids is occupied by Müller cells, and encapsulated by retinal pericytes and capillary endothelial cells. Studies on the expression and functions of tight junctions suggest that tight junctions are formed on the surface of the inner BRB spheroids by retinal capillary endothelial cells. The functional expression of drug transporters, such as P-glycoprotein, was observed in the spheroids, implying that the inner side of the spheroids reflects the retinal side of the inner BRB. In the inner BRB spheroids, energy-dependent accumulation of GFP-Ang2 and Ang2-linked 5(6)-carboxyfluorescein (FAM-Ang2) was observed. Moreover, an endocytic inhibition study revealed that clathrin-dependent endocytosis/transcytosis was involved in the transcellular transport of Ang2-conjugated drugs/compounds across the inner BRB. Consequently, it is suggested that the Ang2 linkage is useful for promoting retinal drug distribution via clathrin-dependent transcytosis at the inner BRB.


Asunto(s)
Barrera Hematorretinal , Células Endoteliales , Animales , Ratas , Ratones , Células Endoteliales/metabolismo , Barrera Hematorretinal/metabolismo , Retina/metabolismo , Clatrina/metabolismo
15.
J Extracell Vesicles ; 11(8): e12255, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932288

RESUMEN

Glioma is one of the primary malignant brain tumours in adults, with a poor prognosis. Pharmacological reagents targeting glioma are limited to achieve the desired therapeutic effect due to the presence of blood-brain barrier (BBB). Effectively crossing the BBB and specifically targeting to the brain tumour are the major challenge for the glioma treatments. Here, we demonstrate that the well-defined small extracellular vesicles (sEVs) with dual-targeting drug delivery and cell-penetrating functions, modified by Angiopep-2 and trans-activator of transcription peptides, enable efficient and specific chemotherapy for glioma. The high efficiency of engineered sEVs in targeting BBB and glioma was assessed in both monolayer culture cells and BBB model in vitro, respectively. The observed high targeting efficiency was re-validated in subcutaneous tumour and orthotopic glioma mice models. After loading the doxorubicin into dual-modified functional sEVs, this specific dual-targeting delivery system could cross the BBB, reach the glioma, and penetrate the tumour. Such a mode of drug delivery significantly improved more than 2-fold survival time of glioma mice with very few side effects. In conclusion, utilization of the dual-modified sEVs represents a unique and efficient strategy for drug delivery, holding great promise for the treatments of central nervous system diseases.


Asunto(s)
Vesículas Extracelulares , Glioma , Animales , Línea Celular Tumoral , Vesículas Extracelulares/patología , Glioma/tratamiento farmacológico , Ratones , Péptidos/uso terapéutico
16.
Drug Deliv ; 29(1): 1648-1662, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35616263

RESUMEN

The blood-brain barrier (BBB) is a protective barrier for brain safety, but it is also a major obstacle to the delivery of drugs to the cerebral parenchyma such as the hippocampus, hindering the treatment of central nervous system diseases such as Alzheimer's disease (AD). In this work, an anti-AD brain-targeted nanodrug delivery system by co-loading icariin (ICA) and tanshinone IIA (TSIIA) into Aniopep-2-modified long-circulating (Ang2-ICA/TSIIA) liposomes was developed. Low-density lipoprotein receptor-related protein-1 (LRP1) was a receptor overexpressed on the BBB. Angiopep-2, a specific ligand of LRP1, exhibited a high binding efficiency with LRP1. Additionally, ICA and TSIIA, drugs with neuroprotective effects are loaded into the liposomes, so that the liposomes not only have an effective BBB penetration effect, but also have a potential anti-AD effect. The prepared Ang2-ICA/TSIIA liposomes appeared narrow dispersity and good stability with a diameter of 110 nm, and a round morphology. Cell uptake observations, BBB models in vitro, and imaging analysis in vivo showed that Ang2-ICA/TSIIA liposomes not only penetrate the BBB through endocytosis, but also accumulate in N2a cells or brain tissue. The pharmacodynamic analysis in vivo demonstrated that Ang2-ICA/TSIIA liposomes could improve AD-like pathological features in APP/PS1 mice, including inhibiting neuroinflammation and oxidative stress, reducing apoptosis, protecting neurons, and improving cognitive function. Therefore, Ang2-ICA/TSIIA liposomes are considered a potentially effective therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Liposomas , Abietanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Flavonoides , Liposomas/metabolismo , Ratones
17.
Polymers (Basel) ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35215625

RESUMEN

Nanotechnology has opened up a world of possibilities for the treatment of brain disorders. Nanosystems can be designed to encapsulate, carry, and deliver a variety of therapeutic agents, including drugs and nucleic acids. Nanoparticles may also be formulated to contain photosensitizers or, on their own, serve as photothermal conversion agents for phototherapy. Furthermore, nano-delivery agents can enhance the efficacy of contrast agents for improved brain imaging and diagnostics. However, effective nano-delivery to the brain is seriously hampered by the formidable blood-brain barrier (BBB). Advances in understanding natural transport routes across the BBB have led to receptor-mediated transcytosis being exploited as a possible means of nanoparticle uptake. In this regard, the oligopeptide Angiopep-2, which has high BBB transcytosis capacity, has been utilized as a targeting ligand. Various organic and inorganic nanostructures have been functionalized with Angiopep-2 to direct therapeutic and diagnostic agents to the brain. Not only have these shown great promise in the treatment and diagnosis of brain cancer but they have also been investigated for the treatment of brain injury, stroke, epilepsy, Parkinson's disease, and Alzheimer's disease. This review focuses on studies conducted from 2010 to 2021 with Angiopep-2-modified nanoparticles aimed at the treatment and diagnosis of brain disorders.

18.
Molecules ; 26(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34946664

RESUMEN

Glioblastoma (GBM) is the most malignant and aggressive form of glioma and is associated with a poor survival rate. Latest generation Tumour Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL)-based therapeutics potently induce apoptosis in cancer cells, including GBM cells, by binding to death receptors. However, the blood-brain barrier (BBB) is a major obstacle for these biologics to enter the central nervous system (CNS). We therefore investigated if antibody-based fusion proteins that combine hexavalent TRAIL and angiopep-2 (ANG2) moieties can be developed, with ANG2 promoting receptor-mediated transcytosis (RMT) across the BBB. We demonstrate that these fusion proteins retain the potent apoptosis induction of hexavalent TRAIL-receptor agonists. Importantly, blood-brain barrier cells instead remained highly resistant to this fusion protein. Binding studies indicated that ANG2 is active in these constructs but that TRAIL-ANG2 fusion proteins bind preferentially to BBB endothelial cells via the TRAIL moiety. Consequently, transport studies indicated that TRAIL-ANG2 fusion proteins can, in principle, be shuttled across BBB endothelial cells, but that low TRAIL receptor expression on BBB endothelial cells interferes with efficient transport. Our work therefore demonstrates that TRAIL-ANG2 fusion proteins remain highly potent in inducing apoptosis, but that therapeutic avenues will require combinatorial strategies, such as TRAIL-R masking, to achieve effective CNS transport.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas , Endotelio/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma , Proteínas de Neoplasias , Péptidos/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/biosíntesis , Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis
19.
Biomaterials ; 279: 121193, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34700227

RESUMEN

The blood-brain barrier (BBB) is one of the major limitations of glioblastoma therapy in the clinic. Nanodrugs have shown great potential for glioblastoma therapy. Herein, we purposefully developed a multicomponent self-assembly nanocomplex with very high drug loading content for curing orthotopic glioblastoma with synergistic chemo-photothermal therapy. The nanocomplex consisted of self-assembled pH-responsive nanodrugs derived from amino acid-conjugated camptothecin (CPT) and canine dyes (IR783) coated with peptide Angiopep-2-conjugated copolymer of Ang-PEG-g-PLL. Specifically, the carrier-free nanocomplex exhibited a high drug loading content (up to 62%), good biocompatibility, and effective glioma accumulation ability. Moreover, the nanocomplex displayed good stability and pH-responsive behavior ex vivo. Both in vitro and in vivo results revealed that the nanocomplex could effectively cross the BBB and target glioma cells. Furthermore, the combination of chemotherapy and photothermal therapy of the nanocomplex achieved a better therapeutic effect, longer survival time, and minimized toxic side effects in orthotopic glioblastoma tumor-bearing nude mice. Overall, we modified the chemotherapeutic drug CPT so that it could self-assemble with other molecules into nanoparticles, which providing an alternative for the preparation of the carrier-free nanodrugs. The results highlighted the potential of self-assembly nanodrugs as a novel platform for effective glioblastoma therapy.


Asunto(s)
Glioblastoma , Nanopartículas , Animales , Línea Celular Tumoral , Perros , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Ratones , Ratones Desnudos , Terapia Fototérmica
20.
Pharm Dev Technol ; 26(8): 910-921, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34280065

RESUMEN

Polycaprolactone-poly (ethylene glycol) block copolymer (PCL-PEG) based nanoparticles were prepared for the intravenous administration of docetaxel (DTX). PCL-PEG-Tyr and PCL-PEG-Ang were synthesized by using tyrosine (Tyr) and angiopep-2 (Ang) as coupling ligands, and dual-modified PCL-PEG-based nanoparticles (PCL-PEG-Tyr/Ang) were prepared. The physicochemical properties, in vitro drug release, in vitro cytotoxicity, in vitro cellular uptake efficiency, in vivo biodistribution and in vivo antitumor efficacy of PCL-PEG-based nanoparticles were investigated. The PCL-PEG-based nanoparticles were spherical with a mean diameter of 100 nm and high encapsulation efficiencies (> 85%). The results of in vitro drug release showed that the PCL-PEG-based nanoparticles loaded with DTX had sustained-release characteristics. For in vitro cytotoxicity tests, the dual-modified PCL-PEG-based nanoparticles (PCL-PEG-Tyr/Ang) demonstrated the minimum IC50 value (2.94 µg/mL) compared with other PCL-PEG-based nanoparticles. In addition, the cellular uptake of coumarin-6 (C6) in HT29 cells was observed and determined in the PCL-PEG-Tyr/Ang nanoparticles group, which was significantly higher than that in the other PCL-PEG-based groups and C6 solution group. The results of in vivo imaging showed that dual-modified PCL-PEG nanoparticles had better tumor targeting than the other PCL-PEG-based nanoparticles. In the HT29 tumor-xenografted nude mice model, DTX-loaded PCL-PEG-Tyr/Ang nanoparticles also had a significantly higher inhibitory efficacy on tumor growth than Taxotere®-treated group. These results indicated that the dual-modified PCL-PEG-based nanoparticles (PCL-PEG-Tyr/Ang) could be a promising anticancer drug delivery system.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Docetaxel/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/administración & dosificación , Animales , Docetaxel/uso terapéutico , Óxido de Etileno , Células HT29/efectos de los fármacos , Humanos , Inyecciones Intravenosas , Lactonas , Masculino , Ratones Desnudos , Trasplante de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...