Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
1.
Nat Prod Res ; : 1-9, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340238

RESUMEN

Inflammation is associated with multiple life-threatening conditions. Desmidorchis flava is an edible plant and traditionally used for managing various diseases. Three novel molecules, namely desmiflavaside-C (1), nizwaside (2), and desmiflanoside (3) were isolated from Desmidorchis flava, and their structures were confirmed by mass spectrometry and through reported literature. These compounds were in vivo examined for antinociceptive (tonic visceral nociception) and anti-inflammatory (carrageenan induced paw edema) activities. Significant antinociceptive potential was demonstrated by compound 1 at 0.5 and 1 mg/kg doses followed by compounds 2 and 3. At similar doses, significant anti-inflammatory activity was noted for all the tested compounds. Their antinociceptive and anti-inflammatory activities were comparable to the reference standards. In silico predicted binding modes suggests that these compounds may target allosteric sites of COX-1 and COX-2 enzymes to elicit their anti-inflammatory activities. These isolated natural products may have therapeutic potential in conditions afflicted with pain and inflammation.

2.
J Ethnopharmacol ; 337(Pt 1): 118793, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251148

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ficus maxima is a medicinal plant extensively used in traditional medicine by Indigenous peoples across Central and South America. It is a member of the family Moraceae, subgenus Pharmacosycea, employed in treating various conditions, including intestinal parasites, gingivitis, internal inflammations, and snake bites. Despite its significant pharmacological potential, the species remains underrepresented in scientific literature. AIM OF THE STUDY: This study aimed to evaluate the in vivo antinociceptive properties of leaf (ELFM) and stem bark (EBFM) extracts from Ficus maxima. Additionally, the chemical composition of these extracts was determined using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). MATERIALS AND METHODS: Plant material was collected in Abaetetuba, Pará, Brazil, in October 2013 and subjected to static maceration to obtain crude ELFM and EBFM. Bio-guided fractionation was performed by sequential liquid-liquid partitioning with hexane (Hex), dichloromethane (DCM), and ethyl acetate (EtOAc), yielding the following fractions: ELFM-Hex and EBFM-Hex, ELFM-DCM and EBFM-DCM, and ELFM-EtOAc and EBFM-EtOAc. The biological activity of EBFM, ELFM, and their respective fractions were evaluated using the formalin-induced pain test and the hot plate test, followed by an assessment of their mechanisms of action. The UHPLC-MS/MS analysis was conducted using electrospray ionization (ESI) in both positive and negative modes. Metabolite annotation was facilitated by MS/MS libraries and molecular networks constructed on the GNPS platform. RESULTS: The reactivity time to formalin in the neurogenic phase was reduced from 84.7 ± 7.6 s (100%) to 37.3 ± 4.7 s (44%), 33.1 ± 6.3 s (39%), 40.7 ± 7.4 s (48%), 57.2 ± 2.6 s (77%), 49.7 ± 4.1 s (58%), 46.8 ± 8.1 s (55%), and 52.4 ± 5.3 s (61%) after treatment with ASA, morphine, EBFM, ELFM, ELFM-Hex, ELFM-DCM, and ELFM-EtOAc at doses of 30 mg/kg, respectively. In the inflammatory phase, the reactivity time to formalin was reduced from 124.3 ± 25.9 s (100%) to 49.7 ± 4.7 s (40%), 9.8 ± 4.3 s (8%), 32.5 ± 8.5 s (26%), 59.8 ± 16.8 s (48%), and 54.4 ± 7.3 s (44%) after treatment with ASA, morphine, EBFM, ELFM, and ELFM-Hex at doses of 30 mg/kg, respectively. A reversal of the antinociceptive action of EBFM and ELFM was observed in the inflammatory phase after treatment with atropine, a muscarinic antagonist, and naloxone, an opioid antagonist, respectively. In the hot plate test, EBFM showed Antinociceptive Activity (AA) of 62.6 ± 9.2% after 90 min; however, there was a reversal of AA to 8.6 ± 2.8% when naloxone was used. The UHPLC-MS/MS metabolite analysis revealed the presence of loliolide (3), luteolin (13), lupeol (14), gallic acid (15), chlorogenic acid (16), pygenic acid A (17), and other metabolites from the alkaloids and fatty acids classes.

3.
Heliyon ; 10(17): e36752, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281441

RESUMEN

Antibacterial resistance is considered to be one of the major causes for mortality in coming years. In recent years green nanotechnology played a key role in addressing this problem. Biocompatible metal nanoparticles have gained popularity owing to their excellent therapeutic effects and minimal side effects. Method: We report the synthesis of AgNPs and their amoxicillin conjugates (Ag-amoxi) using Micromeria biflora crude flavonoid extracts. The physicochemical properties of the synthesized NPs and Ag-amoxi conjugates were systematically evaluated using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR), and UV-visible (UV-Vis) spectroscopic techniques. Results: The average sizes of AgNPs and Ag-amoxi conjugates were 45 and 62 nm, respectively. We have also explored the antibacterial, antioxidant, anti-inflammatory, and analgesic properties of the AgNPs and Ag-amoxi conjugates through in vivo and in vitro analysis. The Ag-amoxi conjugates showed better antibacterial potential against Streptococcus Pneumoniae (S.P), Staphylococcus aureus (S.A), Pseudomonas aeruginosa (P.A), and Methicillin resistance Staphylococcus aureus (MRSA) strain both the drug and AgNPs. Similarly, in vivo anti-inflammatory studies revealed that both Ag-amoxi (68 %) and AgNPs (64 %) had strong anti-inflammatory effects, with (***p < 0.001) significance at a dose of 10 mg kg-1 body weight as compared to standard, amoxicillin (45 %), and flavonoids extract (48 %) at a dose of 100 mg kg-1. The findings of the antinociceptive activities (writhing and hot plate tests) demonstrated that the Ag-amoxi conjugates produced fewer writhing (15 in 20 s) and a shorter latency time of 22 s as compared to vehicle-treated (tramadol) animals, amoxicillin, and P.E at much lower doses. In vitro antioxidant studies revealed that the Ag-amoxi conjugate has the potential to be used as an antioxidant with an IC50 value of 43.58, compared with AgNPs (46.34), amoxicillin (58.17), compared to the standard of ascorbic acid (34.14). Conclusion: These results reveals that these biologically inspired AgNPs and Ag-amoxi conjugate could be used to improve antibiotic efficiency and could play a critical role in addressing the multidrug resistance problem in coming years.

4.
Biomed Pharmacother ; 178: 117299, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142249

RESUMEN

Artemisia annua L., known for antimalarial activity, has demonstrated evidence of anti-inflammatory potential. Previously our research group reported the anti-inflammatory and antinociceptive effect of a sesquiterpene lactone-enriched fraction (Lac-FR) obtained from plant, containing artemisinin and deoxyartemisinin. Both the isolated compounds and Lac-FR evaluated on experimental animal models, in the formalin test showed that deoxyartemisinin reduced both neurogenic pain (56.55 %) and inflammatory pain (45.43 %). These findings were superior to the effect of artemisinin (reduction of 28.66 % and 33.35 %, respectively). In the tail flick test, the antinociceptive effect reported as a percentage of the maximum possible effect (%MPE), deoxyartemisinin showed a lower antinociceptive effect (41.57 %) compared to morphine (75.94 %) in 0.5 h. After 1.5 h, the MPE of deoxyartemisinin (87.99 %) exceeded the effect of morphine (47.55 %), without reversal with naloxone. The MPE of artemisinin (23.3 %) observed after 2 h was lower than deoxiartemisinin, without reversal with the opioid antagonist. Lac-FR and artemisinin demonstrated reductions in ear edema of 43.37 % and 48.19 %, respectively, higher than the effect of deoxyartemisinin (33.64 %). Artemisinin reduced tumor necrosis factor alpha (TNF-α) (76.96 %) more selectively when compared to interleukin-1beta (IL-1ß) (48.23 %) and interleukin-6 (IL-6) (44.49 %). Lac-FR showed greater selectivity in IL-6 reduction (56.49 %) in relationship to TNF-α (46.71 %) and IL-1ß (45.12 %), whereas deoxyartemisinin selectively reduced TNF-α (37.37 %). The results of our study indicate that the lactones isolated did not have relationship with the opioid system. Deoxyartemisinin showed a higher antinociceptive potential than artemisinin. Whereas, artemisinin showed a higher reduction of inflammation and mediators, with a better anti-inflammatory activity outcome.


Asunto(s)
Analgésicos , Antiinflamatorios , Artemisia annua , Artemisininas , Modelos Animales de Enfermedad , Artemisininas/farmacología , Artemisininas/aislamiento & purificación , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Artemisia annua/química , Masculino , Analgésicos/farmacología , Analgésicos/aislamiento & purificación , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Inflamación/tratamiento farmacológico , Inflamación/patología , Dolor/tratamiento farmacológico
5.
Artículo en Inglés | MEDLINE | ID: mdl-39143873

RESUMEN

BACKGROUND: Neuropathic pain is a complex chronic condition resulting from the damage or dysfunction of the nervous system. Conventional therapies offer limited success and often come with various adverse effects. Therefore, the exploration of alternative therapies, such as phytoconstituents, may be of substantial interest for their potential to alleviate neuropathic pain. OBJECTIVES: This review systematically examines the diverse roles and mechanisms of various phytoconstituents in modulating neuropathic pain. In this study, a comprehensive analysis of phytoconstituents in neuropathic pain is carried out to understand their mechanism in preventing the disease. METHOD: The current search is done in the databases of Google Scholar, PubMed Central, ScienceDirect, and Scopus using the keywords: neuropathic pain, phytoconstituents as analgesics, physiological effects of medicinal plants, and natural products, to find the most relevant articles of the last 10 years. RESULT: Out of 125 articles, 112 were included in this study, which revealed that several phytoconstituents inhibit several biomarkers responsible for neuropathic pain. Moreover, this review highlights the underlying molecular pathways and targets through which these bioactive compounds exert their therapeutic effects, emphasizing their potential as novel pharmacological agents. CONCLUSION: This study concludes that phytoconstituents may possess potential applications in managing neuropathic pain and could be effectively used as an alternative approach to mitigate the condition with enhanced risk of safety and tolerability.

6.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39204142

RESUMEN

Background:Bougainvillea x buttiana is an ornamental plant with antioxidant, anti-inflammatory, and cytotoxic activities, which has been traditionally used to treat respiratory diseases. This study aimed to investigate whether the acetonic extract of Bougainvillea x buttiana var. Rose (BxbRAE-100%) has analgesic and anti-inflammatory properties and its potential action mechanisms. Methods: Analgesic and anti-inflammatory activities were evaluated using three murine pain models and two acute inflammation models. In vitro, the ability of the extract to inhibit proteolytic activity and the activities of the enzymes phospholipase A2 (PLA2) and cyclooxygenase (COX) were evaluated. In silico analysis was performed to predict the physicochemical and Absorption, distribution, metabolism, and excretion (ADME) profiles of the compounds previously identified in BxbRAE-100%. Results: In vivo BxbRAE-100% decreased the nociceptive behaviors in the writhing model, the tail immersion, and the formalin test, suggesting that the extract has the potential to relieve pain at peripheral and central levels. Additionally, topical or oral BxbRAE-100% treatment reduced dose-dependent 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation and carrageenan-induced paw edema, respectively. In vitro, BxbRAE-100% significantly inhibited proteolytic activity and PLA2, COX-1 and COX-2 activities. In silico, the compounds previously identified in BxbRAE-100% met Lipinski's rule of five and showed adequate ADME properties. Conclusions: These results support the use of B. x buttiana in Traditional Mexican Medicine and highlight its potential for the development of new treatments for pain and inflammation.

7.
ACS Chem Neurosci ; 15(17): 3228-3256, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166702

RESUMEN

We developed a focused series of original phenyl-glycinamide derivatives which showed potent activity across in vivo mouse seizure models, namely, maximal electroshock (MES) and 6 Hz (using both 32 and 44 mA current intensities) seizure models. Following intraperitoneal (i.p.) administration, compound (R)-32, which was identified as a lead molecule, demonstrated potent protection against all seizure models with ED50 values of 73.9 mg/kg (MES test), 18.8 mg/kg (6 Hz, 32 mA test), and 26.5 mg/kg (6 Hz, 44 mA test). Furthermore, (R)-32 demonstrated efficacy in both the PTZ-induced kindling paradigm and the ivPTZ seizure threshold test. The expression of neurotrophic factors, such as mature brain-derived neurotrophic factor (mBDNF) and nerve growth factor (NGF), in the hippocampus and/or cortex of mice, and the levels of glutamate and GABA were normalized after PTZ-induced kindling by (R)-32. Importantly, besides antiseizure activity, (R)-32 demonstrated potent antinociceptive efficacy in formalin-induced pain, capsaicin-induced pain, as well as oxaliplatin- and streptozotocin-induced peripheral neuropathy in mice (i.p.). No influence on muscular strength and body temperature in mice was observed. Pharmacokinetic studies and in vitro ADME-Tox data (i.e., high metabolic stability in human liver microsomes, a weak influence on CYPs, no hepatotoxicity, satisfactory passive transport, etc.) proved favorable drug-like properties of (R)-32. Thermal stability of (R)-32 shown in thermogravimetry and differential scanning calorimetry gives the opportunity to develop innovative oral solid dosage forms loaded with this compound. The in vitro binding and functional assays indicated its multimodal mechanism of action. (R)-32, beyond TRPV1 antagonism, inhibited calcium and sodium currents at a concentration of 10 µM. Therefore, the data obtained in the current studies justify a more detailed preclinical development of (R)-32 for epilepsy and pain indications.


Asunto(s)
Analgésicos , Anticonvulsivantes , Convulsiones , Animales , Analgésicos/farmacología , Ratones , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Masculino , Glicina/farmacología , Glicina/análogos & derivados , Glicina/química , Modelos Animales de Enfermedad , Electrochoque , Humanos , Excitación Neurológica/efectos de los fármacos , Pentilenotetrazol , Dolor/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Descubrimiento de Drogas
8.
Parasitol Int ; 103: 102933, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39048024

RESUMEN

Tick saliva contains a range of critical biological molecules which could inhibit host defenses and guarantee their food supply. Hq023, a novel cDNA sequence, was cloned from a cDNA library constructed from salivary glands of partially-engorged Haemaphysalis qinghaiensis. Hq023 has an open reading frame (ORF) of 408 bp coding a protein containing 135 amino acid residues with a molecular mass of 15 kDa. Database homology showed that Hq023 protein was structurally similar to a natural toxin U33-theraphotoxin-Cg1c from the Chinese tarantula Chilobrachys guangxiensis. A recombinant protein was expressed with the novel cDNA in a prokaryotic system and its analgesic effect was evaluated in mice model. Both tail immersion and hot-plate tests uncovered an antinociceptive activity, while in the acetic acid-induced writhing test this effect was not observed. These results indicated that the novel recombinant protein Hq023 (rHq023) probably possessed a central antinociceptive activity. Finding of the novel protein might pave a new avenue for the development of tick-derived analgesics.


Asunto(s)
Analgésicos , Clonación Molecular , Ixodidae , Proteínas Recombinantes , Animales , Ratones , Analgésicos/farmacología , Ixodidae/efectos de los fármacos , Ixodidae/genética , Proteínas Recombinantes/administración & dosificación , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Masculino , ADN Complementario , Femenino , Secuencia de Bases , Dolor/tratamiento farmacológico , Saliva , Glándulas Salivales
9.
Neurol Res ; 46(10): 939-946, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38958173

RESUMEN

OBJECTIVES: Bupropion is an atypical antidepressant that shows robust efficacy in the regulation of neuropathic pain. Citicoline is a dietary supplement which is used as a neuroprotective agent for central nervous system (CNS) disorders. The probable interaction between bupropion and citicoline on neuropathic pain was assessed in male mice. METHODS: Neuropathic pain was induced by sciatic nerve ligation. Neuropathic pain was examined in nerve-ligated mice using tail-flick and hot-plate tests. RESULTS: The results indicated that intraperitoneal (i.p.) administration of citicoline (50 and 100 mg/kg) induced an anti-nociceptive effect in nerve-ligated animals. Similarly, i.p. injection of bupropion (2.5 and 5 mg/kg) induced anti-nociceptive effects in nerve-ligated mice. Co-administration of different doses of bupropion (2.5 and 5 mg/kg) along with a low dose of citicoline (25 mg/kg) caused an anti-nociceptive effect by enhancement of tail-flick and hot plate latencies. Interestingly, there is an additive effect between bupropion and citicoline upon the induction of the anti-nociceptive effect. CONCLUSIONS: Based on these results, it can be concluded that there is an interaction between bupropion and citicoline upon induction of an anti-nociceptive effect in nerve-ligated mice.


Asunto(s)
Bupropión , Citidina Difosfato Colina , Dimensión del Dolor , Animales , Bupropión/farmacología , Masculino , Ratones , Citidina Difosfato Colina/farmacología , Citidina Difosfato Colina/uso terapéutico , Dimensión del Dolor/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Ligadura , Sinergismo Farmacológico , Nootrópicos/farmacología
10.
J Ethnopharmacol ; 335: 118623, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059685

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Manilkara zapota (L.) P. Royen, also termed sapodilla or chikoo, is a significant plant in ethnomedicine because of its long history of traditional medical applications. In diverse cultures, sapodilla is believed to protect against oxidative stress, inflammation, and some chronic diseases because of its high antioxidant content. The naturally occurring antioxidant myricitrin (MYR) flavonoid is primarily found in the leaves and other plant parts of sapodilla and it is well-known for having therapeutic qualities and possible health advantages. AIM OF THE STUDY: To appraise the possible impact of MYR on a rat model of reserpine-induced fibromyalgia (FM) and explore its mechanism of action. MATERIALS AND METHODS: Isolation and identification of MYR with more than 99% purity from Manilkara zapota leaves were primarily done and confirmed through chromatographic and spectrophotometric techniques. To develop FM model, reserpine (RSP) was injected daily (1 mg/kg, s.c.) for three successive days. Then, MYR (10 mg/kg, i.p.) and pregabalin (PGB, 30 mg/kg, p.o.) were given daily for another five days. Behavioral changes were assessed through open field test (OFT), hot plate test, and forced swimming test (FST). Further analyses of different brain parameters and signaling pathways were performed to assess monoamines levels, oxidative stress, inflammatory response, apoptotic changes as well as silent information regulator 1 (SIRT1) and micro RNAs (miRNAs) expressions. RESULTS: From High-Performance Liquid Chromatography (HPLC) analysis, the methanol extract of sapodilla leaves contains 166.17 µg/ml of MYR. Results of behavioral tests showed a significant improvement in RSP-induced nociceptive stimulation, reduced locomotion and exploration and depressive-like behavior by MYR. Biochemical analyses showed that MYR significantly ameliorated the RSP-induced imbalance in brain monoamine neurotransmitters. In addition, MYR significantly attenuated oxidative stress elicited by RSP via up-regulating nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expressions, enhancing superoxide dismutase (SOD) and catalase (CAT) activities, and reducing malondialdehyde (MDA) content in brain. The RSP-provoked inflammatory response was also diminished by MYR treatment as shown by a significant decreased NOD-like receptor protein 3 (NLRP3) inflammasome expression along with reduced levels of interleukin 1 beta (IL-1ß) and nuclear factor-κB (NF-κB). Furthermore, the anti-apoptotic activity of MYR was demonstrated by a marked rise in Bcl-2-associated X protein (BAX)/B cell lymphoma-2 (Bcl-2) ratio by lowering Bcl-2 while increasing BAX levels. In addition, MYR treatment significantly boosted the expression of SIRT1 deacetylase in RSP-treated animals. Interestingly, molecular docking showed the ability of MYR to form a stable complex in the binding site of SIRT1. Regarding miRNAs, MYR effectively ameliorated RSP-induced changes in miR-320 and miR-107 gene expressions. CONCLUSION: Our findings afford new insights into the anti-nociceptive profile of MYR in the RSP-induced FM model in rats. The underlying mechanisms involved direct binding and activation of SIRT1 to influence different signaling cascades, including Nrf2 and NF-κB/NLRP3 together with modulation of miRNAs. However, more in-depth studies are needed before proposing MYR as a new clinically relevant drug in the management of FM.


Asunto(s)
Analgésicos , Modelos Animales de Enfermedad , Fibromialgia , Flavonoides , MicroARNs , Reserpina , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Fibromialgia/tratamiento farmacológico , Fibromialgia/inducido químicamente , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Ratas , Flavonoides/farmacología , Flavonoides/uso terapéutico , MicroARNs/metabolismo , MicroARNs/genética , Masculino , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Femenino , Conducta Animal/efectos de los fármacos , Ratas Wistar , Estrés Oxidativo/efectos de los fármacos
11.
J Ethnopharmacol ; 334: 118508, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950795

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Plant vernacular names can provide clues about the popular use of a species in different regions and are valuable sources of information about the culture or vocabulary of a population. Several medicinal plants in Brazil have received names of medicines and brand-name products. AIM OF THE STUDY: The present work aimed to evaluate the chemical composition and pharmacological activity in the central nervous system of three species known popularly by brand names of analgesic, anti-inflammatory, antispasmodic, and digestive drugs. MATERIALS AND METHODS: Hydroethanolic extracts of Alternanthera dentata (AD), Ocimum carnosum (OC), and Plectranthus barbatus (PB) aerial parts were submitted to phytochemical analysis by HPLC-PAD-ESI-MS/MS and evaluated in animal models at doses of 500 and 1000 mg/kg. Mice were tested on hot plate, acetic acid-induced writing, formalin-induced licking, and intestinal transit tests. Aspirin and morphine were employed as standard drugs. RESULTS: The three extracts did not change the mice's response on the hot plate. Hydroethanolic extracts of AD and PB reduced the number of writhes and licking time, while OC was only effective on the licking test at dose of 1000 mg/kg. In addition, AD and OC reduced intestinal transit, while PB increased gut motility. CONCLUSIONS: Pharmacological tests supported some popular uses, suggesting peripheral antinociceptive and anti-inflammatory effects, while the phytochemical analysis showed the presence of several flavonoids in the three hydroethanolic extracts and steroids in PB, with some barbatusterol derivatives described for the first time in the species.


Asunto(s)
Amaranthaceae , Analgésicos , Antiinflamatorios , Parasimpatolíticos , Fitoquímicos , Componentes Aéreos de las Plantas , Extractos Vegetales , Plectranthus , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Analgésicos/farmacología , Analgésicos/química , Ratones , Parasimpatolíticos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Masculino , Amaranthaceae/química , Plectranthus/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Dolor/tratamiento farmacológico , Ocimum/química , Espectrometría de Masas en Tándem , Brasil , Tránsito Gastrointestinal/efectos de los fármacos
12.
Pharmaceutics ; 16(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39065574

RESUMEN

Palmitoylethanolamide (PEA) exhibits multiple skincare functions such as anti-nociceptive and anti-inflammatory effects. However, its topical application is limited due to its difficulty in bypassing the stratum corneum barrier, relatively low bioavailability, and low stability. Herein, elastic nano-liposomes (ENLs) with excellent deformability and elasticity were utilized as a novel drug delivery system to encapsulate PEA to overcome the abovementioned issues and enhance the biological effects on the skin. ENL was prepared with phosphatidylcholine, cholesterol, and cetyl-PG hydroxyethyl palmitamide with a molar ratio mimicking skin epidermal lipids, and PEA was loaded. The PEA-loaded ENL (PEA-ENL) demonstrated efficient transdermal delivery and enhanced skin retention, with negligible cytotoxicity toward HaCaT cells and no allergic reaction in the human skin patch test. Notably, PEA-ENL treatment increased cell migration and induced significant regulation in the expression of genes associated with anti-nociceptive, anti-inflammatory, and skin barrier repair. The mechanism of the anti-nociceptive and anti-inflammatory effects of PEA was further investigated and explained by molecular docking site analysis. This novel PEA-ENL, with efficient transdermal delivery efficiency and multiple skincare functionalities, is promising for topical application.

13.
Cent Nerv Syst Agents Med Chem ; 24(2): 105-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034830

RESUMEN

BACKGROUND: Plants of the genus Ferula have long been used to treat neurological diseases such as Alzheimer's disease (AD), pain, depression, and seizures. The main compounds include coumarins, monoterpenes, sulfide compounds, and polyphenol compounds, which can improve the functioning of the nervous system. OBJECTIVE: This article has been compiled with the aim of collecting evidence and articles related to the Ferula effects on central nervous system disease. METHODS: This review article was prepared by searching the terms Ferula and analgesic, anticonvulsant, antidepressant, anti-multiple sclerosis, anti-dementia, and neuroprotective effects.The relevant information was collected through searching electronic databases such as ISI Web of Knowledge, PubMed, and Google Scholar. RESULTS: Genus Ferula has a protective effect on nerve cells by reducing cytokines such as IL-6, IL- 1b, and TNF-α. Therefore, the effects of Ferula plants and their effective ingredients can be used to prevent or improve diseases that destroy the nervous system. The members of this genus play a role in strengthening and improving the antioxidant system, reducing the level of oxidative stress, and inhibiting or reducing inflammatory factors in the nervous system. CONCLUSION: Although the effects of several species of Ferula on the nervous system have been investigated, most studies have not clearly identified the molecular mechanisms as well as the specific functional regions of the brain. The present study was compiled in order to investigate different aspects of the effects of Ferula plants on the central nervous system.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Ferula , Ferula/química , Humanos , Animales , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
14.
Artículo en Inglés | MEDLINE | ID: mdl-38887090

RESUMEN

OBJECTIVE: The present study was aimed at investigating the antinociceptive and anti-inflammatory activities of the solvent fractions of the roots of Echinops kebericho Mesfin in rodent models of pain and inflammation. METHODS: Successive maceration was used as a method of extraction using solvents of increasing polarity: methanol and water. Ethyl acetate, chloroform and distilled water were used as solvents of the fraction process. Swiss albino mice models were used in acetic acid induced writhing, hot plate, carrageenan induced paw edema and cotton pellet granuloma to assess the analgesic and anti-inflammatory activities. The test groups received different doses (100 mg/kg, 200 mg/kg and 400 mg/kg) of the three fractions (chloroform, ethyl acetate and aqueous). The positive control groups received ASA (150 mg/kg) for the writing test, morphine (10 mg/kg) for the hot plate method, diclofenac Na for carrageenan-induced paw edema, and dexamethasone (10 mg/kg) for granuloma, while the negative control group received distilled water. RESULTS: EA fraction at all test doses employed (100 mg/kg, 200 mg/kg, and 400 mg/kg) showed statistically significant (p<0.05, p<0.01, p<0.001 respectively) analgesic and anti-inflammatory activities in a dose-dependent manner. The AQ fraction on the other hand produced statistically significant (p<0.05, p<0.012) analgesic and anti-inflammatory activities at the doses of 200 mg/kg and 400 mg/kg, while the CH fraction exhibited statistically significant (p<0.05) analgesic and anti-inflammatory activity at the dose of 400 mg/kg. CONCLUSIONS: In general, the data obtained from the present study elucidated that the solvent fractions of the study plant possessed significant analgesic and anti-inflammatory activities and were recommended for further investigations.

15.
J Ethnopharmacol ; 333: 118489, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38914149

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mucuna pruriens L is a wild and cultivated leguminous plant which have been used as an aphrodisiac, diuretic, nerve tonic, and antiarthritic agent. AIM: To evaluate the toxicity, antinociceptive, and anti-inflammatory activities of M. pruriens (EEMP) ethanol extract in experimental models. METHODS: M. pruriens dried leaves were extracted using aqueous ethanol (30:70). Tests for acute and subacute toxicity were conducted on rats and mice. Mice were used in hotplate, acetic acid, and formalin models to test the antinociceptive activity of EEMP. The anti-inflammatory properties of EEMP (25, 100, and 400 mg/kg) were assessed egg albumin, carrageenan, and formalin-induced oedema models. The study examined the anti-inflammatory mechanism of EEMP (25-400 mg/kg) in rats with an air pouch caused by carrageenan. Air pouch exudates were tested for total leucocytes and differential cell counts, TNF-α, IL-6, myeloperoxidase activity, malondialdehyde, nitrites, and reduced glutathione (GSH). RESULTS: The acute oral toxic dose of EEMP is greater than 2000 mg/kg. There were no significant behavioral, hematological or biochemical alterations seen after 14-days repeated administration of EEMP (200, 400 and 800 mg/kg) in mice. The EEMP demonstrated significant antinociceptive activity in hotplate, acetic acid and formalin-induced nociception in mice. The EEMP significantly and dose dependently reduced paw oedema at 2, 4 and 96 h in the egg-albumin, carrageenan- and formalin-induced paw oedema, respectively. Exudates volume, inflammatory cell counts, TNF-α, IL-6, myeloperoxidase, malondialdehyde and nitrites were significantly reduced, while GSH increased in carrageenan-air pouch of EEMP-treated rats. CONCLUSION: Mucuna pruriens leaves ethanol extract demonstrated good safety profile as well as antinociceptive and anti-inflammatory activity through mechanisms related to inhibition of oxidative stress and pro-inflammatory cytokines as well as lysosomal membrane stability.


Asunto(s)
Analgésicos , Antiinflamatorios , Edema , Mucuna , Extractos Vegetales , Hojas de la Planta , Animales , Extractos Vegetales/farmacología , Analgésicos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Masculino , Ratones , Edema/tratamiento farmacológico , Edema/inducido químicamente , Ratas , Mucuna/química , Femenino , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Carragenina , Ratas Wistar , Relación Dosis-Respuesta a Droga , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Formaldehído/toxicidad , Pruebas de Toxicidad Subaguda
16.
J Asian Nat Prod Res ; 26(9): 1024-1032, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38853517

RESUMEN

Investigation of the fruits of Rhododendron molle G. Don led to the isolation of three new grayanane-type diterpenoids, rhodomolleins LIV-LVI (1-3). The structures and absolute configurations of new compounds were fully elucidated by spectroscopic analysis and single-crystal X-ray diffraction, including HRESIMS, 1 D and 2 D NMR data. Compounds 1-3 were evaluated for analgesic activities utilizing an acetic acid-induced writhing test in mice. Compound 1 showed a significant antinociceptive effect with writhe inhibition rates of 72.9% and 100% at doses of 6 mg/kg and 20 mg/kg in mice, respectively. The binding mode of 1 to N-ethylmaleimide-sensitive factor (NSF, PDB: 6IP2) was explored by molecular docking, indicating the presence of hydrogen bond interactions which account for its analgesic activity.


Asunto(s)
Analgésicos , Diterpenos , Frutas , Rhododendron , Animales , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Rhododendron/química , Analgésicos/farmacología , Analgésicos/química , Ratones , Estructura Molecular , Frutas/química , Simulación del Acoplamiento Molecular , Masculino , Cristalografía por Rayos X
17.
Nat Prod Res ; : 1-7, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785383

RESUMEN

Preliminary pharmacological studies revealed that the EtOAc fraction (BGEA) might be the main active fraction with anti-inflammatory and antinociceptive effects in Beaumontia grandiflora Wall. Further assays on BGEA at doses of 200, 400, and 800 mg/kg using four animal models showed that it could inhibit the xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced writhing and prolong the latency time in the hot-plate test. ELISA analysis revealed that the anti-inflammatory activity of BGEA might be associated with the decrease of TNF-α, IL-1ß, and IL-6 levels and the increase of the IL-10 level. The acute toxicity test showed that except for the n-BuOH fraction, the LD50 values of the extract and other three fractions were higher than 2000 mg/kg bw. Finally, 14 compounds were identified from BGEA by LC-MS. This research provides some basis for the folk use of B. grandiflora in the treatment of inflammation and pain-related diseases.

18.
Heliyon ; 10(9): e30435, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765157

RESUMEN

The synthesis of a new series of thiadiazine thiones including 5-(2-hydroxyethyl)-3-alkyl/aryl-1, 3, 5-thiadiazine-2-thiones (1-5), 5-(2-hydroxypropyl)-3-alkyl/aryl-1, 3, 5-thiadiazine-2-thiones (6-8), 3,5-dipropyl-1, 3, 5-thiadiazine-2-thione (9) and (2-(5-alkyl/aryl-6-thioxo-1, 3, 5-thiadiazine-3-yl) alkyl acetate/benzoate) (10-17) was accomplished via one pot reaction. The structures of the synthesized compounds were characterized through NMR and Mass spectrometry. The anti-nociceptive activity of compounds was performed on BALB/C mice by hot plate method, where compounds 3, 5 (50 µg/kg), and 8 (50, 100 µg/kg) exhibited significant effect (P < 0.01, P < 0.05) in latency time of 15, 30, and 60 min, while compounds 6 and 16 (100 µg/kg) exhibited significant effect (P < 0.01, P < 0.05) in latency time interval of 15 and 30 min. Compounds 1, 12-13, and 15 showed moderate activity. Among the tested hits, compounds 5 (17.3 ± 2.2), 11 (16.2 ± 2.1), and 8 (16.1 ± 2.1) showed significant anti-nociceptive potential. Molecular docking studies on the most active anti-nociceptive hits indicated that the activity might be attributed to the ability of the compounds to target µ-opioid receptor (µOR) effectively. Furthermore, compounds 14 and 11 showed anti-bacterial activity against Pseudomonas aeruginosa and MSRA with MIC of 40.97 and 54.77 µg/mL, respectively. In addition, the predicted ADMET profile of 5, 9, and 11 indicates that these molecules follow the drug-likeness criteria, and their activity can be enhanced through structural optimization.

19.
ACS Chem Neurosci ; 15(11): 2198-2222, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38741575

RESUMEN

In the present study, a series of original alaninamide derivatives have been designed applying a combinatorial chemistry approach, synthesized, and characterized in the in vivo and in vitro assays. The obtained molecules showed potent and broad-spectrum activity in basic seizure models, namely, the maximal electroshock (MES) test, the 6 Hz (32 mA) seizure model, and notably, the 6 Hz (44 mA) model of pharmacoresistant seizures. Most potent compounds 26 and 28 displayed the following pharmacological values: ED50 = 64.3 mg/kg (MES), ED50 = 15.6 mg/kg (6 Hz, 32 mA), ED50 = 29.9 mg/kg (6 Hz, 44 mA), and ED50 = 34.9 mg/kg (MES), ED50 = 12.1 mg/kg (6 Hz, 32 mA), ED50 = 29.5 mg/kg (6 Hz, 44 mA), respectively. Additionally, 26 and 28 were effective in the ivPTZ seizure threshold test and had no influence on the grip strength. Moreover, lead compound 28 was tested in the PTZ-induced kindling model, and then, its influence on glutamate and GABA levels in the hippocampus and cortex was evaluated by the high-performance liquid chromatography (HPLC) method. In addition, 28 revealed potent efficacy in formalin-induced tonic pain, capsaicin-induced pain, and oxaliplatin- and streptozotocin-induced peripheral neuropathy. Pharmacokinetic studies and in vitro ADME-Tox data proved favorable drug-like properties of 28. The patch-clamp recordings in rat cortical neurons showed that 28 at a concentration of 10 µM significantly inhibited fast sodium currents. Therefore, 28 seems to be an interesting candidate for future preclinical development in epilepsy and pain indications.


Asunto(s)
Analgésicos , Anticonvulsivantes , Convulsiones , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Anticonvulsivantes/síntesis química , Analgésicos/farmacología , Convulsiones/tratamiento farmacológico , Masculino , Ratas , Ratones , Modelos Animales de Enfermedad , Ratas Wistar , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Electrochoque , Neuronas/efectos de los fármacos , Neuronas/metabolismo
20.
Fitoterapia ; 176: 106002, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729245

RESUMEN

Pain and inflammation are major health issues worldwide, leading to negative consequences. Despite several drugs being available to manage these conditions, their effectiveness can be limited by cost, adverse reactions, and potential tolerance and dependence with long-term use. Euphorbia characias traditionally used in folk medicine for its diverse biological activities - including antiproliferative, antimicrobial, and anti-inflammatory effects - has not been extensively studied in vivo for its analgesic and anti-inflammatory properties. In this study, the antinociceptive and anti-inflammatory properties of the water and ethanolic extracts of E. characias flowers (ECAEFl and ECEEFl) were evaluated using various models. Both extracts significantly reduced paw licking time in a formalin-induced paw licking model, with ECAEFl specifically targeting and ECEEFl affecting both the neurogenic and inflammatory phases. Additionally, in the carrageenan-induced cell migration model, both extracts showed a significant decrease in leukocyte migration, protein extravasation and nitric oxide levels, further demostrating their anti-inflammatory activity. High-Resolution HPLC-ESI-QTOF-MS-MS and HPLC-PDA analysis characterized the chemical composition of the extracts, identifying a significant presence of phenolic compounds, particularly quercetin and its derivatives, which likely contribute to the observed biological activities. These findings highlight the potential of E. characias extracts as natural sources of compounds with antinociceptive and anti-inflammatory properties. Further investigations are needed to elucidate the underlying mechanisms and explore their therapeutic potential in pain and inflammation-related disorders.


Asunto(s)
Analgésicos , Antiinflamatorios , Modelos Animales de Enfermedad , Euphorbia , Flores , Inflamación , Dolor Nociceptivo , Extractos Vegetales , Animales , Euphorbia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratones , Antiinflamatorios/farmacología , Analgésicos/farmacología , Flores/química , Inflamación/tratamiento farmacológico , Masculino , Dolor Nociceptivo/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA