Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Ecol Evol ; 14(9): e70307, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39310733

RESUMEN

Transparency is an intuitive form of concealment and, in certain butterflies, transparent patches on the wings can contribute to several distinct forms of camouflage. However, perhaps paradoxically, the largely transparent wings of many clearwing butterflies (Ithomiini, Nymphalidae) also feature opaque, and often colorful, elements which may reduce crypsis. In many instances, these elements may facilitate aposematic signaling, but little is known of how transparency and aposematism may interact. Here, we used field predation trials to ask two main questions regarding camouflage and signaling in Ithomiini clearwings. In Experiment 1, we focused on camouflage to ask where being transparent may have an advantage over being opaque. We predicted that, as a single opaque pattern can only match a limited range of backgrounds, transparent wings would offer more effective concealment, and experience lower predation risk, over a wider range of backgrounds colors (i.e., green vs. brown substrates) and behaviors (i.e., perched vs. flying) than opaque wings. In Experiment 2, we focused on the effect conspicuous opaque colors may have on clearwing survival. We predicted that although salient signals may increase detectability, those commonly associated with toxic Ithomiini clearwings would not increase predation risk. Both experiments were conducted among educated predators within the natural range of Ithomiini clearwings and we found predation rates to be very low. In Experiment 1, we found some marginal evidence to suggest that opaque, but not transparent, butterflies may suffer increased predation during flight, whereas in Experiment 2, we found equal survival across all model prey types regardless of coloration. Taken together we suggest that any loss of camouflage due to conspicuous coloration may be compensated by aversive signaling, and that educated predators may broadly generalize across a wide range of known and novel clearwing phenotypes.

2.
J Chem Ecol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276200

RESUMEN

In this paper, we examine intraspecific variation in the quantity of alkaloid chemical defence in field collected individuals of the polymorphic ladybird beetle Adalia decempunctata (10-spot ladybird). Like its more widely studied relative Adalia bipunctata (2-spot ladybird), A. decempunctata possesses the alkaloids adaline and adalinine, which are, respectively, the major and minor alkaloids of A. bipunctata. We focused especially on alkaloid concentration in relation to colour pattern morph, sex, and the relationship between female and egg parameters. There was a marked sexual dimorphism in the balance of the two alkaloids, with adaline predominating in females and adalinine predominating in males: in males, on average, over 70% of total alkaloid was adalinine. Females had a lower proportion of adalinine (< 10%) than their eggs (> 15%) and relationships between egg alkaloid and female alkaloid or fecundity were weak or non-existent. Colour pattern morph had a borderline (although not) significant relationship with adaline concentration and total alkaloid concentration, which could be further explored with laboratory reared individuals. The sexual dimorphism in alkaloid content, which seems likely due to differences in synthesis, might be related to their relative costs to the two sexes and might provide insight into the evolution of alkaloid diversity in ladybirds.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39279365

RESUMEN

Plants and animals are often adorned with potentially conspicuous colours (e.g. red, yellow, orange, blue, purple). These include the dazzling colours of fruits and flowers, the brilliant warning colours of frogs, snakes, and invertebrates, and the spectacular sexually selected colours of insects, fish, birds, and lizards. Such signals are often thought to utilize pre-existing sensitivities in the receiver's visual systems. This raises the question: what was the initial function of conspicuous colouration and colour vision? Here, we review the origins of colour vision, fruit, flowers, and aposematic and sexually selected colouration. We find that aposematic colouration is widely distributed across animals but relatively young, evolving only in the last ~150 million years (Myr). Sexually selected colouration in animals appears confined to arthropods and chordates, and is also relatively young (generally <100 Myr). Colourful flowers likely evolved ~200 million years ago (Mya), whereas colourful fruits/seeds likely evolved ~300 Mya. Colour vision (sensu lato) appears to be substantially older, and likely originated ~400-500 Mya in both arthropods and chordates. Thus, colour vision may have evolved long before extant lineages with fruit, flowers, aposematism, and sexual colour signals. We also find that there appears to have been an explosion of colour within the last ~100 Myr, including >200 origins of aposematic colouration across nine animal phyla and >100 origins of sexually selected colouration among arthropods and chordates.

4.
Behav Ecol ; 35(5): arae053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086666

RESUMEN

The "escape and radiate" hypothesis predicts that once species have evolved aposematism, defended species can utilize more visually diverse visual backgrounds as they "escape" the need to be well camouflaged. This enables species to explore new ecological niches, resulting in increased diversification rates. To test this hypothesis "escape" component, we examined whether the background habitats of 12 nudibranch mollusk species differed among species depending on the presence and strength of chemical defenses. We obtained a rich array of color pattern statistics using quantitative color pattern analysis to analyze backgrounds viewed through the eyes of a potential predator (triggerfish, Rhinecanthus aculeatus). Color pattern analysis was done at viewing distances simulating an escalating predation sequence. We identified 4 latent factors comprising 17 noncorrelated color pattern parameters, which captured the among-species variability associated with differences in chemical defenses. We found that chemically defended species, indeed, were found on visually distinct backgrounds with increased color and luminance contrast, independent of viewing distance. However, we found no evidence for increased among-species background diversity coinciding with the presence and strength of chemical defenses. Our results agree with the "escape and radiate" hypothesis, suggesting that potent chemical defenses in Dorid nudibranchs coincide with spatiochromatic differences of visual background habitats perceived by potential predators.

5.
Am Nat ; 204(3): 201-220, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39179235

RESUMEN

AbstractRepeatable macroevolutionary patterns provide hope for rules in biology, especially when we can decipher the underlying mechanisms. Here we synthesize natural history, genetic adaptations, and toxin sequestration in herbivorous insects that specialize on plants with cardiac glycoside defenses. Work on the monarch butterfly provided a model for evolution of the "sequestering specialist syndrome," where specific amino acid substitutions in the insect's Na+/K+-ATPase are associated with (1) high toxin resistance (target site insensitivity [TSI]), (2) sequestration of toxins, and (3) aposematic coloration. We evaluate convergence for these traits within and between Lepidoptera, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Orthoptera, encompassing hundreds of toxin-adapted species. Using new and existing data on ∼28 origins of specialization, we show that the monarch model evolved independently in five taxonomic orders (but not Diptera). An additional syndrome occurs in five orders (all but Hymenoptera): aposematic sequesterers with modest to medium TSI. Indeed, all sequestering species were aposematic, and all but one had at least modest TSI. Additionally, several species were aposematic nonsequesterers (potential Batesian mimics), and this combination evolved in species with a range of TSI levels. Finally, we identified some biases among these strategies within taxonomic orders. Biodiversity in this microcosm of life evolved repeatedly with a high degree of similarity across six taxonomic orders, yet we identified alternative trait combinations as well as lineage-specific outcomes.


Asunto(s)
Evolución Biológica , Cardenólidos , Herbivoria , Insectos , Animales , Insectos/genética , Cardenólidos/metabolismo
6.
Proc Biol Sci ; 291(2027): 20240953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013421

RESUMEN

The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.


Asunto(s)
Color , Gastrópodos , Conducta Predatoria , Animales , Gastrópodos/fisiología , Pigmentación , Mimetismo Biológico
7.
Insects ; 15(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057198

RESUMEN

Many toxic animals display bright colour patterns to warn predators about their toxicity. This sometimes leads other sympatric palatable organisms to evolve mimetic colour patterns to also evade predation. These mimics, however, are often imperfect, and it is unclear how much their colour patterns can vary away from the model before they become ineffective. In this study, we investigated how predation risk of the palatable Common Mormon butterfly (Papilio polytes) is affected by two alterations of its wing pattern that make it progressively more distinct from its model, the Common Rose (Pachliopta aristolochiae). We deployed butterfly paper models in the field, where all models displayed the same colours but had different patterns. In the first modification from the Wildtype pattern, we exchanged the position of the red and white colour patches but kept the overall pattern constant. In the second modification, we created an eyespot-like shape from the pre-existing pattern elements by moving their positions in the wing, altering the overall wing pattern. Both modifications increased attack risk from predators relative to Wildtype patterns, with the eyespot-like modification having the highest predation risk. Our results show that avian predators can distinguish between all three patterns tested, and that pattern is important in aposematic signals. Predators learn to avoid aposematic colours, not in isolation, but as part of specific patterns.

8.
J Evol Biol ; 37(9): 1064-1075, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39044333

RESUMEN

Prey often rely on multiple defences against predators, such as flight speed, attack deflection from vital body parts, or unpleasant taste, but our understanding on how often and why they are co-exhibited remains limited. Eudaminae skipper butterflies use fast flight and mechanical defences (hindwing tails), but whether they use other defences like unpalatability (consumption deterrence) and how these defences interact have not been assessed. We tested the palatability of 12 abundant Eudaminae species in Peru, using training and feeding experiments with domestic chicks. Further, we approximated the difficulty of capture based on flight speed and quantified it by wing loading. We performed phylogenetic regressions to find any association between multiple defences, body size, and habitat preference. We found a broad range of palatability in Eudaminae, within and among species. Contrary to current understanding, palatability was negatively correlated with wing loading, suggesting that faster butterflies tend to have lower palatability. The relative length of hindwing tails did not explain the level of butterfly palatability, showing that attack deflection and consumption deterrence are not mutually exclusive. Habitat preference (open or forested environments) did not explain the level of palatability either, although butterflies with high wing loading tended to occupy semi-closed or closed habitats. Finally, the level of unpalatability in Eudaminae is size dependent. Larger butterflies are less palatable, perhaps because of higher detectability/preference by predators. Altogether, our findings shed light on the contexts favouring the prevalence of single versus multiple defensive strategies in prey.


Asunto(s)
Mariposas Diurnas , Vuelo Animal , Conducta Predatoria , Animales , Mariposas Diurnas/fisiología , Perú , Cola (estructura animal)/fisiología , Alas de Animales/anatomía & histología , Filogenia
9.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38874406

RESUMEN

Aposematic organisms rely on their conspicuous appearance to signal that they are defended and unpalatable. Such phenotypes are strongly tied to survival and reproduction. Aposematic colors and patterns are highly variable; however, the genetic, biochemical, and physiological mechanisms producing this conspicuous coloration remain largely unidentified. Here, we identify genes potentially affecting color variation in two color morphs of Ranitomeya imitator: the orange-banded Sauce and the redheaded Varadero morphs. We examine gene expression in black and orange skin patches from the Sauce morph and black and red skin patches from the Varadero morph. We identified genes differentially expressed between skin patches, including those that are involved in melanin synthesis (e.g. mlana, pmel, tyrp1), iridophore development (e.g. paics, ppat, ak1), pteridine synthesis (e.g. gch1, pax3-a, xdh), and carotenoid metabolism (e.g. dgat2, rbp1, scarb2). In addition, using weighted correlation network analysis, we identified the top 50 genes with high connectivity from the most significant network associated with gene expression differences between color morphs. Of these 50 genes, 13 were known to be related to color production (gch1, gmps, gpr143, impdh1, mc1r, pax3-a, pax7, ppat, rab27a, rlbp1, tfec, trpm1, xdh).


Asunto(s)
Pigmentación , Ranas Venenosas , Animales , Mimetismo Biológico/genética , Melaninas/biosíntesis , Pigmentación/genética , Ranas Venenosas/genética
10.
Mol Ecol ; 33(14): e17438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923007

RESUMEN

A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which species share a conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which mimicry is produced in poison frogs. We assembled a 6.02-Gbp genome with a contig N50 of 310 Kbp, a scaffold N50 of 390 Kbp and 85% of expected tetrapod genes. We leveraged this genome to conduct gene expression analyses throughout development of four colour morphs of Ranitomeya imitator and two colour morphs from both R. fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes differentially expressed throughout development, many of them related to melanophores/melanin, iridophore development and guanine synthesis. We also identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species, and identify several plausible candidates for colouration in vertebrates (e.g. cd36, ep-cadherin and perlwapin). Finally, we hypothesise that keratin genes (e.g. krt8) are important for producing different structural colours within these frogs.


Asunto(s)
Mimetismo Biológico , Fenotipo , Pigmentación , Animales , Mimetismo Biológico/genética , Pigmentación/genética , Genómica , Ranidae/genética , Ranidae/crecimiento & desarrollo , Genoma/genética , Evolución Biológica , Selección Genética , Anuros/genética , Anuros/crecimiento & desarrollo
11.
Behav Processes ; 220: 105071, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908610

RESUMEN

Prey-predator interactions have resulted in the evolution of many anti-predatory traits. One of them is the ability for prey to listen to predators and avoid them. Although prey anti-predatory behavioural responses to predator auditory cues are well described in a wide range of taxa, studies on whether butterflies change their behaviours in response to their predatory calls are lacking. Heliconius butterflies are unpalatable and form Müllerian mimicry rings as morphological defence strategies against their avian predators. Like many other butterflies in the Nymphalidae family, some Heliconius butterflies possess auditory organs, which are hypothesized to assist with predator detection. Here we test whether Heliconius melpomene change their behaviour in response to their predatory bird calls by observing the behaviour of male and female H. m. plessini exposed to calls of Heliconius avian predators: rufous-tailed jacamar, migratory Eastern kingbird, and resident tropical kingbird. We also exposed them to the calls of the toco toucan, a frugivorous bird as a control bird call, and an amplified greenhouse background noise as a noise control. We found that individuals changed their behaviour in response to jacamar calls only. Males increased their walking and fluttering behaviour, while females did not change their behaviour during the playback of the jacamar call. Intersexual behaviours like courtship, copulation, and abdomen lifting did not change in response to bird calls. Our findings suggest that despite having primary predatory defences like toxicity and being in a mimicry ring, H. m. plessini butterflies changed their behaviour in response to predator calls. Furthermore, this response was predator specific, as H. m. plesseni did not respond to either the Eastern kingbird or the tropical kingbird calls. This suggests that Heliconius butterflies may be able to differentiate predatory calls, and potentially the birds associated with those calls.


Asunto(s)
Mariposas Diurnas , Conducta Predatoria , Animales , Mariposas Diurnas/fisiología , Conducta Predatoria/fisiología , Masculino , Femenino , Vocalización Animal/fisiología , Aves/fisiología , Mimetismo Biológico/fisiología , Conducta Animal/fisiología
12.
Zoolog Sci ; 41(3): 275-280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809866

RESUMEN

Aposematic coloration plays a crucial role in animal defense, and it is shaped by a complex interplay of factors such as physiological limitations and sexual and natural selection. Warty newts within the genus Paramesotriton exhibit significant variation in ventral coloration. In this study, we quantified the percentage of red ventral area to investigate aposematic ventral coloration in Paramesotriton deloustali and P. guangxiensis across eight populations in northern Vietnam. To assess the interaction between predators and the aposematic signals, we conducted experiments employing three types of clay replicas of newts: dorsal, red ventral, and black ventral models. Our findings revealed a significant variation in the red ventral area among different populations. Additionally, a significant correlation was detected between the red ventral area of the newt and the annual temperature range. In clay model experiments, a significant difference in predator attack rates was observed between dorsal and ventral clay models. Interestingly, there was no significant difference in attack rates between red and black ventral types. Our study suggested that the variation in the red ventral area of warty newts is probably influenced by multiple factors, including genetic constraints, sex, ambient environment, and diet. Furthermore, our results supported the effectiveness of displaying aposematic coloration as an antipredator defense mechanism in warty newts. However, variations in body size and the pressure of mammal predation might not play a significant role in determining aposematic coloration.


Asunto(s)
Pigmentación , Animales , Pigmentación/fisiología , Masculino , Femenino , Conducta Predatoria/fisiología , Mimetismo Biológico/fisiología , Vietnam
13.
Biol Lett ; 20(5): 20230610, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38747686

RESUMEN

Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.


Asunto(s)
Quirópteros , Escarabajos , Ecolocación , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Quirópteros/fisiología , Escarabajos/fisiología , Conducta Predatoria , Mimetismo Biológico
14.
Biol Lett ; 20(5): 20240050, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38773926

RESUMEN

Larval Lepidoptera gain survival advantages by aggregating, especially when combined with aposematic warning signals, yet reductions in predation risk may not be experienced equally across all group members. Hamilton's selfish herd theory predicts that larvae that surround themselves with their group mates should be at lower risk of predation, and those on the periphery of aggregations experience the greatest risk, yet this has rarely been tested. Here, we expose aggregations of artificial 'caterpillar' targets to predation from free-flying, wild birds to test for marginal predation when all prey are equally accessible and for an interaction between warning coloration and marginal predation. We find that targets nearer the centre of the aggregation survived better than peripheral targets and nearby targets isolated from the group. However, there was no difference in survival between peripheral and isolated targets. We also find that grouped targets survived better than isolated targets when both are aposematic, but not when they are non-signalling. To our knowledge, our data provide the first evidence to suggest that avian predators preferentially target peripheral larvae from aggregations and that prey warning signals enhance predator avoidance of groups.


Asunto(s)
Larva , Conducta Predatoria , Animales , Larva/fisiología
15.
Behav Ecol ; 35(1): arad097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550303

RESUMEN

Aposematic prey advertise their unprofitability with conspicuous warning signals that are often composed of multiple color patterns. Many species show intraspecific variation in these patterns even though selection is expected to favor invariable warning signals that enhance predator learning. However, if predators acquire avoidance to specific signal components, this might relax selection on other aposematic traits and explain variability. Here, we investigated this idea in the aposematic moth Amata nigriceps that has conspicuous black and orange coloration. The size of the orange spots in the wings is highly variable between individuals, whereas the number and width of orange abdominal stripes remains consistent. We produced artificial moths that varied in the proportion of orange in the wings or the presence of abdominal stripes. We presented these to a natural avian predator, the noisy miner (Manorina melanocephala), and recorded how different warning signal components influenced their attack decisions. When moth models had orange stripes on the abdomen, birds did not discriminate between different wing signals. However, when the stripes on the abdomen were removed, birds chose the model with smaller wing spots. In addition, we found that birds were more likely to attack moths with a smaller number of abdominal stripes. Together, our results suggest that bird predators primarily pay attention to the abdominal stripes of A. nigriceps, and this could relax selection on wing coloration. Our study highlights the importance of considering individual warning signal components if we are to understand how predation shapes selection on prey warning coloration.

16.
Proc Natl Acad Sci U S A ; 121(11): e2318857121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437547

RESUMEN

Warning coloration and Batesian mimicry are classic examples of Darwinian evolution, but empirical evolutionary patterns are often paradoxical. We test whether foraging costs predict the evolution of striking coloration by integrating genetic and ecological data for aposematic and mimetic snakes (Elapidae and Dipsadidae). Our phylogenetic comparison on a total of 432 species demonstrated that dramatic changes in coloration were well predicted by foraging strategy. Multiple tests consistently indicated that warning coloration and conspicuous mimicry were more likely to evolve in species where foraging costs of conspicuous appearance were relaxed by poor vision of their prey, concealed habitat, or nocturnal activity. Reversion to crypsis was also well predicted by ecology for elapids but not for dipsadids. In contrast to a theoretical prediction and general trends, snakes' conspicuous coloration was correlated with secretive ecology, suggesting that a selection regime underlies evolutionary patterns. We also found evidence that mimicry of inconspicuous models (pitvipers) may have evolved in association with foraging demand for crypsis. These findings demonstrate that foraging is an important factor necessary to understand the evolution, persistence, and diversity of warning coloration and mimicry of snakes, highlighting the significance of additional selective factors in solving the warning coloration paradox.


Asunto(s)
Mimetismo Biológico , Baja Visión , Humanos , Filogenia
17.
Mol Phylogenet Evol ; 195: 108065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531492

RESUMEN

Poison frogs (Dendrobatidae) are famous for their aposematic species, having a combination of diverse color patterns and defensive skin toxins, yet most species in this family are inconspicuously colored and considered non-aposematic. Epipedobates is among the youngest genus-level clades of Dendrobatidae that includes both aposematic and inconspicuous species. Using Sanger-sequenced mitochondrial and nuclear markers, we demonstrate deep genetic divergences among inconspicuous species of Epipedobates but relatively shallow genetic divergences among conspicuous species. Our phylogenetic analysis includes broad geographic sampling of the inconspicuous lineages typically identified as E. boulengeri and E. espinosai, which reveals two putative new species, one in west-central Colombia (E. sp. 1) and the other in north-central Ecuador (E. aff. espinosai). We conclude that E. darwinwallacei is a junior subjective synonym of E. espinosai. We also clarify the geographic distributions of inconspicuous Epipedobates species including the widespread E. boulengeri. We provide a qualitative assessment of the phenotypic diversity in each nominal species, with a focus on the color and pattern of inconspicuous species. We conclude that Epipedobates contains eight known valid species, six of which are inconspicuous. A relaxed molecular clock analysis suggests that the most recent common ancestor of Epipedobates is âˆ¼11.1 million years old, which nearly doubles previous estimates. Last, genetic information points to a center of species diversity in the Chocó at the southwestern border of Colombia with Ecuador. A Spanish translation of this text is available in the supplementary materials.


Asunto(s)
Anuros , Ranas Venenosas , Animales , Filogenia , Anuros/genética , Mitocondrias , Ecuador
18.
Mol Phylogenet Evol ; 194: 108022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325534

RESUMEN

The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.


Asunto(s)
Mariposas Diurnas , Animales , Filogenia , Mariposas Diurnas/genética , Nueva Guinea , Australia , Ecosistema
19.
J Exp Biol ; 227(3)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38179687

RESUMEN

For animals that synthesise their chemical compounds de novo, resources, particularly proteins, can influence investment in chemical defences and nitrogen-based wing colouration such as melanin. Competing for the same resources often leads to trade-offs in resource allocation. We manipulated protein availability in the larval diet of the wood tiger moth, Arctia plantaginis, to test how early life resource availability influences relevant life history traits, melanin production and chemical defences. We expected higher dietary protein to result in more effective chemical defences in adult moths and a higher amount of melanin in the wings. According to the resource allocation hypothesis, we also expected individuals with less melanin to have more resources to allocate to chemical defences. We found that protein-deprived moths had a slower larval development, and their chemical defences were less unpalatable for bird predators, but the expression of melanin in their wings did not differ from that of moths raised on a high-protein diet. The amount of melanin in the wings, however, unexpectedly correlated positively with chemical defences. Our findings demonstrate that the resources available in early life have an important role in the efficacy of chemical defences, but melanin-based warning colours are less sensitive to resource variability than other fitness-related traits.


Asunto(s)
Mariposas Nocturnas , Humanos , Animales , Melaninas/metabolismo , Larva/metabolismo , Dieta/veterinaria , Asignación de Recursos
20.
Trends Ecol Evol ; 39(3): 225-228, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38267287

RESUMEN

Positive frequency-dependent selection should theoretically lead to monomorphic warning coloration. Instead, numerous examples of polymorphic warning signals exist. Biases - for example, in human perception - hinder our appreciation and research of understanding warning signal diversity. We propose strategies to counter such biases and objectively move our field forward.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA