Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Breast Cancer Res Treat ; 207(1): 187-201, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750271

RESUMEN

PURPOSE: HER2-positive breast cancer (BC) accounts for 20-30% of all BC subtypes and is linked to poor prognosis. Trastuzumab (Tz), a humanized anti-HER2 monoclonal antibody, is a first-line treatment for HER2-positive breast cancer which faces resistance challenges. This study aimed to identify the biomarkers driving trastuzumab resistance. METHODS: Differential expression analysis of genes and proteins between trastuzumab-sensitive (TS) and trastuzumab-resistant (TR) cells was conducted using RNA-seq and iTRAQ. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used to study their functions. The prognostic significance and protein levels of ARFIP2 and MSN were evaluated using online tools and immunohistochemistry. Sensitivity of MSN and ARFIP2 to other therapies was assessed using public pharmacogenomics databases and the R language. RESULTS: Five genes were up-regulated, and nine genes were down-regulated in TR cells at both transcriptional and protein levels. Low ARFIP2 and high MSN expression linked to poor BC prognosis. MSN increased and ARFIP2 decreased in TR patients, correlating with shorter OS. MSN negatively impacted fulvestrant and immunotherapy sensitivity, while ARFIP2 had a positive impact. CONCLUSION: Our findings suggest that MSN and ARFIP2 could serve as promising biomarkers for predicting response to Tz, offering valuable insights for future research in the identification of diagnostic and therapeutic targets for BC patients with Tz resistance.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Proteoma , Transcriptoma , Trastuzumab , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Resistencia a Antineoplásicos/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Pronóstico , Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Línea Celular Tumoral , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética
2.
Cell Signal ; 117: 111073, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38302034

RESUMEN

BACKGROUND: Hepatocellular carcinoma is one of the most common malignancies, and its prognosis and treatment outcome cannot be accurately predicted. ADP-ribosylation (ADPR) is a post-translationa modification of proteins involved in protein trafficking and immune response. Therefore, it is necessary to explore the ADPR-related genes associated with the prognosis and therapeutic efficacy of hepatocellular carcinoma treatments. METHODS: We downloaded the data of hepatocellular carcinoma samples to identify ADPR-related genes as prognostic markers, and established a novel ADPR-related index (ADPRI) based on univariate and multivariate COX regression analyses. Patients' prognosis, clinical features, somatic variant, tumor immune microenvironment, chemotherapeutic response and immunotherapeutic response were systematically analyzed. Finally, the role of ARFIP2 in hepatocellular carcinoma cells was preliminarily explored in vitro. RESULTS: The ADPRI consisting of four ADPR related genes (ARL8B, ARFIP2, PARP12, ADPRHL1) was established to be a reliable predictor of survival in patients with hepatocellular carcinoma and was validated using external datasets. Compared with the low ADPRI group, the high ADPRI group presented higher levels of mutation frequency, immune infiltration and patients in high ADPRI group benefit more from immune checkpoint inhibitor treatment. In addition, we predicted some natural small molecule drugs as potential therapeutic targets for hepatocellular carcinoma. Finally, Knockdown of ARFIP2 inhibits the proliferation and migration of hepatocellular carcinoma cells by inducing the G1/S phase cell cycle arrest in HCC cells. CONCLUSIONS: The ADPRI can be used to accurately predict the prognosis and immunotherapeutic response of hepatocellular carcinoma patients and providing valuable insights for future precision treatment of patients with hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pronóstico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , ADP-Ribosilación , Línea Celular , Microambiente Tumoral , Proteínas Adaptadoras Transductoras de Señales
3.
Antioxidants (Basel) ; 13(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38247505

RESUMEN

(1) Background: Differentiated podocytes are particularly vulnerable to oxidative stress and cellular waste products. The disease-related loss of postmitotic podocytes is a direct indicator of renal disease progression and aging. Podocytes use highly specific regulated networks of autophagy and endocytosis that counteract the increasing number of damaged protein aggregates and help maintain cellular homeostasis. Here, we demonstrate that ARFIP2 is a regulator of autophagy and mitophagy in podocytes both in vitro and in vivo. (2) Methods: In a recent molecular regulatory network analysis of mouse glomeruli, we identified ADP-ribosylation factor-interacting protein 2 (Arfip2), a cytoskeletal regulator and cofactor of ATG9-mediated autophagosome formation, to be differentially expressed with age. We generated an Arfip2-deficient immortalized podocyte cell line using the CRISPR/Cas technique to investigate the significance of Arfip2 for renal homeostasis in vitro. For the in vivo analyses of Arfip2 deficiency, we used a mouse model of Streptozotozin-induced type I diabetes and investigated physiological data and (patho)histological (ultra)structural modifications. (3) Results: ARFIP2 deficiency in immortalized human podocytes impedes autophagy. Beyond this, ARFIP2 deficiency in human podocytes interferes with ATG9A trafficking and the PINK1-Parkin pathway, leading to the compromised fission of mitochondria and short-term increase in mitochondrial respiration and induction of mitophagy. In diabetic mice, Arfip2 deficiency deteriorates autophagy and leads to foot process effacement, histopathological changes, and early albuminuria. (4) Conclusions: In summary, we show that ARFIP2 is a novel regulator of autophagy and mitochondrial homeostasis in podocytes by facilitating ATG9A trafficking during PINK1/Parkin-regulated mitophagy.

4.
J Hepatocell Carcinoma ; 9: 1323-1339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36573219

RESUMEN

Purpose: ARFIP2, a canonical BAR domain-containing protein, is closely associated with regulating cargo exit from the Golgi. However, the potential biological functions of ARFIP2 in hepatocellular carcinoma (HCC) have not been well investigated. This study aimed to explore the critical role of ARFIP2 in HCC cells. Methods: The expression of proteins related to epithelial to mesenchymal transition (EMT) and cell autophagy in HCC cells and tissues was assayed by quantitative real-time PCR, Western blotting, immunohistochemistry and immunofluorescence staining. The ability of cells to proliferate, migrate and invade was detected by Cell Counting Kit-8, Transwell migration and invasion assays. In addition, the function of ARFIP2 in vivo was assessed using a tumour xenograft model. Results: ARFIP2 expression is significantly upregulated in early recurrent and metastatic HCC patients and was positively correlated with a poor prognosis. ARFIP2 overexpression promoted cell proliferation, migration, and invasion by inducing EMT and inhibiting autophagy in vitro. Furthermore, the regulatory effects of ARFIP2 on autophagy and EMT were partially attributed to its regulation of the PI3K/AKT signalling pathway. The in vivo results also showed that ARFIP2 modulates HCC progression. Conclusion: Our results substantiate a novel mechanism by which ARFIP2 can regulate the activity/phosphorylation of Akt to promote EMT and inhibit autophagy in part via the PI3K/Akt signalling pathway. The ARFIP2/PI3K/Akt axis may be a potential diagnostic biomarker and therapeutic target for HCC.

5.
Trends Cell Biol ; 31(7): 515-516, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33972154

RESUMEN

The ATG4 proteases are key regulators of autophagy. Until recently it was thought that their main function was to mediate the processing of ATG8 family members. A new study by Nguyen et al. reveals a role for ATG4s, independent of their catalytic activity, and proposes novel functions in mediating lipid transfer and mitophagy.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Péptido Hidrolasas , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia/genética , Humanos
6.
Metab Brain Dis ; 36(6): 1277-1288, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33837886

RESUMEN

Dysfunction of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of intracranial aneurysm (IA). Circular RNAs (circRNAs) have been implicated in the pathogenesis of IA by reducing microRNA (miRNA) activity. In this paper, we investigated the precise roles of circRNA ADP ribosylation factor interacting protein 2 (circ-ARFIP2, circ_0021001) in VSMC dysfunction. The levels of circ-ARFIP2, miR-338-3p and kinase insert domain receptor (KDR) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease (RNase) R and subcellular fractionation assays were used to assess the stability and localization of circ-ARFIP2, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell invasion was measured by transwell assay. Cell proliferation was gauged by 5-Ethynyl-2'-Deoxyuridine (EdU) assay. Cell migration was evaluated by transwell and wound-healing assays. Targeted correlations among circ-ARFIP2, miR-338-3p and KDR were validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Circ-ARFIP2 and KDR were underexpressed and miR-338-3p was overexpressed in the arterial wall tissues of IA patients. Overexpression of circ-ARFIP2 in human umbilical artery smooth muscle cells (HUASMCs) showed a significant promotion in cell proliferation, migration and invasion. Mechanistically, circ-ARFIP2 targeted miR-338-3p, and circ-ARFIP2 regulated cell behaviors by miR-338-3p. KDR was a direct and functional target of miR-338-3p. Moreover, KDR was a downstream effector of circ-ARFIP2 function. Circ-ARFIP2 regulated KDR expression by targeting miR-338-3p. Our present findings demonstrated that the increased level of circ-ARFIP2 enhanced HUASMC proliferation, migration and invasion at least in part by the miR-338-3p/KDR axis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Movimiento Celular/genética , Proliferación Celular , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , ARN Circular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adulto , Algoritmos , Supervivencia Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal , Fracciones Subcelulares/metabolismo , Arterias Umbilicales/citología
7.
Autophagy ; 15(9): 1660-1661, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31204568

RESUMEN

The identity of the platform supporting the initiation and formation of the nascent autophagosome, the phagophore, is not fully understood. Nucleation and expansion of the phagophore membrane requires a coordinated flux or activation of specific proteins and membrane lipids at the initiation site. The transmembrane protein ATG9A is essential for macroautophagy/autophagy and proposed to be an initiator of the phagophore by directing or facilitating the delivery of proteins and lipids to the initiation site. Upon amino acid starvation, ATG9A-containing vesicles are formed from the Golgi complex and endosomal compartments and translocate to the initiation site. Unravelling the complement of proteins and lipids brought by ATG9A vesicles to the forming autophagosome is essential to further understand the initiation of autophagy.


Asunto(s)
Autofagosomas , Autofagia , Proteínas Relacionadas con la Autofagia , Fosfatos de Fosfatidilinositol
8.
J Proteome Res ; 15(2): 487-98, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26709725

RESUMEN

Hepatitis B virus (HBV) is the main cause of hepatocellular carcinoma (HCC) in southeast Asia where HBV genotype B and genotype C are the most prevalent. Viral genotypes have been reported to significantly affect the clinical outcomes of HCC. However, the underlying molecular differences among different genotypes of HBV virus infected HCC have not been revealed. Here, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify the proteome differences between the HBV genotypes B- and C-induced HCC. In brief, a total of 83 proteins in the surrounding noncancerous tissues and 136 proteins in the cancerous tissues between HBV genotype-B- and genotype-C-induced HCC were identified, respectively. This information revealed that there might be different molecular mechanisms of the tumorigenesis and development of HBV genotypes B- and C-induced HCC. Furthermore, our results indicate that the two proteins ARFIP2 and ANXA1 might be potential biomarkers for distinguishing the HBV genotypes B- and C-induced HCC. Thus, the quantitative proteomic analysis revealed molecular differences between the HBV genotypes B- and C-induced HCC, and might provide fundamental information for further deep study.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Hepatitis B/metabolismo , Neoplasias Hepáticas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Cromatografía Liquida , Femenino , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Genotipo , Hepatitis B/genética , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Interacciones Huésped-Patógeno , Humanos , Marcaje Isotópico/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Proteoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA