Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 178: 106150, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089595

RESUMEN

Ganoderma lucidum (Curtis) P. Karst.(G. lucidum) is a kind of fungi, which also a traditional Chinese medicine used for "wisdom growth" in China. Triterpenoids from G. lucidum (GLTs) are one of the main active ingredients. Based on the strategy of early intervention on Alzheimer's disease (AD) and the inextricable association between disordered gut microbiota and metabolites with AD, this study aimed to explore the mechanisms of GLTs in the protection against AD via microbiota-gut-brain axis with the aid of network pharmacology. In this study, LC-MS/MS was used to identify the main active ingredients of GLTs. Network pharmacology was used to predict the potential target and validated with Caco-2 cell model. D-galactose was used to induce the slow-onset AD on rats. Metabolomics methods basing on GC-MS combined with 16S rRNA sequencing technology was used to carry out microbiota-gut-metabolomics analysis in order to reveal the potential mechanisms of GLTs in the protection of AD. As results, GLTs showed a protection against AD effect on rats by intervening administration. The mechanisms were inextricably linked to GLTs interference with the balance of gut microbiota and metabolites. The main fecal metabolites involved were short-chain fatty acids and aromatic amino acid metabolites.

2.
Int J Food Microbiol ; 416: 110681, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38490108

RESUMEN

In recent years, the presence of molecules derived from aromatic amino acids in wines has been increasingly demonstrated to have a significant influence on wine quality and stability. In addition, interactions between different yeast species have been observed to influence these final properties. In this study, a screening of 81 yeast strains from different environments was carried out to establish a consortium that would promote the improvement of indolic compound levels in wine. Two strains, Saccharomyces uvarum and Saccharomyces eubayanus, with robust fermentative capacity were selected to be combined with a Saccharomyces cerevisiae strain with a predisposition towards the production of indolic compounds. Fermentation dynamics were studied in pure cultures, co-inoculations and sequential inoculations, analysing strain interactions and end-of-fermentation characteristics. Fermentations showing significant interactions were further analyzed for the resulting indolic compounds and aroma profile, with the aim of observing potential interactions and synergies resulting from the combination of different strains in the final wine. Sequential inoculation of S. cerevisiae after S. uvarum or S. eubayanus was observed to increase indolic compound levels, particularly serotonin and 3-indoleacetic acid. This study is the first to demonstrate how the formation of microbial consortia can serve as a useful strategy to enhance compounds with interesting properties in wine, paving the way for future studies and combinations.


Asunto(s)
Saccharomyces , Vino , Vino/análisis , Saccharomyces cerevisiae/metabolismo , Triptófano/análisis , Triptófano/metabolismo , Fermentación , Saccharomyces/metabolismo
3.
J Proteome Res ; 20(11): 5010-5023, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34618462

RESUMEN

Schizophrenia is a complex and highly heterogeneous mental illness with a prodromal period called clinical high risk (CHR) for psychosis before onset. Metabolomics is greatly promising in analyzing the pathology of complex diseases and exploring diagnostic biomarkers. Therefore, we conducted salivary metabolomics analysis in 83 first-episode schizophrenia (FES) patients, 42 CHR individuals, and 78 healthy controls with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The mass spectrometry raw data have been deposited on the MetaboLights (ID: MTBLS3463). We found downregulated aromatic amino acid metabolism, disturbed glutamine and nucleotide metabolism, and upregulated tricarboxylic acid cycle in FES patients, which existed even in the CHR stage and became more intense with the onset of the schizophrenia. Moreover, differential metabolites can be considered as potential diagnostic biomarkers and indicate the severity of the different clinical stages of disease. Furthermore, three disordered pathways were closely related to peripheral indicators of inflammatory response, oxidative stress, blood-brain barrier damage, and salivary microbiota. These results indicate that the disorder of oral metabolism occurs earlier than the onset of schizophrenia and is concentrated and intensified with the onset of disease, which may originate from the dysbiotic salivary microbiota and cause the onset of schizophrenia through the peripheral inflammatory response and redox system, suggesting the importance of oral-brain connection in the pathogenesis of schizophrenia.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Biomarcadores , Humanos , Espectrometría de Masas , Metabolómica/métodos , Síntomas Prodrómicos , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(20): 10806-10817, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32371491

RESUMEN

Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático/química , Dominio Catalítico , Evolución Molecular , Proteínas de Plantas/química , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato
5.
Front Microbiol ; 6: 110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25729381

RESUMEN

Yersinia pestis, the causative agent of plague, poses a serious health threat to rodents and human beings. TyrR is a transcriptional regulator (TyrR) that controls the metabolism of aromatic amino acids in Escherichia coli. In this paper, TyrR played an important role in Y. pestis virulence. Inactivation of tyrR did not seem to affect the in vitro growth of this organism, but resulted in at least 10,000-fold attenuation compared with the wild-type (WT) strain upon subcutaneous infection to mice. In addition, loads of tyrR mutant within mice livers and spleens significantly decreased compared with the WT strain. Transcriptome analysis revealed that TyrR, directly or indirectly, regulated 29 genes encoded on Y. pestis chromosome or plasmids under in vitro growth condition. Similar to the regulatory function of this protein in E. coli, five aromatic-pathway genes (aroF-tyrA, aroP, aroL, and tyrP) were significantly reduced upon deletion of the tyrR gene. Two genes (glnL and glnG) that encode sensory histidine kinase and regulator in a two-component regulatory system involved in nitrogen assimilation were downregulated in the tyrR mutant. Several genes encoding type III secretion proteins were transcribed by 2.0-4.2-fold in a tyrR mutant relative to the WT strain. Interestingly, the acid-stressed genes, hdeB and hdeD, were downregulated, and such downregulation partly accounted for the decrease in tolerance of the tyrR mutant under acidic conditions. In conclusion, regulation of TyrR in Y. pestis is similar to, but distinct from, that in E. coli. TyrR is a metabolic virulence determinant in Y. pestis that is important for extracellular survival and/or proliferation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA