Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.178
Filtrar
1.
3 Biotech ; 14(8): 189, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091407

RESUMEN

This study presents a novel approach to producing activated carbon from agro-industrial residues, specifically cocoa fruit peel, using solid-state fermentation (SSF) with Aspergillus niger. The process effectively degrades lignin, a major impediment in traditional activated carbon production, resulting in a high-quality carbon material. This carbon was successfully utilized for enzyme immobilization and aroma synthesis, showcasing its potential as a versatile biocatalyst. The study meticulously evaluated the physical and chemical attributes of activated carbon derived from fermented cocoa peel, alongside the immobilized enzymes. Employing a suite of analytical techniques-electrophoresis, FTIR, XRD, and TG/DTG the research revealed that fermentation yields a porous material with an expansive surface area of 1107.87 m2/g. This material proves to be an excellent medium for lipase immobilization. The biocatalyst fashioned from the fermented biomass exhibited a notable increase in protein content (13% w/w), hydrolytic activity (15% w/w), and specific activity (29% w/w), underscoring the efficacy of the fermentation process. The significant outcome of this research is the development of a sustainable method for activated carbon production that not only overcomes the limitations posed by lignin but also enhances enzyme immobilization for industrial applications. The study's findings have important implications for the agro-industrial sector, promoting a circular economy and advancing sustainable biotechnological processes.

2.
Nat Prod Res ; : 1-9, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102533

RESUMEN

The Pothos genus is extensively utilised in traditional medicine in China and India. An underexplored species of Pothos tener Wall was identified in Sulawesi, Indonesia. Antimicrobial activity was assessed using microdilutions and streak plates against Staphylococcus aureus, Eschericia coli, Aeromonas hydrophila, Aspergillus niger, and Candida albicans. Significant effectiveness was observed in the methanol extract, as indicated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values for three different extracts (methanol, ethyl acetate, and n-hexane) of P. tener. The isolates obtained were structurally analysed using Ultraviolet (UV)-spectroscopy, Fourier-transform Infra Red-Spectroscopy (FT-IR), Mass Spectroscopy (MS), Nuclear Magnetic Resonance (NMR), and antimicrobial testing after undergoing fractionation and subfractionation. The isolate obtained was stigmasterol with moderate antimicrobial activity against A. niger and A. hydrophila, with MIC equivalent to MBC of 500 µg/ml. The first report of stigmasterol from P. tener has potent antimicrobial properties, bolstering empirical data in this field.

3.
World J Gastroenterol ; 30(26): 3201-3205, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39086640

RESUMEN

In our editorial, we want to comment on the article by Stefanolo et al titled "Effect of Aspergillus niger prolyl endopeptidase in patients with celiac disease on a long-term gluten-free diet". Celiac disease is an immune-mediated disorder triggered by dietary gluten in genetically predisposed individuals. Although avoiding gluten can permit patients to live symptom-free, ongoing voluntary or involuntary exposure to gluten is common and associated with persistent villous atrophy in small bowel mucosa. As villous atrophy predisposes patients to life threatening complications, such as osteoporotic fractures or malignancies, therapeutic adjuncts to gluten-free diet become important to improve patients' quality of life and, if these adjuncts can be shown to improve villous atrophy, avoid complications. Oral administration of enzyme preparations, such as endopeptidases that digest gluten and mitigate its antigenicity to trigger inflammation, is one clinical strategy under investigation. The article is about the utility of one endopeptidase isolated from Aspergillus niger. We critique findings of this clinical trial and also summarize endopeptidase-based as well as other strategies and how they can complement gluten-free diet in the management of celiac disease.


Asunto(s)
Aspergillus niger , Enfermedad Celíaca , Dieta Sin Gluten , Glútenes , Prolil Oligopeptidasas , Humanos , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Aspergillus niger/enzimología , Glútenes/inmunología , Glútenes/efectos adversos , Glútenes/administración & dosificación , Administración Oral , Mucosa Intestinal/inmunología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/enzimología , Calidad de Vida , Endopeptidasas/metabolismo , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/inmunología , Resultado del Tratamiento
4.
Artículo en Inglés | MEDLINE | ID: mdl-39106026

RESUMEN

Green synthesis of bimetallic nanoparticles of noble metals is highly desirable in nanomedicine because of their potential use as anticoagulant, thrombolytic and anticancer agents. In this study, it was discovered that the filamentous fungus Aspergillus niger proved effective in producing bimetallic Ag-Au nanoparticles. A. niger culture supernatant was able to produce Ag-AuNPs by reducing the solution of chloroauric acid/silver nitrate (1.0:1.0 mM) within 2 min at 100 °C and pH 8. Experimental Ag-AuNP detection was performed by visually observing the color change to reddish brown. The produced nanoparticles displayed maximal absorbance at 530 nm in UV-vis spectroscopy. According to transmission electron microscopy, most of the nanoparticles were spherical, with a mean diameter of 8-10 nm. The biosynthesis of Ag-AuNPs by A. niger was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive X-ray analytical techniques. Its zeta potential was discovered to be -34.01 mV. The biosynthesized Ag-AuNPs exhibited effective thrombolytic and antiplatelet aggregation actions by totally preventing and dissolving the blood clot which was verified by microscopic examination, amelioration of blood coagulation assays, and carrageenan-induced tail thrombosis model. The findings verified the effectiveness of biosynthesized Ag-AuNPs as a powerful antitumor agent against HepG2 and A549 cell lines with IC50 values of 15.57 and 27.07 µg/mL, respectively. Crystal violet assay validated the cytopathic effects of Ag-AuNPs on A549 and HepG2 cell lines. Therefore, the produced Ag-AuNPs from A. niger are a promising candidate in the management of thrombosis.

5.
Biotechnol Biofuels Bioprod ; 17(1): 91, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951910

RESUMEN

BACKGROUND: Research on protein production holds significant importance in the advancement of food technology, agriculture, pharmaceuticals, and bioenergy. Aspergillus niger stands out as an ideal microbial cell factory for the production of food-grade proteins, owing to its robust protein secretion capacity and excellent safety profile. However, the extensive oxidative folding of proteins within the endoplasmic reticulum (ER) triggers ER stress, consequently leading to protein misfolding reactions. This stressful phenomenon results in the accelerated generation of reactive oxygen species (ROS), thereby inducing oxidative stress. The accumulation of ROS can adversely affect intracellular DNA, proteins, and lipids. RESULT: In this study, we enhanced the detoxification of ROS in A. niger (SH-1) by integrating multiple modules, including the NADPH regeneration engineering module, the glutaredoxin system, the GSH synthesis engineering module, and the transcription factor module. We assessed the intracellular ROS levels, growth under stress conditions, protein production levels, and intracellular GSH content. Our findings revealed that the overexpression of Glr1 in the glutaredoxin system exhibited significant efficacy across various parameters. Specifically, it reduced the intracellular ROS levels in A. niger by 50%, boosted glucoamylase enzyme activity by 243%, and increased total protein secretion by 88%. CONCLUSION: The results indicate that moderate modulation of intracellular redox conditions can enhance overall protein output. In conclusion, we present a strategy for augmenting protein production in A. niger and propose a potential approach for optimizing microbial protein production system.

6.
EFSA J ; 22(7): e8876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957752

RESUMEN

The food enzyme 3-phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase EC 3.1.3.8) is produced with the non-genetically modified Aspergillus niger strain PHY93-08 by Shin Nihon Chemical Co., Ltd. The food enzyme is free from viable cells of the production organism. It is intended to be used in nine food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two of the food manufacturing processes, dietary exposure was calculated only for the remaining seven processes. It was estimated to be up to 0.763 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise safety concerns. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2560 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3355. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

7.
Front Microbiol ; 15: 1389268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962137

RESUMEN

The process of carbohydrate metabolism and genetic information transfer is an important part of the study on the effects of the external environment on microbial growth and development. As one of the most significant environmental parameters, pH has an important effect on mycelial growth. In this study, the effects of environmental pH on the growth and nutrient composition of Aspergillus niger (A. niger) filaments were determined. The pH values of the medium were 5, 7, and 9, respectively, and the molecular mechanism was further investigated by transcriptomics and metabolomics methods. The results showed that pH 5 and 9 significantly inhibited filament growth and polysaccharide accumulation of A. niger. Further, the mycelium biomass of A. niger and the crude polysaccharide content was higher when the medium's pH was 7. The DEGs related to ribosome biogenesis were the most abundant, and the downregulated expression of genes encoding XRN1, RRM, and RIO1 affected protein translation, modification, and carbohydrate metabolism in fungi. The dynamic changes of pargyline and choline were in response to the oxidative metabolism of A. niger SICU-33. The ribophorin_I enzymes and DL-lactate may be important substances related to pH changes during carbohydrate metabolism of A.niger SICU-33. The results of this study provide useful transcriptomic and metabolomic information for further analyzing the bioinformatic characteristics of A. niger and improving the application in ecological agricultural fermentation.

8.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972980

RESUMEN

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Asunto(s)
Antioxidantes , Aspergillus niger , Plomo , Fosfatos , Fotosíntesis , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Aspergillus niger/metabolismo , Plomo/metabolismo , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Fosfatos/metabolismo , Contaminantes del Suelo/metabolismo , Estrés Fisiológico , Biodegradación Ambiental
9.
World J Gastroenterol ; 30(24): 3044-3047, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38983964

RESUMEN

We comment here on the article by Stefanolo et al entitled "Effect of Aspergillus niger prolyl endopeptidase in patients with celiac disease on a long-term gluten-free diet", published in the World Journal of Gastroenterology. Celiac disease is a well-recognized systemic autoimmune disorder. In genetically susceptible people, the most evident damage is located in the small intestine, and is caused and worsened by the ingestion of gluten. For that reason, celiac patients adopt a gluten-free diet (GFD), but it has some limitations, and it does not prevent re-exposure to gluten. Research aims to develop adjuvant therapies, and one of the most studied alternatives is supplementation with Aspergillus niger prolyl endopeptidase protease (AN-PEP), which is able to degrade gluten in the stomach, reducing its concentration in the small intestine. The study found a high adherence to the GFD, but did not address AN-PEP as a gluten immunogenic peptide reducer, as it was only tested in patients following a GFD and not in gluten-exposing conditions. This study opens up new research perspectives in this area and shows that further study is needed to clarify the points that are still in doubt.


Asunto(s)
Aspergillus niger , Enfermedad Celíaca , Dieta Sin Gluten , Glútenes , Prolil Oligopeptidasas , Serina Endopeptidasas , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/enzimología , Humanos , Aspergillus niger/enzimología , Serina Endopeptidasas/metabolismo , Glútenes/inmunología , Glútenes/metabolismo , Glútenes/efectos adversos , Intestino Delgado/microbiología , Intestino Delgado/enzimología , Resultado del Tratamiento
10.
J Microbiol Methods ; 224: 106989, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996925

RESUMEN

Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.

11.
J Biosci Bioeng ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38969547

RESUMEN

We constructed a new Aspergillus expression vector (pSENSU2512nid) under the control of the enolase promoter with 12 tandem repeats of cis-acting elements (region III) and the heat shock protein 12 (Hsp12) 5' untranslated region (UTR). Bilirubin oxidase (EC: 1.3.3.5) from Myrothecium verrucaria, which catalyzes the oxidation of bilirubin to biliverdin, was overexpressed in Aspergillus oryzae and A. niger. The productivity was estimated to be approximately 1.2 g/L in the culture broth, which was approximately 6-fold higher than that of recombinant bilirubin oxidase (BOD) expressed in Pichia pastoris (Komagataella phaffii). BOD was purified using hydrophobic interaction chromatography, followed by ion exchange chromatography. The specific activity of the purified BOD against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate was 57.6 U/mg and 66.4 U/mg for A. oryzae and A. niger, respectively. l-Ascorbic acid (4 mM) addition and storage under deoxygenated conditions for 3-7 d increased the specific activity of these Aspergillus-expressed BODs approximately 2.3-fold (154.1 U/mg). The BOD specific activity was enhanced by incubation at higher temperature (30-50 °C). Further characterization of the enzyme catalytic efficiency revealed that the Km value remained unchanged, whereas the kcat value improved 3-fold. In conclusion, this high-level of BOD expression meets the requirements for industrial-level production. Additionally, we identified an effective method to enhance the low specific activity during expression, making it advantageous for industrial applications.

12.
Biomed Chromatogr ; : e5971, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079937

RESUMEN

Drug biotransformation studies emerges as an alternative to pharmacological investigations of metabolites, development of new drug candidates with reduced investment and most efficient production. The present study aims to evaluate the capacity of biotransformation of rifampicin by the filamentous fungus Aspergillus niger ATCC 9029. After incubation for 312 h, the drug was metabolized to two molecules: an isomer (m/z 455) and the rifampicin quinone (m/z 821). The monitoring of metabolite formation was performed by high-performance liquid chromatography, followed by their identification through ultra-high-performance liquid chromatography coupled to tandem mass spectrometer. In vitro antimicrobial activity of the proposed metabolites was evaluated against Staphylococus aureus microorganism, resulting in the loss of inhibitory activity when compared with the standards, with minimum inhibitory concentration of 7.5 µg/ml. The significant biotransformation power of the ATCC 9029 strain of A. niger was confirmed in this study, making this strain a candidate for pilot studies in fermentation tanks for the enzymatic metabolization of the antimicrobial rifampicin. The unprecedented result allows us to conclude that the prospect of new biotransforming strains in species of anemophilic fungi is a promising choice.

13.
PeerJ ; 12: e17151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026538

RESUMEN

Background: The booming palm oil industry is in line with the growing population worldwide and surge in demand. This leads to a massive generation of palm oil mill effluent (POME). POME is composed of sterilizer condensate (SC), separator sludge (SS), and hydro-cyclone wastewater (HCW). Comparatively, SS exhibits the highest organic content, resulting in various environmental impacts. However, past studies mainly focused on treating the final effluent. Therefore, this pioneering research investigated the optimization of pollutant removal in SS via different aspects of bioremediation, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways. Methods: A two-level factorial design was employed to optimize the removal of chemical oxygen demand (COD) and turbidity using Aspergillus niger. Bioremediation of SS was performed through submerged fermentation (SmF) under several independent variables, including temperature (20-40 °C), agitation speed (100-200 RPM), fermentation duration (72-240 h), and initial sample concentration (20-100%). The characteristics of the treated SS were then compared to that of raw sludge. Results: Optimal COD and turbidity removal were achieved at 37 °C 100 RPM, 156 h, and 100% sludge. The analysis of variance (ANOVA) revealed a significant effect of selective individual and interacting variables (p < 0.05). The highest COD and turbidity removal were 97.43% and 95.11%, respectively, with less than 5% error from the predicted values. Remarkably, the selected optimized conditions also reduced other polluting attributes, namely, biological oxygen demand (BOD), oil and grease (OG), color, and carbon content. In short, this study demonstrated the effectiveness of A. niger in treating SS through the application of a two-level factorial design.


Asunto(s)
Aspergillus niger , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Fermentación , Aguas del Alcantarillado , Aspergillus niger/metabolismo , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Aguas Residuales/química , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos , Aceite de Palma/química , Residuos Industriales
14.
EFSA J ; 22(7): e8874, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010862

RESUMEN

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain ASP by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in the prevention of acrylamide formation in foods and in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.792 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 1038 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1311. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

15.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998931

RESUMEN

Eucommiae Cortex (EC) is frequently used alone or in combination with other active ingredients to treat a range of illnesses. An efficient technical instrument for changing cheap or plentiful organic chemicals into rare or costly counterparts is biotransformation. It combines EC with biotransformation techniques with the aim of producing some novel active ingredients, using different strains of bacteria that were introduced to biotransform EC in an aseptic environment. The high-quality strains were screened for identification after the fermentation broth was found using HPLC, and the primary unidentified chemicals were separated and purified in order to be structurally identified. Strain 1 was identified as Aspergillus niger and strain 2 as Actinomucor elegans; the main transformation product A was identified as pinoresinol (Pin) and B as dehydrodiconiferyl alcohol (DA). The biotransformation of EC utilizing Aspergillus niger and Actinomucor elegans is reported for the first time in this study's conclusion, resulting in the production of Pin and DA.


Asunto(s)
Aspergillus niger , Biotransformación , Eucommiaceae , Fermentación , Lignanos , Mucor , Extractos Vegetales , Aspergillus niger/metabolismo , Mucor/metabolismo , Lignanos/química , Lignanos/metabolismo , Eucommiaceae/química , Extractos Vegetales/química , Furanos/metabolismo , Furanos/química , Cromatografía Líquida de Alta Presión
16.
Bioresour Technol ; 408: 131165, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069142

RESUMEN

This study explores the enhancement of phosphate rock (PR) solubilization through solid-state fermentation (SSF) by optimizing oxalic acid production using Aspergillus niger. Key process parameters, including the use of agro-industrial by-products (sugarcane bagasse (SCB), wheat bran (WB), soybean bran (SB)), pH levels, sucrose supplementation, and methanol addition, were systematically evaluated through sequential experimental designs. The results identified SCB and SB in a 1:1 ratio as the most effective substrate. Remarkably, the inclusion of methanol (7 %) and sucrose (0.5 %) resulted in a 3-fold increase in oxalic acid production. Under these optimized conditions, significant phosphorus solubilization of Bayóvar, Itafós, and Registro PRs was achieved, with Bayóvar rock releasing up to 12.1 g/kgds of soluble P (63.8 % efficiency). Additionally, the SSF process effectively released organic phosphorus from the agro-industrial substrates. These findings hold promise for advancing the bio-based economy and developing future industrial biofertilizers.

17.
Microorganisms ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930607

RESUMEN

The anti-fungal properties of the probiotic bacterium Bacillus subtilis have been studied extensively in agriculture and ecology, but their applications in the built environment remain to be determined. Our work aims to utilize this biological component to introduce new diverse anti-mold properties into paint. "Mold" refers to the ubiquitous fungal species that generate visible multicellular filaments commonly found in household dust. The development of mold leads to severe health problems for occupants, including allergic response, hypersensitivity pneumonitis, and asthma, which have significant economic and clinical outcomes. We here demonstrate the robust effect of a commercial paint enhanced with Bacillus subtilis cells against the common mold agent, Aspergillus niger, and identify three biosynthetic clusters essential for this effect. Our results lay the foundation for bio-convergence and synthetic biology approaches to introduce renewable and environmentally friendly bio-anti-fungal agents into the built environment.

18.
Biotechnol Bioeng ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943490

RESUMEN

Controlling the morphology of filamentous fungi is crucial to improve the performance of fungal bioprocesses. Microparticle-enhanced cultivation (MPEC) increases productivity, most likely by changing the fungal morphology. However, due to a lack of appropriate methods, the exact impact of the added microparticles on the structural development of fungal pellets is mostly unexplored. In this study synchrotron radiation-based microcomputed tomography and three-dimensional (3D) image analysis were applied to unveil the detailed 3D incorporation of glass microparticles in nondestructed pellets of Aspergillus niger from MPEC. The developed method enabled the 3D analysis based on 375 pellets from various MPEC experiments. The total and locally resolved volume fractions of glass microparticles and hyphae were quantified for the first time. At increasing microparticle concentrations in the culture medium, pellets with lower hyphal fraction were obtained. However, the total volume of incorporated glass microparticles within the pellets did not necessarily increase. Furthermore, larger microparticles were less effective than smaller ones in reducing pellet density. However, the total volume of incorporated glass was larger for large microparticles. In addition, analysis of MPEC pellets from different times of cultivation indicated that spore agglomeration is decisive for the development of MPEC pellets. The developed 3D morphometric analysis method and the presented results will promote the general understanding and further development of MPEC for industrial application.

19.
3 Biotech ; 14(7): 172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38841267

RESUMEN

Lipase has high economic importance and is widely used in biodiesel, food, detergents, cosmetics, and pharmaceutical industries. The rapid development of synthetic biology and system biology has not only paved the way for comprehensively understanding the efficient operation mechanism of Aspergillus niger cell factories but also introduced a new technological system for creating and optimizing high-efficiency A. niger cell factories. In this review, all relevant data on microbial lipase enzyme sources and general properties are gathered and updated. The relationship between A. niger strain morphology and protein production is discussed. The safety of A. niger strain is investigated to ensure product safety. The biotechnologies and factors influencing lipase expression in A. niger are summarized. This review focuses on various strategies to improve lipase expression in A. niger. The summary of these methods and the application of the gene editing technology CRISPR/Cas9 system can further improve the efficiency of constructing the engineered lipase-producing A. niger.

20.
Microb Pathog ; 193: 106742, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879139

RESUMEN

Nano-biotechnology is quickly developing as an important field of modern research, generating the most promising applications in medicine and agriculture. Biosynthesis of silver nanoparticles using biogenic or green approach provide ecofriendly, clean and effective way out for the synthesis of nanoparticles. The main aim of the study was to synthesize silver nanoparticles (AgNPs) from Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum using a green approach and to test the antifungal activity of these synthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (Fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). The investigation confirmed the creation of AgNPs by the fungi Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum, as evidenced by prominent plasmon absorbance bands at 420 and 450 nm.The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Agar well diffusion method was performed to evaluate the antifungal activity of AgNPs against various plant pathogenic fungi. An efficient and strong antifungal activity was shown by these biosynthesized nanoparticles against serious plant pathogenic fungi, viz. Aspergillus terreus, Fusarium oxysporum, Penicillium citrinum, Rhizopus stolonifer and Mucor mucedo. The biosynthesized AgNPs at various concentrations caused significant zone of inhibition in the test fungal pathogens. Silver nanoparticles (AgNPs) biosynthesized from Aspergillus niger at highest concentrations showed maximum zone of inhibition against Penicillium citrinum (19.33 ± 0.57 mm) followed by Rhizopus stolonifer (17.66 ± 0.57), Aspergillus terreus (16.33 ± 1.54 mm), Fusarium oxysporum (14.00 ± 1.00 mm) and Mucor mucedo (13.33 ± 1.15 mm) respectively. Therefore, the findings clearly indicate that silver nanoparticles could play a significant role in managing diverse plant diseases caused by fungi.


Asunto(s)
Antifúngicos , Aspergillus flavus , Aspergillus niger , Fusarium , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Plata/farmacología , Plata/química , Plata/metabolismo , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Nanopartículas del Metal/química , Fusarium/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus niger/efectos de los fármacos , Aspergillus/efectos de los fármacos , Aspergillus/metabolismo , Hongos/efectos de los fármacos , Difracción de Rayos X , Microscopía Electrónica de Rastreo , Tecnología Química Verde , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA