Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biotechnol ; 395: 71-79, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299520

RESUMEN

Macrolactins have attracted considerable attention due to their value and application in medicine and agriculture. However, poor yields severely hinder their broader application in these fields. This study aimed to improve macrolactins production in Bacillus siamensis using a combined atmospheric and room-temperature plasma mutagenesis and a microbial microdroplet culture system. After 25 days of treatment, a desirable strain with macrolactins production 3.0-fold higher than that of the parental strain was successfully selected. The addition of 30 mg/L ZnSO4 further increased macrolactins production to 503 ± 37.6 µg/mL, representing a 30.9 % improvement in production compared to controls. Based on transcriptome analysis, the synthesis pathways of amino acids, fengycin, and surfactin were found to be downregulated in IMD4036. Further fermentation experiments confirmed that inhibition of the comparative fengycin synthesis pathway was potentially driving the increased production of macrolactins. The strategies and possible mechanisms detailed in this study can provide insight into enhancing the production of other secondary metabolites toxic to the producer strains.

2.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3201-3215, 2024 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-39319734

RESUMEN

L-tryptophan is an indispensable essential amino acid with a wide range of applications, which leads to a high demand. Accordingly, the production of L-tryptophan becomes a much-anticipated direction in research and industrial development. While irrational mutagenesis is an effective means to breed industrial strains, how to screen the strains with desirable phenotypes is still a major challenge. In order to improve the efficiency and accuracy of screening L-tryptophan high-yield strains, we used atmospheric and room temperature plasma mutagenesis to construct a random mutant library and then combined it with high-throughput screening in deep-well plates. Using a pseudo-fluorescent protein sensor capable of responding specifically to L-tryptophan, we successfully screened out a strain producing L-tryptophan at a high yield from a random mutagenesis library. The fermentation with the strain in shake flasks produced L-tryptophan at a yield of 1.99 g/L, which was 41.77% higher than that of the starting strain. Finally, the mechanism of high yield of the strain was deciphered by comparative genomics and transcriptomics. The above strategies provide a solid research foundation for further selection and development of high quality L-tryptophan producing strains.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Mutagénesis , Triptófano , Triptófano/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Fermentación , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiología Industrial
3.
Arch Microbiol ; 206(9): 375, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141138

RESUMEN

Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/ß-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.


Asunto(s)
Aureobasidium , Fermentación , Perfilación de la Expresión Génica , Glucanos , Mutagénesis , Glucanos/metabolismo , Aureobasidium/genética , Aureobasidium/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Mutación , Rizosfera , Microbiología del Suelo , Transcriptoma , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Mol Biotechnol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990498

RESUMEN

Atmospheric and room temperature plasma (ARTP) mutagenesis technology has been developed rapidly in recent years because of its simple operation, safety, environmental friendliness, high mutation rate, and large mutation library capacity. It has been widely used in traditional fields such as food, agriculture, and medicine, and has been gradually applied in emerging fields such as environmental remediation, bioenergy, and microalgae utilization. In this paper, the Web of Science Core Collection (WOSCC) was used as the data source, and the keywords and core literature of ARTP mutagenesis technology were plotted by citespace software, and the research progress and research hotspots of ARTP mutagenesis technology were analyzed. Through citespace visualization analysis, it is concluded that the country with the largest number of studies is China, the institution with the largest number of studies is Jiangnan University, and the author of the most published papers is Jiangnan University. Through keyword analysis, it is concluded that the most widely used ARTP mutagenesis technology is fermentation-related majors, mainly for biosynthesis and microbial research at the molecular level. Among them, the most widely used microorganisms are Escherichia coli and Saccharomyces cerevisiae.

5.
Yeast ; 41(6): 369-378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613186

RESUMEN

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Asunto(s)
Perfilación de la Expresión Génica , Xantófilas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Xantófilas/metabolismo , Ingeniería Metabólica , Transcriptoma , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas/genética , Análisis de Flujos Metabólicos , Metabolismo de los Lípidos , Biomasa
6.
Cell Biochem Funct ; 42(3): e3991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532652

RESUMEN

At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.


Asunto(s)
Daño del ADN , ADN , Temperatura , Mutagénesis
7.
AMB Express ; 14(1): 24, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358520

RESUMEN

To enhance the ribonucleic acid (RNA) productivity for industrial applications, this study employed strain screening and medium optimization to improve the content of RNA in Cyberlindnera jadinii. A rapid screening method, combining atmospheric and room temperature plasma mutagenesis, 48-deep-well plates fermentation, and microplate reader detection, was developed. A mutant strain named WB15 with high RNA content was successfully obtained, exhibiting the RNA content of 156 ± 4.5 mg/g DCW, 1.4 times of the starting strain CCTCC AY 92020. Furthermore, Plackett-Burman design and response surface methodology were employed to identify three significant factors (yeast extract, soybean peptone, and KH2PO4) affecting the RNA content. By utilizing the optimal medium composed of 13.43 g/L yeast extract, 12.12 g/L soybean peptone and 2.78 g/L KH2PO4, the RNA content of WB15 further increased to 184 ± 4.9 mg/g DCW. Additionally, the mutant strain WB15 exhibited a greater cellular width compared to AY 92020, along with increased growth rate and single-cell RNA content by 22% and 48.9%, respectively. Perturbations in ribosome assembly, specifically a reduction in the ratio of ribosomal proteins to ribosomal RNA of the large subunit, might indirectly contribute to the higher RNA content in the WB15 strain. Overall, the combination of rapid screening with fermentation medium optimization proved to be an effective approach for improving the RNA content of C. jadinii, thus facilitating the industrial production of RNA.

8.
Biotechnol J ; 19(2): e2300648, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403408

RESUMEN

L-Cysteine production through fermentation stands as a promising technology. However, excessive accumulation of L-cysteine poses a challenge due to the potential to inflict damage on cellular DNA. In this study, we employed a synergistic approach encompassing atmospheric and room temperature plasma mutagenesis (ARTP) and adaptive laboratory evolution (ALE) to improve L-cysteine tolerance in Escherichia coli. ARTP-treated populations obtained substantial enhancement in L-cysteine tolerance by ALE. Whole-genome sequencing, transcription analysis, and reverse engineering, revealed the pivotal role of an effective export mechanism mediated by gene eamB in augmenting L-cysteine resistance. The isolated tolerant strain, 60AP03/pTrc-cysEf , achieved a 2.2-fold increase in L-cysteine titer by overexpressing the critical gene cysEf during batch fermentation, underscoring its enormous potential for L-cysteine production. The production evaluations, supplemented with L-serine, further demonstrated the stability and superiority of tolerant strains in L-cysteine production. Overall, our work highlighted the substantial impact of the combined ARTP and ALE strategy in increasing the tolerance of E. coli to L-cysteine, providing valuable insights into improving L-cysteine overproduction, and further emphasized the potential of biotechnology in industrial production.


Asunto(s)
Cisteína , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cisteína/metabolismo , Temperatura , Mutagénesis , Fermentación
9.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569391

RESUMEN

Brevibacillus sp. SPR20 produced potentially antibacterial substances against methicillin-resistant Staphylococcus aureus (MRSA). The synthesis of these substances is controlled by their biosynthetic gene clusters. Several mutagenesis methods are used to overcome the restriction of gene regulations when genetic information is absent. Atmospheric and room temperature plasma (ARTP) is a powerful technique to initiate random mutagenesis for microbial strain improvement. This study utilized an argon-based ARTP to conduct the mutations on SPR20. The positive mutants of 40% occurred. The M27 mutant exhibited an increase in anti-MRSA activity when compared to the wild-type strain, with the MIC values of 250-500 and 500 µg/mL, respectively. M27 had genetic stability because it exhibited constant activity throughout fifteen generations. This mutant had similar morphology and antibiotic susceptibility to the wild type. Comparative proteomic analysis identified some specific proteins that were upregulated in M27. These proteins were involved in the metabolism of amino acids, cell structure and movement, and catalytic enzymes. These might result in the enhancement of the anti-MRSA activity of the ARTP-treated SPR20 mutant. This study supports the ARTP technology designed to increase the production of valuable antibacterial agents.


Asunto(s)
Brevibacillus , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Brevibacillus/genética , Temperatura , Proteómica , Mutagénesis , Antibacterianos/farmacología
10.
Microorganisms ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37317155

RESUMEN

Biosurfactants have significant applications in various industries, including microbial-enhanced oil recovery (MEOR). While the state-of-the-art genetic approaches can generate high-yield strains for biosurfactant production in fermenters, there remains a critical challenge in enhancing biosurfactant-producing strains for use in natural environments with minimal ecological risks. The objectives of this work are enhancing the strain's capacity for rhamnolipids production and exploring the genetic mechanisms for its improvement. In this study, we employed atmospheric and room-temperature plasma (ARTP) mutagenesis to enhance the biosynthesis of rhamnolipids in Pseudomonas sp. L01, a biosurfactant-producing strain isolated from petroleum-contaminated soil. Following ARTP treatment, we identified 13 high-yield mutants, with the highest yield of 3.45 ± 0.09 g/L, representing a 2.7-fold increase compared to the parent strain. To determine the genetic mechanisms behind the enhanced rhamnolipids biosynthesis, we sequenced the genomes of the strain L01 and five high-yield mutants. A comparative genomic analysis suggested that mutations in genes related to the synthesis of lipopolysaccharides (LPS) and the transport of rhamnolipids may contribute to the improved biosynthesis. To the best of our knowledge, this is the first instance of utilizing the ARTP approach to improve rhamnolipid production in Pseudomonas strains. Our study provides valuable insights into the enhancement of biosurfactant-producing strains and the regulatory mechanisms of rhamnolipids biosynthesis.

11.
World J Microbiol Biotechnol ; 39(8): 202, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209223

RESUMEN

Streptomyces species are known for their ability to efficiently produce secondary metabolites, including various antibiotics. Wuyiencin, an antibiotic produced by Streptomyces albulus CK15, is commonly used in agriculture to control fungal diseases in crops and vegetables. In this study, we utilized atmospheric and room temperature plasma (ARTP) mutagenesis to generate mutant S. albulus strains with improved fermentation capabilities for wuyiencin production. After mutagenizing the wild-type S. albulus CK15 strain once and conducting two rounds of antimicrobial screening, three genetically stable mutants (M19, M26, and M28) were identified. These mutants showed increased wuyiencin production by 17.4%, 13.6%, and 18.5% in comparison to the CK15 strain in flask culture, respectively. The M28 mutant exhibited the highest wuyiencin activity, producing 1443.0 ± 134.6 U/mL in flask culture and 1673.8 ± 127.4 U/mL in a 5 L fermenter. These results demonstrate that ARTP is an efficient tool for microbial mutation breeding and improving wuyiencin production.


Asunto(s)
Fitomejoramiento , Streptomyces , Temperatura , Mutagénesis , Streptomyces/genética , Streptomyces/metabolismo , Fermentación , Antibacterianos/farmacología , Antibacterianos/metabolismo
12.
Carbohydr Polym ; 312: 120809, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059520

RESUMEN

This study reveals the genetic and biochemical changes underlying the enhanced hyaluronan (HA) biosynthesis in Streptococcus zooepidemicus. After multiple rounds of atmospheric and room temperature plasma (ARTP) mutagenesis combined with novel bovine serum albumin/cetyltrimethylammonium bromide coupled high-throughput screening assay, the HA yield of the mutant was increased by 42.9% and reached 0.813 g L-1 with a molecular weight of 0.54 × 106 Da within 18 h by shaking flask culture. HA production was increased to 4.56 g L-1 by batch culture in 5-L fermenter. Transcriptome sequencing exhibits that distinct mutants have similar genetic changes. Regulation in direction of metabolic flow into the HA biosynthesis, by enhancing genes responsible for the biosynthesis of HA including hasB, glmU and glmM, weaking downstream gene (nagA and nagB) of UDP-GlcNAc and significantly down-regulating transcription of wall-synthesizing genes, resulting in the accumulation of precursors (UDP-GlcA and UDP-GlcNAc) increased by 39.74% and 119.22%, respectively. These associated regulatory genes may provide control point for engineering of the efficient HA-producing cell factory.


Asunto(s)
Ácido Hialurónico , Streptococcus equi , Ácido Hialurónico/química , Temperatura , Streptococcus equi/genética , Streptococcus equi/metabolismo , Uridina Difosfato/metabolismo , Variación Genética
13.
Prep Biochem Biotechnol ; 53(10): 1276-1287, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36939156

RESUMEN

Isolating and screening enzyme-producing strains from microorganisms and the commercial production of ALPs from microorganisms are of increasing interest. In this work, isolation and identification of high-yielding alkaline phosphatase strain were carried out using atmospheric and room temperature plasma mutagenesis (ARTP) for optimization of fermentation conditions. A strain of alkaline phosphatase-producing bacteria was screened from soil and identified by 16S rRNA gene sequencing as Bacillus amyloliquefaciens and named S-1. This strain had an alkaline phosphatase activity of 2594.73 U/L. Later, mutagenesis breeding of the alkaline phosphatase-producing S-1 strain was conducted using (ARTP), from which a higher alkaline phosphatase-producing positive mutant strain S-52 was screened. A central combination of five factors, including corn starch, yeast extract, metal ions, fermentation temperature and inoculum ratio, was then used to influence the activity of alkaline phosphatase. Results from the response surface methodology showed that the maximum enzyme activity of alkaline phosphatase was 12,110.6 U/L at corn starch, yeast extract and magnesium ions concentrations of 17.48 g/L, 18.052 g/L and 0.744 g/L, respectively; fermentation temperature of 37.192 °C; and inoculation ratio of 5.59%. This study is important for further exploring ARTP mutagenesis in B. amyloliquefaciens and the commercialization of ALPs.


Asunto(s)
Fosfatasa Alcalina , Almidón , Fermentación , Fosfatasa Alcalina/genética , ARN Ribosómico 16S , Mutagénesis , Iones
14.
J Ind Microbiol Biotechnol ; 49(6)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36572395

RESUMEN

In this study, we employed a reporter-guided mutation selection (RGMS) strategy to improve the rimocidin production of Streptomyces rimosus M527, which is based on a single-reporter plasmid pAN and atmospheric and room temperature plasma (ARTP). In plasmid pAN, PrimA, a native promoter of the loading module of rimocidin biosynthesis (RimA) was chosen as a target, and the kanamycin resistance gene (neo) under the control of PrimA was chosen as the reporter gene. The integrative plasmid pAN was introduced into the chromosome of S. rimosus M527 by conjugation to yield the initial strain S. rimosus M527-pAN. Subsequently, mutants of M527-pAN were generated by ARTP. 79 mutants were obtained in total, of which 67 mutants showed a higher level of kanamycin resistance (Kanr) than that of the initial strain M527-pAN. The majority of mutants exhibited a slight increase in rimocidin production compared with M527-pAN. Notably, 3 mutants, M527-pAN-S34, S38, and S52, which exhibited highest kanamycin resistance among all Kanr mutants, showed 34%, 52%, and 45% increase in rimocidin production compared with M527-pAN, respectively. Quantitative RT-PCR analysis revealed that the transcriptional levels of neo and rim genes were increased in mutants M527-pAN-S34, S38, and S52 compared with M527-pAN. These results confirmed that the RGMS approach was successful in improving the rimocidin production in S. rimosus M527.


Asunto(s)
Streptomyces rimosus , Mutación , Kanamicina/farmacología , Plásmidos/genética
15.
Foods ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553820

RESUMEN

In this study, an efficient mutagenesis and rapid screening method of high-yield gellan gum mutant by atmospheric and room temperature plasma (ARTP) treatment combined with Near-Infrared Spectroscopy (NIRS) was proposed. A NIRS model for the on-line detection of gellan gum yield was constructed by joint interval partial least squares (siPLS) regression on the basis of chemical determination and NIRS acquisition of gellan gum yield. Five genetically stable mutant strains were screened using the on-line NIRS detection of gellan gum yield in the fermentation from approximately 600 mutant strains induced by ARTP. Remarkably, compared with the original strain, the gellan gum yield of mutant strain 519 was 9.427 g/L (increased by 133.5%) under the optimal fermentation conditions, which was determined by single-factor and response surface optimization. Therefore, the method of ARTP mutation combined with the NIRS model can be used to screen high-yield mutant strains of gellan gum and other high-yield polysaccharide strains.

16.
Biotechnol Biofuels Bioprod ; 15(1): 122, 2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36372889

RESUMEN

BACKGROUND: Microalgae, with their high adaptability to various stress conditions and rapid growth, are considered excellent biomass resources for lipid production and biodiesel feedstocks. However, lipid yield and productivity of the natural strains are common bottlenecks in their large-scale use for lipid production, which can be overcome by evolving new strains using conventional and advanced mutagenic techniques. It is challenging to generate microalgae strains capable of high lipid synthesis through natural selection. As a result, random mutagenesis is currently considered a viable option in many scenarios. The objective of this study was to explore atmospheric and room temperature plasma (ARTP) as a random mutagenesis technique to obtain high lipid-accumulating mutants of a green microalga for improved biodiesel production. RESULTS: A green microalgal species was isolated from the Chinese Yellow Sea and identified as Parachlorella kessleri (OM758328). The isolated microalga was subsequently mutated by ARTP to obtain high lipid-accumulating mutants. Based on the growth rate and lipid content, 5 mutants (named M1, M2, M4, M5, and M8) were selected from 15 pre-selected mutants. These five mutants varied in their growth rate from 0.33 to 0.68 day-1, with the lipid content varying between 0.25 g/L in M2 to 0.30 g/L in M8 at 10th day of cultivation. Among the mutants, M8 showed the maximum biomass productivity (0.046 g/L/day) and lipid productivity (20.19 mg/L/day), which were 75% and 44% higher than the wild strain, respectively. The triglyceride (TAG) content of M8 was found to be 0.56 g/L at 16th day of cultivation, which was 1.77-fold higher than that of the wild strain. Furthermore, M8 had the highest saturated fatty acids (C16-18) with the lowermost polyunsaturated fatty acid content, which are favorable properties of a biodiesel feedstock according to international standards. CONCLUSION: The mutant strain of P. kessleri developed by the ARTP technique exhibited significant improvements in biomass productivity, lipid content, and biodiesel quality. Therefore, the biomass of this mutant microalga could be a potential feedstock for biodiesel production.

17.
3 Biotech ; 12(9): 223, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35975026

RESUMEN

To improve S-Adenosyl-L-methionine (a compound with important physiological functions, SAM) production, atmospheric and room temperature plasma and ultraviolet-LiCl mutagenesis were carried out with Saccharomyces cerevisiae strain ZY 1-5. The mutants were screened with ethionine, L-methionine, nystatin and cordycepin as screening agents. Adaptive evolution of a positive mutant UV6-69 was further performed by droplet microfluidics cultivation with ethionine as screening pressure. After adaptation, mutant T11-1 was obtained. Its SAM titer in shake flask fermentation reached 1.31 g/L, which was 191% higher than that of strain ZY 1-5. Under optimal conditions, the SAM titer and biomass of mutant T11-1 in 5 L bioreactor reached 10.72 g/L and 105.9 g dcw/L (142.86% and 34.22% higher than those of strain ZY 1-5), respectively. Comparative transcriptome analysis between strain ZY 1-5 and mutant T11-1 revealed the enhancements in TCA cycle and gluconeogenesis/glycolysis pathways as well as the inhibitions in serine and ergosterol synthesis of mutant T11-1. The elevated SAM synthesis of mutant T11-1 may attribute to the above changes. Taken together, this study is helpful for industrial production of SAM.

18.
World J Microbiol Biotechnol ; 38(3): 51, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35128603

RESUMEN

The Escherichia coli (E. coli) has been widely employed in biotechnology industry and academia. However, the bioproduct manufacturing driven by E. coli is prone to the phage contamination. Good laboratory/factory hygiene may decrease but not avoid completely the chances of the phage contamination. The present study aims to resolve this problem by engineering laboratory/factory-specific phage-resistant E. coli strains. By adding a laboratory or factory derived phage into the atmospheric and room temperature plasma mutagenized E. coli, a phage-resistant strain could be generated. Interestingly, the resistant strain exhibited cross-resistance to unencountered phages. When operating the resistant strain in a polluted environment, the phage contamination was largely prevented. There was no significant difference in heterogeneous protein production between the parental strain and the phage-resistant strain. Importantly, it requires only one day to generate the phage-resistant strain. This practical method for engineering laboratory/factory-specific phage-resistant strains may have great potential in resuming E. coli operation in laboratories and factories during phage contamination outbreaks.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Escherichia coli/genética , Humanos , Laboratorios , Mutagénesis
19.
Microorganisms ; 10(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35056543

RESUMEN

To improve the screening efficiency of high-yield neomycin sulfate (NM) Streptomyces fradiae strains after mutagenesis, a high-throughput screening method using streptomycin resistance prescreening (8 µg/mL) and a 24-deep well plates/microplate reader (trypan blue spectrophotometry) rescreening strategy was developed. Using this approach, we identified a high-producing NM mutant strain, Sf6-2, via six rounds of atmospheric and room temperature plasma (ARTP) mutagenesis and screening. The mutant displayed a NM potency of 7780 ± 110 U/mL and remarkably stable genetic properties over six generations. Furthermore, the key components (soluble starch, peptone, and (NH4)2SO4) affecting NM potency in fermentation medium were selected using Plackett-Burman and optimized by Box-Behnken designs. Finally, the NM potency of Sf6-2 was increased to 10,849 ± 141 U/mL at the optimal concentration of each factor (73.98 g/L, 9.23 g/L, and 5.99 g/L, respectively), and it exhibited about a 40% and 100% enhancement when compared with before optimization conditions and the wild-type strain, respectively. In this study, we provide a new S. fradiae NM production strategy and generate valuable insights for the breeding and screening of other microorganisms.

20.
FEMS Microbiol Lett ; 368(21-24)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34875071

RESUMEN

CoQ10, which has been widely applied in medicine by dietary supplement, possesses important functions in antioxidant process and bioenergy generation. Iterative mutagenesis introduced by atmospheric and room temperature plasma (ARTP) treatment was studied to improve the coenzyme Q10 (CoQ10) production of Rhodobacter sphaeroides (R. sphaeroides), and multiple selection pressures including vitamin K3 (VK3), Na2S and benzoic acid (BA) were adopted for the first time. After two rounds of mutation and screening, a mutant strain R.S 17 was obtained, and the product titer was increased by 80.37%. The CoQ10 titer and cell density reached 236.7 mg L-1 and 57.09 g L-1, respectively, in the fed-batch fermentation, and the CoQ10 content was 22.1% higher than that of the parent strain. In addition, the spectral scanning results indicated the metabolic flux improvement contributing to the CoQ10 production in R.S 17, and the genetic stability was validated. Based on the iterative mutagenesis introduced by ARTP under multiple selection pressures, the promotion of CoQ10 production by R. sphaeroides was achieved. The significant improvement in fermentation performances and the good genetic stability of R.S 17 indicate a potential way for the efficient biosynthesis of CoQ10.


Asunto(s)
Rhodobacter sphaeroides , Fermentación , Mutagénesis , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Temperatura , Ubiquinona/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA