Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
2.
MedComm (2020) ; 5(9): e716, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39224539

RESUMEN

The challenge of disease relapsed/refractory (R/R) remains a therapeutic hurdle in chimeric antigen receptor (CAR) T-cell therapy, especially for hematological diseases, with chronic lymphocytic leukemia (CLL) being particularly resistant to CD19 CAR T cells. Currently, there is no approved CAR T-cell therapy for CLL patients. In this study, we aimed to address this unmet medical need by choosing the B-cell activating factor receptor (BAFF-R) as a promising target for CAR design against CLL. BAFF-R is essential for B-cell survival and is consistently expressed on CLL tumors. Our research discovered that BAFF-R CAR T-cell therapy exerted the cytotoxic effects on both CLL cell lines and primary B cells derived from CLL patients. In addition, the CAR T cells exhibited cytotoxicity against CD19-knockout CLL cells that are resistant to CD19 CAR T therapy. Furthermore, we were able to generate BAFF-R CAR T cells from small blood samples collected from CLL patients and then demonstrated the cytotoxic effects of these patient-derived CAR T cells against autologous tumor cells. Given these promising results, BAFF-R CAR T-cell therapy has the potential to meet the long-standing need for an effective treatment on CLL patients.

3.
Immunol Rev ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275983

RESUMEN

Since the approval of the CD20-targeting monoclonal antibody (mAb) rituximab for the treatment of lymphoma in 1997, mAb therapy has significantly transformed cancer treatment. With over 90 FDA-approved mAbs for the treatment of various hematological and solid cancers, modern cancer treatment relies heavily on these therapies. The overwhelming success of mAbs as cancer therapeutics is attributed to their broad applicability, high safety profile, and precise targeting of cancer-associated surface antigens. Furthermore, mAbs can induce various anti-tumor cytotoxic effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), all of which are mediated via their fragment crystallizable (Fc) domain. Over the past decades, these effector mechanisms have been substantially improved through Fc domain engineering. In this review, we will outline the different approaches to enhance Fc effector functions via Fc engineering of mAbs, with a specific emphasis on the so-called "HexaBody" technology, which is designed to enhance the hexamerization of mAbs on the target cell surface, thereby inducing greater complement activation, CDC, and receptor clustering. The review will summarize the development, preclinical, and clinical testing of several HexaBodies designed for the treatment of B-cell malignancies, as well as the potential use of the HexaBody technology beyond Fc-mediated effector functions.

4.
Br J Haematol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960449

RESUMEN

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.

5.
J Transl Med ; 22(1): 613, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956649

RESUMEN

BACKGROUND: CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy stands out as a revolutionary intervention, exhibiting remarkable remission rates in patients with refractory/relapsed (R/R) B-cell malignancies. However, the potential side effects of therapy, particularly cytokine release syndrome (CRS) and infections, pose significant challenges due to their overlapping clinical features. Promptly distinguishing between CRS and infection post CD19 target CAR-T cell infusion (CTI) remains a clinical dilemma. Our study aimed to analyze the incidence of infections and identify key indicators for early infection detection in febrile patients within 30 days post-CTI for B-cell malignancies. METHODS: In this retrospective cohort study, a cohort of 104 consecutive patients with R/R B-cell malignancies who underwent CAR-T therapy was reviewed. Clinical data including age, gender, CRS, ICANS, treatment history, infection incidence, and treatment responses were collected. Serum biomarkers procalcitonin (PCT), interleukin-6 (IL-6), and C-reactive protein (CRP) levels were analyzed using chemiluminescent assays. Statistical analyses employed Pearson's Chi-square test, t-test, Mann-Whitney U-test, Kaplan-Meier survival analysis, Cox proportional hazards regression model, Spearman rank correlation, and receiver operating characteristic (ROC) curve analysis to evaluate diagnostic accuracy and develop predictive models through multivariate logistic regression. RESULTS: In this study, 38 patients (36.5%) experienced infections (30 bacterial, 5 fungal, and 3 viral) within the first 30 days of CAR T-cell infusion. In general, bacterial, fungal, and viral infections were detected at a median of 7, 8, and 9 days, respectively, after CAR T-cell infusion. Prior allogeneic hematopoietic cell transplantation (HCT) was an independent risk factor for infection (Hazard Ratio [HR]: 4.432 [1.262-15.565], P = 0.020). Furthermore, CRS was an independent risk factor for both infection ((HR: 2.903 [1.577-5.345], P < 0.001) and severe infection (9.040 [2.256-36.232], P < 0.001). Serum PCT, IL-6, and CRP were valuable in early infection prediction post-CAR-T therapy, particularly PCT with the highest area under the ROC curve (AUC) of 0.897. A diagnostic model incorporating PCT and CRP demonstrated an AUC of 0.903 with sensitivity and specificity above 83%. For severe infections, a model including CRS severity and PCT showed an exceptional AUC of 0.991 with perfect sensitivity and high specificity. Based on the aforementioned analysis, we proposed a workflow for the rapid identification of early infection during CAR-T cell therapy. CONCLUSIONS: CRS and prior allogeneic HCT are independent infection risk factors post-CTI in febrile B-cell malignancy patients. Our identification of novel models using PCT and CRP for predicting infection, and PCT and CRS for predicting severe infection, offers potential to guide therapeutic decisions and enhance the efficacy of CAR-T cell therapy in the future.


Asunto(s)
Antígenos CD19 , Fiebre , Inmunoterapia Adoptiva , Humanos , Femenino , Masculino , Persona de Mediana Edad , Inmunoterapia Adoptiva/métodos , Adulto , Antígenos CD19/metabolismo , Infecciones/sangre , Anciano , Curva ROC , Adulto Joven , Estudios Retrospectivos
6.
Heliyon ; 10(12): e33145, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022044

RESUMEN

CD19 is a surface antigen on B cells that regulates B cell activation and proliferation, participating in B cell signaling. It is expressed in all B cell lineage tumor diseases, making CD19 a significant marker for detecting B cell tumor diseases and an important target for related immunotherapies. In recent years, with the deepening research on canine and feline diseases and the establishment of animal models, the demand for cat CD19 monoclonal antibodies (mAbs) has been steadily increasing. We successfully prepared cat CD19-specific monoclonal antibodies using a KLH-conjugated cat CD19 peptide as an antigen and optimized the antibody production method. The obtained monoclonal antibodies' molecular and cellular affinities were identified using CD19 peptides, eukaryotic overexpressed proteins, and peripheral blood mononuclear cells (PBMCs). The results indicate that the CD19-3H9 and CD19-8A7 monoclonal antibodies prepared in this study specifically bind to the CD19 molecule, demonstrating their suitability for use in ELISA, Western blot, and cell assays. This study successfully produced cat CD19 monoclonal antibodies with specificity and optimized the antibody preparation method, laying the foundation for the diagnosis and targeted drug combination therapy of B cell tumor diseases in both humans and pets.

7.
Proc Natl Acad Sci U S A ; 121(31): e2409232121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047044

RESUMEN

Despite the availability of life-extending treatments for B cell leukemias and lymphomas, many of these cancers remain incurable. Thus, the development of new molecular targets and therapeutics is needed to expand treatment options. To identify new molecular targets, we used a forward genetic screen in mice to identify genes required for development or survival of lymphocytes. Here, we describe Zfp574, an essential gene encoding a zinc finger protein necessary for normal and malignant lymphocyte survival. We show that ZFP574 interacts with zinc finger protein THAP12 and promotes the G1-to-S-phase transition during cell cycle progression. Mutation of ZFP574 impairs nuclear localization of the ZFP574-THAP12 complex. ZFP574 or THAP12 deficiency results in cell cycle arrest and impaired lymphoproliferation. Germline mutation, acute gene deletion, or targeted degradation of ZFP574 suppressed Myc-driven B cell leukemia in mice, but normal B cells were largely spared, permitting long-term survival, whereas complete lethality was observed in control animals. Our findings support the identification of drugs targeting ZFP574-THAP12 as a unique strategy to treat B cell malignancies.


Asunto(s)
Linfocitos B , Animales , Ratones , Linfocitos B/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/patología , Leucemia de Células B/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratones Endogámicos C57BL , Linfoma de Células B/genética , Linfoma de Células B/patología , Linfoma de Células B/metabolismo
8.
Acta Haematol ; : 1-17, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38824917

RESUMEN

INTRODUCTION: Pirtobrutinib, a highly selective, noncovalent (reversible) Bruton tyrosine kinase inhibitor, has demonstrated promising efficacy in B-cell malignancies and is associated with low rates of discontinuation and dose reduction. Pirtobrutinib is administered until disease progression or toxicity, necessitating an understanding of the safety profile in patients with extended treatment. METHODS: Here we report the safety of pirtobrutinib in patients with relapsed/refractory B-cell malignancies with extended (≥12 months) drug exposure from the BRUIN trial. Assessments included median time-to-first-occurrence of adverse events (AEs), dose reductions, and discontinuations due to treatment-emergent AEs (TEAEs) and select AEs of interest (AESIs). RESULTS: Of 773 patients enrolled, 326 (42%) received treatment for ≥12 months. In the extended exposure cohort, the median time-on-treatment was 19 months. The most common all-cause TEAEs were fatigue (32%) and diarrhea (31%). TEAEs leading to dose reduction occurred in 23 (7%) and discontinuations in 11 (3%) extended exposure patients. One patient had a fatal treatment-related AE (COVID-19 pneumonia). Infections (73.0%) were the most common AESI with a median time-to-first-occurrence of 7.4 months. Majority of TEAEs and AESIs occurred during the first year of therapy. CONCLUSIONS: Pirtobrutinib therapy continues to demonstrate an excellent safety profile amenable to long-term administration without evidence of new or worsening toxicity signals.

9.
Semin Oncol Nurs ; 40(3): 151628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594105

RESUMEN

OBJECTIVES: Chimeric antigen receptor (CAR)-T cell therapy is a new treatment for patients with myeloma and other B cell malignancies where advanced practice nurses (APN) can make a great contribution. The aim of this review is to identify key aspects of current literature relevant to APNs working with this population. METHODS: Discussion of selected peer-reviewed literature and best practice guidelines found through electronic database searches (CINAHL, MEDLINE). RESULTS: Although few APN roles in CAR-T cell therapy have been published to date, recent research suggests that the APN is central to the care of these patients. They are essential for continuity of care and navigation through the treatment process, providing an important and consistent point of contact for patients' and carers' anxieties and uncertainties. APNs play a central role in symptom management, as they constantly incorporate new experience and scientific findings into the refinement of existing protocols. The continuum of care extends far beyond the inpatient stay and addresses symptoms that may persist long after cytokine release syndrome and neurotoxicity have resolved. The APN may therefore make a relevant contribution to patients' health-related quality of life, given its likely correlation with the dynamics and intensity of treatment-related symptoms. The APN also takes on a leadership role in the treatment team. CONCLUSIONS: APNs use all core competencies to sustainably support and empower patients and caregivers. This is achieved through counseling and education, in addition to identifying, developing, and implementing evidence-based symptom management. They play pivotal roles in introducing new CAR-T cell products, educating teams, and advancing their role through APN networks. Finally, APNs are integral members of multiprofessional teams, supporting colleagues in ethically challenging patient situations. IMPLICATIONS FOR NURSING PRACTICE: APNs in the field of CAR-T cell therapy make an important contribution to the continuous care of patients, caregivers, and treatment teams.


Asunto(s)
Enfermería de Práctica Avanzada , Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/métodos , Enfermería Oncológica/métodos , Mieloma Múltiple/terapia , Mieloma Múltiple/enfermería , Rol de la Enfermera , Receptores Quiméricos de Antígenos/uso terapéutico
10.
Expert Opin Drug Saf ; : 1-10, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38568245

RESUMEN

BACKGROUND: This study analyzed the bleeding adverse events (AEs) resulting from the treatment of B-cell lymphoma with Bruton tyrosine kinase (BTK) inhibitors, according to reports in the US Food and Drug Administration's Adverse Event Reporting System (FAERS). METHODS: Bleeding AEs associated with BTK inhibitors (including ibrutinib, zanubrutinib, and acalabrutinib) from the first quarter of 2013 to the third quarter of 2023 were extracted. Reporting odds ratio (ROR) and proportional reporting ratio (PRR) were reported. Preferred Terms (PTs) of Medical Dictionary for Regulatory Activities (MedDRA) terms were mapped to System Organ Class terms (SOC) terms and analyzed bleeding AEs associated with three BTK inhibitors. RESULTS: A total of 463 cases of bleeding AEs were included. Contusion, subcutaneous hemorrhage, hematuria, and cerebral hemorrhage were included in PTs. Blood urine was present and subdural hematoma were also reported. The incidence of bleeding AEs was higher with ibrutinib (Case number = 10,696) than with zanubrutinib (Case number = 213) and acalabrutinib (Case number = 314). CONCLUSION: Our findings indicate that bleeding AEs linked to BTK inhibitors in various conditions underscore the need for cautious clinical decision-making, particularly in nervous system disorders, injuries, poisoning, surgical complications, vascular disorders, and others.

11.
Exp Hematol Oncol ; 13(1): 43, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637863

RESUMEN

Chimeric antigen receptors (CAR) are engineered fusion proteins that target T-cells to specific surface antigens of tumor cells to generate effective anti-tumor responses. CAR T-cell therapy is playing an increasingly important role in the treatment of relapsed/refractory B-cell malignancies (R/R BCM). Attempting to make CAR T-cells safer and more effective in treating R/R BCM, various novel engineered CAR T-cell agents are currently in the research and development or clinical trial stages. We have summarized here the latest reports on the novel CAR T-cell therapies for R/R BCM presented at the 2023 ASH Annual Meeting as well as the latest updates in related clinical trials.

12.
Cancer Immunol Immunother ; 73(1): 13, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231412

RESUMEN

BACKGROUND: Although chimeric antigen receptor T (CAR-T) cells have been proven to be an effective way of treating B cell malignancies, a lot of patients could not benefit from it because of failure in CAR-T cell manufacturing, disease progression, and unaffordable price. The study aimed to explore universal CAR-T cell products to extend the clinical accessibility. METHODS: The antitumor activity of CRISPR/Cas9-edited allogeneic anti-CD19 CAR-T (CAR-T19) cells was assessed in vitro, in animal models, and in patients with relapsed/refractory (R/R) acute B cell lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma. RESULTS: B2M-/TRAC- universal CAR-T19 (U-CAR-T19) cells exhibited powerful anti-leukemia abilities both in vitro and in animal models, as did primary CD19+ leukemia cells from leukemia patients. However, expansion, antitumor efficacy, or graft-versus-host-disease (GvHD) was not observed in six patients with R/R B cell malignancies after U-CAR-T19 cell infusion. Accordingly, significant activation of natural killer (NK) cells by U-CAR-T19 cells was proven both clinically and in vitro. HLA-A-/B-/TRAC- novel CAR-T19 (nU-CAR-T19) cells were constructed with similar tumoricidal capacity but resistance to NK cells in vitro. Surprisingly, robust expansion of nU-CAR-T19 cells, along with rapid eradication of CD19+ abnormal B cells, was observed in the peripheral blood and bone marrow of another three patients with R/R B-ALL. The patients achieved complete remission with no detectable minimal residual disease 14 days after the infusion of nU-CAR-T19 cells. Two of the three patients had grade 2 cytokine release syndrome, which were managed using an IL-6 receptor blocker. Most importantly, GvHD was not observed in any patient, suggesting the safety of TRAC-disrupted CAR-T cells generated using the CRISPR/Cas9 method for clinical application. CONCLUSIONS: The nU-CAR-T19 cells showed a strong response in R/R B-ALL. nU-CAR-T19 cells have the potential to be a promising new approach for treating R/R B cell malignancies.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Linfocítica Crónica de Células B , Leucemia , Receptores Quiméricos de Antígenos , Animales , Humanos , Receptores Quiméricos de Antígenos/genética , Anticuerpos , Antígenos CD19 , Linfocitos T , Antígenos HLA-A
13.
Annu Rev Med ; 75: 13-29, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37729027

RESUMEN

Multiple myeloma is a cancer of bone marrow plasma cells that represents approximately 10% of hematologic malignancies. Though it is typically incurable, a remarkable suite of new therapies developed over the last 25 years has enabled durable disease control in most patients. This article briefly introduces the clinical features of multiple myeloma and aspects of multiple myeloma biology that modern therapies exploit. Key current and emerging treatment modalities are then reviewed, including cereblon-modulating agents, proteasome inhibitors, monoclonal antibodies, other molecularly targeted therapies (selinexor, venetoclax), chimeric antigen receptor T cells, T cell-engaging bispecific antibodies, and antibody-drug conjugates. For each modality, mechanism of action and clinical considerations are discussed. These therapies are combined and sequenced in modern treatment pathways, discussed at the conclusion of the article, which have led to substantial improvements in outcomes for multiple myeloma patients in recent years.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Inmunoterapia , Inhibidores de Proteasoma/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Terapia Biológica
14.
ChemMedChem ; 19(1): e202300511, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37916435

RESUMEN

Bruton's tyrosine kinase (BTK) is a promising molecular target for several human B-cell-related autoimmune disorders, inflammation, and haematological malignancies. The pathogenic alterations in various cancer tissues depend on mutant BTK for cell proliferation and survival, and BTK is also overexpressed in a range of hematopoietic cells. Due to this, BTK is emerging as a potential drug target to treat various human diseases, and several reversible and irreversible inhibitors have been developed and are being developed. As a result, BTK inhibition, clinically validated as an anticancer treatment, is finding great interest in B-cell malignancies and solid tumours. This study focuses on the design and synthesis of new oxindole sulfonamide derivatives as promising inhibitors of BTK with negligible off-target effects. The most cytotoxic compounds with greater basicity were PID-4 (2.29±0.52 µM), PID-6 (9.37±2.47 µM), and PID-19 (2.64±0.88 µM). These compounds caused a selective inhibition of Burkitt's lymphoma RAMOS cells without significant cytotoxicity in non-BTK cancerous and non-cancerous cell lines. Further, PID-4 showed promising activity in inhibiting BTK and downstream signalling cascades. As a potent inhibitor of Burkitt's lymphoma cells, PID-4 is a promising lead for developing novel chemotherapeutics.


Asunto(s)
Linfoma de Burkitt , Humanos , Linfoma de Burkitt/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Agammaglobulinemia Tirosina Quinasa , Sulfonamidas/farmacología
15.
Cell Immunol ; 393-394: 104787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37976975

RESUMEN

The administration of blinatumomab was accompanied by several adverse effects, including activation of regulatory T-cells and cytokine storm. The objective of this study was to produce and evaluate a novel αCD8/CD19 BiTE (αCD8/CD19) with the potency to directly target CD8+T-cells. In-silico studies were utilized for determining proper folding, receptor binding, and structural stability of αCD8/CD19 protein. Western blotting and indirect surface staining were used to evaluate the size accuracy and binding potency of the purified protein. Functionality was assessed for granzyme B production, cytotoxicity, and proliferation. TheαCD8/CD19recombinant protein was produced in the CHO-K1 cell line with a final concentration of 1.94 mg/l. The αCD8/CD19 bound to CD8+and CD19+cell lines and induced significant granzyme B production, cytotoxic activity and proliferation potential in the presence of IL-2 and tumor target cells. The maximum CD8+T-cell biological activity was observed on the 10th day with 10:1 effector-to-target ratio.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Neoplasias , Humanos , Granzimas , Neoplasias/patología , Linfocitos T CD8-positivos/metabolismo , Antineoplásicos/farmacología , Anticuerpos Biespecíficos/efectos adversos , Antígenos CD19
17.
Mol Oncol ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38013654

RESUMEN

In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.

18.
Int J Oncol ; 63(6)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37830150

RESUMEN

Cancer is the primary and one of the most prominent causes of the rising global mortality rate, accounting for nearly 10 million deaths annually. Specific methods have been devised to cure cancerous tumours. Effective therapeutic approaches must be developed, both at the cellular and genetic level. Immunotherapy offers promising results by providing sustained remission to patients with refractory malignancies. Genetically modified T­lymphocytic cells have emerged as a novel therapeutic approach for the treatment of solid tumours, haematological malignancies, and relapsed/refractory B­lymphocyte malignancies as a result of recent clinical trial findings; the treatment is referred to as chimeric antigen receptor T­cell therapy (CAR T­cell therapy). Leukapheresis is used to remove T­lymphocytes from the leukocytes, and CARs are created through genetic engineering. Without the aid of a major histocompatibility complex, these genetically modified receptors lyse malignant tissues by interacting directly with the carcinogen. Additionally, the outcomes of preclinical and clinical studies reveal that CAR T­cell therapy has proven to be a potential therapeutic contender against metastatic breast cancer (BCa), triple­negative, and HER 2+ve BCa. Nevertheless, unique toxicities, including (cytokine release syndrome, on/off­target tumour recognition, neurotoxicities, anaphylaxis, antigen escape in BCa, and the immunosuppressive tumour microenvironment in solid tumours, negatively impact the mechanism of action of these receptors. In this review, the potential of CAR T­cell immunotherapy and its method of destroying tumour cells is explored using data from preclinical and clinical trials, as well as providing an update on the approaches used to reduce toxicities, which may improve or broaden the effectiveness of the therapies used in BCa.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hematológicas , Humanos , Femenino , Neoplasias de la Mama/terapia , Inmunoterapia Adoptiva/métodos , Linfocitos T , Inmunoterapia , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral
19.
Cancer Immunol Immunother ; 72(12): 4031-4047, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814001

RESUMEN

Several CD19-targeting CAR-T cells are used to treat leukemias and lymphomas; however, relapsed and/or refractory (R/R) disease is still observed in a significant number of patients. Additionally, the success of CD19-CAR-T cell therapies is not uniform across hematological malignancies, particularly in chronic lymphocytic leukemia (CLL). In this study, we present the development of a novel CAR-T cell therapy targeting B-cell activating factor receptor (BAFF-R), a key regulator of B-cell proliferation and maturation. A new monoclonal antibody against BAFF-R was generated from a hybridoma clone and used to create a novel MC10029 CAR construct. Through a series of in vitro and in vivo models using the Nalm-6 cell line for leukemia and the Z138 cell line for lymphoma, we demonstrated the antigen-specific cytotoxicity of MC10029 CAR-T cells against tumor cells. Additionally, MC10029 CAR-T cells exhibited potent antitumor effects against CD19 knockout tumor cells, mimicking CD19-negative R/R disease. MC10029 CAR-T cells were specifically targeted to CLL, in which BAFF-R is nearly always expressed. The cytotoxicity of MC10029 CAR-T cells was first shown in the MEC-1 CLL cell line, before we turned our efforts to subject-derived samples. Using healthy donor-engineered MC10029 CAR-T cells against enriched primary tumor cells, followed by subject-derived MC10029 CAR-T cells against autologous tumor cells, we showed the efficacy of MC10029 CAR-T cells against CLL subject samples. With these robust data, we have advanced to the production of MC10029 CAR-T cells, using GMP lentivirus, and obtained an IND approval in preparation for a Phase 1 clinical trial.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia , Linfoma , Receptores Quiméricos de Antígenos , Humanos , Leucemia Linfocítica Crónica de Células B/terapia , Inmunoterapia Adoptiva , Linfoma/terapia , Antígenos CD19
20.
Cancer Med ; 12(18): 18767-18785, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37667978

RESUMEN

BACKGROUND: The efficacy of CD22 or CD19 chimeric antigen receptor T (CAR-T) cells in the management of acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) was observed. Because antigen loss and lack of CAR-T-cell persistence are the leading causes of progressive disease following single-antigen targeting, we evaluated CD22/CD19 dual-targeting CAR-T-cell therapy efficacy and safety in relapsed/refractory B-cell malignancies. METHODS: The Web of Science, PubMed, Cochrane, and Embase databases were searched until July 2022. Patients confirmed with any relapsed/refractory B-cell hematological malignancies were included regardless of age, gender, or ethnicity, receiving CD22 and CD19-dual-targeting CAR-T-cell therapy. The studies conducted on patients with coexisting other cancer were excluded. We used random-effect models to explore the outcome, and heterogeneity was investigated by subgroup analysis. RESULTS: Fourteen studies (405 patients) were included. The pooled overall response (OR) and complete remission (CR) were 97% and 93%, respectively, for ALL patients. The 1-year proportions of overall survival (OS) and progression-free survival (PFS) were 70% and 49%, respectively. For NHL, OR occurred in 85% of patients, and 57% experienced CR. The results illustrated that the 1-year OS and 1-year PFS were 77% and 65%, respectively. The subgroup analysis showed that the dual-targeting modality achieved higher CR in the following cases: coadministration of CD22/CD19-CAR-T cells and third-generation CAR-T cells combined with ASCT and BEAM pretreatment. The ALL and NHL groups seemed similar in treatment-related toxicity: all grade cytokine release syndrome (CRS), severe CRS, and neurotoxicity occurred in 86%, 7%, and 12% of patients, respectively. CONCLUSIONS: Our meta-analysis demonstrated that the CD22/CD19 dual-targeting CAR-T-cell strategy has high efficiency with tolerable adverse effects in B-cell malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA