Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 968
Filtrar
1.
AAPS J ; 26(5): 99, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231845

RESUMEN

ß-site amyloid precursor protein cleaving enzyme (BACE1) represents a key target for Alzheimer's disease (AD) therapy because it is essential for producing the toxic amyloid ß (Aß) peptide that plays a crucial role in the disease's development. BACE1 inhibitors are a promising approach to reducing Aß levels in the brain and preventing AD progression. However, systemic delivery of such inhibitors to the brain demonstrates limited efficacy because of the presence of the blood-brain barrier (BBB). Nose-to-brain (NtB) delivery has the potential to overcome this obstacle. Liposomal drug delivery systems offer several advantages over traditional methods for delivering drugs and nucleic acids from the nose to the brain. The current study aims to prepare, characterize, and evaluate in vitro liposomal forms of donepezil, memantine, BACE-1 siRNA, and their combination for possible treatment of AD via NtB delivery. All the liposomal formulations were prepared using the rotary evaporation method. Their cellular internalization, cytotoxicity, and the suppression of beta-amyloid plaque and other pro-inflammatory cytokine expressions were studied. The Calu-3 Transwell model was used as an in vitro system for mimicking the anatomical and physiological conditions of the nasal epithelium and studying the suitability of the proposed formulations for possible NtB delivery. The investigation results show that liposomes provided the effective intracellular delivery of therapeutics, the potential to overcome tight junctions in BBB, reduced beta-amyloid plaque accumulation and pro-inflammatory cytokine expression, supporting the therapeutic potential of our approach.


Asunto(s)
Administración Intranasal , Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Donepezilo , Liposomas , ARN Interferente Pequeño , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , ARN Interferente Pequeño/administración & dosificación , Donepezilo/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Piperidinas/farmacología , Mucosa Nasal/metabolismo , Mucosa Nasal/efectos de los fármacos , Indanos/administración & dosificación , Indanos/farmacocinética , Péptidos beta-Amiloides/metabolismo
2.
Sci Rep ; 14(1): 21115, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256495

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects the elderly population globally and there is an urgent demand for developing novel anti-AD agents. In this study, a new series of indole-isoxazole carbohydrazides were designed and synthesized. The structure of all compounds was elucidated using spectroscopic methods including FTIR, 1H NMR, and 13C NMR as well as mass spectrometry and elemental analysis. All derivatives were screened for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Out of all synthesized compounds, compound 5d exhibited the highest potency as AChE inhibitor with an IC50 value of 29.46 ± 0.31 µM. It showed significant selectivity towards AChE, with no notable inhibition against BuChE. A kinetic study on AChE for compound 5d indicated a competitive inhibition pattern. Also, 5d exhibited promising BACE1 inhibitory potential with an IC50 value of 2.85 ± 0.09 µM and in vitro metal chelating ability against Fe3+. The molecular dynamic studies of 5d against both AChE and BACE1 were executed to evaluate the behavior of this derivative in the binding site. The results showed that the new compounds deserve further chemical optimization to be considered potential anti-AD agents.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Indoles , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Isoxazoles/química , Isoxazoles/farmacología , Isoxazoles/síntesis química , Relación Estructura-Actividad , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Modelos Moleculares , Sitios de Unión , Simulación de Dinámica Molecular , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Cinética , Hidrazinas
3.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125924

RESUMEN

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two major neurodegenerative diseases causing dementia. Due to similar clinical phenotypes, differential diagnosis is challenging without specific biomarkers. Beta-site Amyloid Precursor Protein cleaving enzyme 1 (BACE1) is a ß-secretase pivotal in AD pathogenesis. In AD and mild cognitive impairment subjects, BACE1 activity is increased in brain/cerebrospinal fluid, and plasma levels appear to reflect those in the brain. In this study, we aim to evaluate serum BACE1 activity in FTD, since, to date, there is no evidence about its role. The serum of 30 FTD patients and 30 controls was analyzed to evaluate (i) BACE1 activity, using a fluorescent assay, and (ii) Glial Fibrillary Acid Protein (GFAP) and Neurofilament Light chain (NfL) levels, using a Simoa kit. As expected, a significant increase in GFAP and NfL levels was observed in FTD patients compared to controls. Serum BACE1 activity was not altered in FTD patients. A significant increase in serum BACE1 activity was shown in AD vs. FTD and controls. Our results support the hypothesis that serum BACE1 activity is a potential biomarker for the differential diagnosis between AD and FTD.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Biomarcadores , Demencia Frontotemporal , Proteína Ácida Fibrilar de la Glía , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Demencia Frontotemporal/sangre , Demencia Frontotemporal/diagnóstico , Secretasas de la Proteína Precursora del Amiloide/sangre , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Diagnóstico Diferencial , Femenino , Masculino , Biomarcadores/sangre , Anciano , Proyectos Piloto , Ácido Aspártico Endopeptidasas/sangre , Persona de Mediana Edad , Proteína Ácida Fibrilar de la Glía/sangre , Proteínas de Neurofilamentos/sangre , Estudios de Casos y Controles
4.
Physiol Rep ; 12(16): e70001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161054

RESUMEN

Brain-derived neurotrophic factor (BDNF) content and signaling has been identified as one potential regulator of amyloid precursor protein (APP) processing. Recently published work has demonstrated that BDNF reduces BACE1 activity while also elevating the inhibition of GSK3ß in the prefrontal cortex of male C57BL/6J mice. These results provide evidence that BDNF alters APP processing by reducing BACE1 activity, which may act through GSK3ß inhibition. The purpose of this study was to further explore the role of GSK3ß in BDNF-induced regulation on BACE1 activity. We utilized a cell culture and an in vitro activity assay model to pharmacologically target BDNF and GSK3ß signaling to confirm its involvement in the BDNF response. Treatment of differentiated SH-SY5Y neuronal cells with 75 ng/mL BDNF resulted in elevated pTrkB content, pAkt content, pGSK3ß content, and reduced BACE1 activity. An in vitro BACE1 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF reduced BACE1 activity; however, in the presence of TrkB or Akt inhibition, this effect was abolished. An in vitro ADAM10 activity assay utilizing mouse prefrontal cortex (n = 6/group) supplemented with BDNF, BDNF + ANA12 (Trkb antagonist), or BDNF + wortmannin (Akt inhibitor) demonstrated that BDNF did not alter ADAM10 activity. However, inhibiting BDNF signaling reduced ADAM10 activity. Collectively these studies suggest that GSK3ß inhibition may be necessary for BDNF-induced reductions in BACE1 activity. These findings will allow for the optimization of future therapeutic strategies by selectively targeting TrkB activation and GSK3ß inhibition.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Factor Neurotrófico Derivado del Encéfalo , Glucógeno Sintasa Quinasa 3 beta , Ratones Endogámicos C57BL , Neuronas , Proteínas Proto-Oncogénicas c-akt , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ratones , Masculino , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Transducción de Señal , Línea Celular Tumoral , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo
5.
Eur J Pharm Sci ; 201: 106869, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39102997

RESUMEN

BACE-1 plays a pivotal role in the production of ß-amyloid (Aß) peptides, implicated in Alzheimer's Disease (AD) pathology. We previously described edaravone N-benzyl pyridinium derivatives (EBPDs) that exhibited multifunctional activity against multiple AD targets. In this study we explored the EBPDs BACE-1 inhibitory activity to potentially enhance the compounds therapeutic profile. The EBPDs exhibited moderate BACE-1 inhibitory activity (IC50 = 44.10 µM - 123.70 µM) and obtained IC50 values between 2.0 and 5.8-fold greater than resveratrol, a known BACE-1 inhibitor (IC50 = 253.20 µM), in this assay. Compound 3 was the most potent inhibitor with an IC50 of 44.10 µM and a Ki of 19.96 µM and a mixed-type mode of inhibition that favored binding in a competitive manner. Molecular docking identified crucial interactions with BACE-1 active site residues, supported by 100 ns MD simulations. The study highlighted the EBPDs therapeutic potential as BACE-1 inhibitors and multifunctional anti-AD therapeutic agents.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Edaravona , Simulación del Acoplamiento Molecular , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Edaravona/farmacología , Edaravona/química , Humanos , Cinética , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Simulación de Dinámica Molecular , Unión Proteica
6.
Fitoterapia ; 178: 106157, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098735

RESUMEN

The fruits of Alpinia oxyphylla (Alpiniae Oxyphyllae Fructus, AOF) are one of the "Four Famous South Medicines" in China. In this study, beta-site amyloid protein precursor cleaving enzyme 1 (BACE1) was applied to explore the active components in AOF responsible for type 2 diabetes mellitus (T2DM)-related cognitive disorder. As a result, 24 compounds including three unreported ones (1, 3, 4) were isolated from AOF. Compound 1 is an unusual carbon­carbon linked diarylheptanoid dimer, and compound 4 is the first case of 3,4-seco-eudesmane sesquiterpenoid with a 5/6-bicyclic skeleton. Four diarylheptanoids (3, 5-7), one flavonoid (9) and two sesquiterpenoids (14 and 20) showed BACE1 inhibitory activity, of which the most active 6 was revealed to be a non-competitive and anti-competitive mixed inhibitor. Docking simulation suggested that OH-4' of 6 played important roles in maintaining activity by forming hydrogen bonds with Ser36 and Ile126 residues. Compounds 3, 5, 9 and 20 displayed neuroprotective effects against amyloid ß (Aß)-induced damage in BV2 cells. Mechanism study revealed that compounds 5 and 20 downregulated the expression of BACE1 and upregulated the expression of Lamp2 to exert effects. Thus, the characteristic diarylheptanoids and sesquiterpenoids in AOF had the efficacy to alleviate T2DM-related cognitive disorder by inhibiting BACE1 activity and reversing Aß-induced neuronal damage.


Asunto(s)
Alpinia , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Diabetes Mellitus Tipo 2 , Frutas , Sesquiterpenos , Alpinia/química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Frutas/química , Estructura Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Diarilheptanoides/farmacología , Diarilheptanoides/aislamiento & purificación , Diarilheptanoides/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Humanos , Animales , China , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Trastornos del Conocimiento/tratamiento farmacológico , Ratones , Extractos Vegetales
7.
Bioorg Med Chem Lett ; 112: 129928, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39151660

RESUMEN

Alzheimer's disease is age-related multifactorial neurodegenerative disease manifested by gradual loss of memory, cognitive decline and changes in personality. Due to rapid and continuous growth of its prevalence, the treatment of Alzheimer's disease calls for development of new and efficacies drugs, especially those that could be able to simultaneously act on more than one of possible targets of action. Aminoquinolines have proven to be a highly promising structural scaffold in the design of such a drug as cholinesterases and ß-secretase 1 inhibitors. In this study, we synthesised twenty-two new 4-aminoquinolines with different halogen atom and its position in the terminal N-benzyl group or with a trifluoromethyl or a chlorine as C(7)-substituents on the quinoline moiety. All compounds were evaluated as multi-target-directedligands by determining their inhibition potency towards human acetylcholinesterase, butyrylcholinesterase and ß-secretase 1. All of the tested derivatives were very potent inhibitors of human acetylcholinesterase and butyrylcholinesterase with inhibition constants (Ki) in the nM to low µM range. Most were estimated to be able to cross the blood-brain barrier by passive transport and were nontoxic toward cells that represented the main models of individual organs.


Asunto(s)
Acetilcolinesterasa , Aminoquinolinas , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Aminoquinolinas/farmacología , Aminoquinolinas/química , Aminoquinolinas/síntesis química , Butirilcolinesterasa/metabolismo , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Estructura Molecular , Halógenos/química , Relación Dosis-Respuesta a Droga
8.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204166

RESUMEN

This study aimed to provide scientific data on the anti-Alzheimer's disease (AD) effects of phenolic compounds from Drynariae Rhizoma (DR) extract using a multi-component approach. Screening of DR extracts, fractions, and the ten phenolic compounds isolated from DR against the key AD-related enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), and monoamine oxidase-B (MAO-B) confirmed their significant inhibitory activities. The DR extract was confirmed to have BACE1-inhibitory activity, and the ethyl acetate and butanol fractions were found to inhibit all AD-related enzymes, including BACE1, AChE, BChE, and MAO-B. Among the isolated phenolic compounds, compounds (2) caffeic acid 4-O-ß-D-glucopyranoside, (6) kaempferol 3-O-rhamnoside 7-O-glucoside, (7) kaempferol 3-o-b-d-glucopyranoside-7-o-a-L-arabinofuranoside, (8) neoeriocitrin, (9) naringin, and (10) hesperidin significantly suppressed AD-related enzymes. Notably, compounds 2 and 8 reduced soluble Amyloid Precursor Protein ß (sAPPß) and ß-secretase expression by over 45% at a concentration of 1.0 µM. In the thioflavin T assay, compounds 6 and 7 decreased Aß aggregation by approximately 40% and 80%, respectively, and degraded preformed Aß aggregates. This study provides robust evidence regarding the potential of DR as a natural therapeutic agent for AD, highlighting specific compounds that may contribute to its efficacy.

9.
Pharmaceutics ; 16(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39204327

RESUMEN

Multitarget compounds have emerged as promising drug candidates to cope with complex multifactorial diseases, like Alzheimer's disease (AD). Most multitarget compounds are designed by linking two pharmacophores through a tether chain (linked hybrids), which results in rather large molecules that are particularly useful to hit targets with large binding cavities, but at the expense of suffering from suboptimal physicochemical/pharmacokinetic properties. Molecular size reduction by removal of superfluous structural elements while retaining the key pharmacophoric motifs may represent a compromise solution to achieve both multitargeting and favorable physicochemical/PK properties. Here, we report the stepwise structural simplification of the dihydroxyanthraquinone moiety of a rhein-huprine hybrid lead by hydroxy group removal-ring contraction-ring opening-ring removal, which has led to new analogs that retain or surpass the potency of the lead on its multiple AD targets while exhibiting more favorable drug metabolism and pharmacokinetic (DMPK) properties and safety profile. In particular, the most simplified acetophenone analog displays dual nanomolar inhibition of human acetylcholinesterase and butyrylcholinesterase (IC50 = 6 nM and 13 nM, respectively), moderately potent inhibition of human BACE-1 (48% inhibition at 15 µM) and Aß42 and tau aggregation (73% and 68% inhibition, respectively, at 10 µM), favorable in vitro brain permeation, higher aqueous solubility (18 µM) and plasma stability (100/96/86% remaining in human/mouse/rat plasma after 6 h incubation), and lower acute toxicity in a model organism (zebrafish embryos; LC50 >> 100 µM) than the initial lead, thereby confirming the successful lead optimization by structural simplification.

10.
J Med Food ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121021

RESUMEN

Herein, we highlight the significance of molecular modeling approaches prior to in vitro and in vivo studies; particularly, in diseases with no recognized treatments such as neurological abnormalities. Alzheimer disease is a neurodegenerative disorder that causes irreversible cognitive decline. Toxicity and ADMET studies were conducted using the Qikprop platform in Maestro software and Discovery Studio 2.0, respectively, to select the promising skeletons from more than 45 reviewed compounds isolated from mushrooms in the last decade. Using rigid and flexible molecular docking approaches such as induced fit docking (IFD) in the binding sites of ß-secretase (BACE1) and acetylcholine esterase (ACHE), promising structures were screened through high precision molecular docking compared with standard drugs donepezil and (2E)-2-imino-3-methyl-5,5-diphenylimidazolidin-4-one (OKK) using Maestro and Cresset Flare platforms. Molecular interactions, binding distances, and RMSD values were measured to reveal key interactions at the binding sites of the two neurodegenerative enzymes. Analysis of IFD results revealed consistent bindings of dictyoquinazol A and gensetin I in the pocket of 4ey7 while inonophenol A, ganomycin, and fornicin fit quite well in 4dju demonstrating binding poses very close to native ligands at ACHE and BACE1. Respective key amino acid contacts manifested the least steric problems according to their Gibbs free binding energies, Glide XP scores, RMSD values, and molecular orientation respect to the key amino acids. Molecular dynamics simulations further confirmed our findings and prospected these compounds to show significant in vitro results in their future pharmacological studies.

11.
J Biol Chem ; 300(8): 107530, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971310

RESUMEN

Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Glutatión Transferasa , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt , Proteínas RGS , Transducción de Señal , Proteínas RGS/metabolismo , Proteínas RGS/genética , Humanos , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apoptosis , Péptidos beta-Amiloides/metabolismo , Animales
12.
Glob Health Med ; 6(3): 164-168, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38947412

RESUMEN

Alzheimer's disease (AD), first diagnosed over a century ago, remains one of the major healthcare crises around the globe. Currently, there is no cure or effective treatment. The majority of drug development efforts to date have targeted reduction of amyloid-ß peptide (Aß). Drug development through inhibition of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), resulted in promising early clinical studies. However, nearly all small molecule BACE1 inhibitor drugs failed to live up to expectations in later phase clinical trials, due to toxicity and efficacy issues. This commentary aims to provide a brief review of over two decades of BACE1 inhibitor drug development challenges and efforts for treatment of AD and prospects of future BACE1-based drugs.

13.
Curr Alzheimer Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39021181

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is an alarmingly prevalent worldwide neurological disorder that affects millions of people and has severe effects on cognitive functions. The amyloid hypothesis, which links AD to Aß (amyloid beta) plaque aggregation, is a well-acknowledged theory. The ß-secretase (BACE1) is the main cause of Aß production, which makes it a possible target for therapy. FDA-approved therapies for AD do exist, but none of them explicitly target BACE1, and their effectiveness is constrained and accompanied by adverse effects. MATERIALS AND METHODS: We determined the essential chemical components of medicinal herbs by conducting a thorough literature research for BACE1. Computational methods like molecular docking, ADMET (Absorption, distribution, metabolism, excretion, toxicity) screening, molecular dynamic simulations, and MMPBSA analysis were performed in order to identify the most promising ligands for ß-secretase. RESULTS: The results suggested that withasomniferol, tinosporide, and curcumin had better binding affinity with BACE1, suggesting their potential as therapeutic candidates against Alzheimer's disease. CONCLUSION: Herbal therapeutics have immense applications in the treatment of chronic diseases like Alzheimer's disease, and there is an urgent need to assess their efficacy as therapeutics.

14.
Cells ; 13(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39056755

RESUMEN

As per the National Survey on Drug Use and Health, 10.5% of Americans aged 12 years and older are suffering from alcohol use disorder, with a wide range of neurological disorders. Alcohol-mediated neurological disorders can be linked to Alzheimer's-like pathology, which has not been well studied. We hypothesize that alcohol exposure can induce astrocytic amyloidosis, which can be corroborated by the neurological disorders observed in alcohol use disorder. In this study, we demonstrated that the exposure of astrocytes to ethanol resulted in an increase in Alzheimer's disease markers-the amyloid precursor protein, Aß1-42, and the ß-site-cleaving enzyme; an oxidative stress marker-4HNE; proinflammatory cytokines-TNF-α, IL1ß, and IL6; lncRNA BACE1-AS; and alcohol-metabolizing enzymes-alcohol dehydrogenase, aldehyde dehydrogenase-2, and cytochrome P450 2E1. A gene-silencing approach confirmed the regulatory role of lncRNA BACE1-AS in amyloid generation, alcohol metabolism, and neuroinflammation. This report is the first to suggest the involvement of lncRNA BACE1-AS in alcohol-induced astrocytic amyloid generation and alcohol metabolism. These findings will aid in developing therapies targeting astrocyte-mediated neurological disorders and cognitive deficits in alcohol users.


Asunto(s)
Astrocitos , Etanol , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Animales , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Estrés Oxidativo/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Citocinas/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética
15.
Steroids ; 209: 109468, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959993

RESUMEN

Steroidal alkaloids are secondary metabolites that are often found in plants, fungi and sponges. These compounds are considered as a source of bioactive compounds for the treatment of chronic diseases, such as neurological disorder like Alzheimer's disease (AD). Some examples of alkaloid derivatives currently used to treat AD symptoms include galantamine, huperzine A, and other alkaloids. AD is a multifactorial disease caused by multiple factors such as inflammation, oxidative stress, and protein aggregation. Based on the various important neuroprotective activities and different pharmacological effects of steroidal alkaloids with polypharmacological modulatory effects, they can lead to the development of new drugs for the treatment of AD. There are limited studies on the involvement of steroidal alkaloids in AD. Therefore, the mechanisms and neuroprotective abilities of these compounds are still poorly understood. The purpose of this review article is to provide an overview of the mechanism, toxicity and neuroprotective benefits of steroidal alkaloids and to discuss future possibilities to improve the application of steroidal alkaloids as anti-AD agents. The therapeutic value and limitations of the steroidal alkaloid are investigated to provide new perspectives for future clinical development studies.


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Fármacos Neuroprotectores , Esteroides , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Alcaloides/farmacología , Alcaloides/química , Alcaloides/uso terapéutico , Esteroides/química , Esteroides/farmacología , Esteroides/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Animales
16.
Artículo en Inglés | MEDLINE | ID: mdl-39005132

RESUMEN

Alzheimer's Disease (AD) is a devastating neurological condition characterized by a progressive decline in cognitive function, including memory loss, reasoning difficulties, and disorientation. Its hallmark features include the formation of neurofibrillary tangles and neuritic plaques in the brain, disrupting normal neuronal function. Neurofibrillary tangles, composed of phosphorylated tau protein and neuritic plaques, containing amyloid-ß protein (Aß) aggregates, contribute to the degenerative process. The discovery of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) in 1999 revolutionized our understanding of AD pathogenesis. BACE1 plays a crucial role in the production of Aß, the toxic protein implicated in AD progression. Elevated levels of BACE1 have been observed in AD brains and bodily fluids, underscoring its significance in disease onset and progression. Despite setbacks in clinical trials of BACE1 inhibitors due to efficacy and safety concerns, targeting BACE1 remains a promising therapeutic strategy for early-stage AD. Natural flavonoids have emerged as potential BACE1 inhibitors, demonstrating the ability to reduce Aß production in neuronal cells and inhibit BACE1 activity. In our review, we delve into the pathophysiology of AD, highlighting the central role of BACE1 in Aß production and disease progression. We explore the therapeutic potential of BACE1 inhibitors, including natural flavonoids, in controlling AD symptoms. Additionally, we provide insights into ongoing clinical trials and available patents in this field, shedding light on future directions for AD treatment research.

17.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38999999

RESUMEN

This study investigates the clustering patterns of human ß-secretase 1 (BACE-1) inhibitors using complex network methodologies based on various distance functions, including Euclidean, Tanimoto, Hamming, and Levenshtein distances. Molecular descriptor vectors such as molecular mass, Merck Molecular Force Field (MMFF) energy, Crippen partition coefficient (ClogP), Crippen molar refractivity (MR), eccentricity, Kappa indices, Synthetic Accessibility Score, Topological Polar Surface Area (TPSA), and 2D/3D autocorrelation entropies are employed to capture the diverse properties of these inhibitors. The Euclidean distance network demonstrates the most reliable clustering results, with strong agreement metrics and minimal information loss, indicating its robustness in capturing essential structural and physicochemical properties. Tanimoto and Hamming distance networks yield valuable clustering outcomes, albeit with moderate performance, while the Levenshtein distance network shows significant discrepancies. The analysis of eigenvector centrality across different networks identifies key inhibitors acting as hubs, which are likely critical in biochemical pathways. Community detection results highlight distinct clustering patterns, with well-defined communities providing insights into the functional and structural groupings of BACE-1 inhibitors. The study also conducts non-parametric tests, revealing significant differences in molecular descriptors, validating the clustering methodology. Despite its limitations, including reliance on specific descriptors and computational complexity, this study offers a comprehensive framework for understanding molecular interactions and guiding therapeutic interventions. Future research could integrate additional descriptors, advanced machine learning techniques, and dynamic network analysis to enhance clustering accuracy and applicability.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Humanos , Análisis por Conglomerados , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Modelos Moleculares , Relación Estructura-Actividad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
18.
Biochim Biophys Acta Gen Subj ; 1868(10): 130668, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992482

RESUMEN

Glycosylation of proteins and lipids is of fundamental importance in multicellular eukaryotes. The vast diversity of glycan structures observed is generated in the Golgi apparatus by the concerted activity of >100 distinct enzymes, which include glycosyltransferases and other glycan-modifying enzymes. Well-known for decades, the majority of these enzymes is released from the Golgi apparatus and subsequently secreted into the extracellular space following endoproteolytic cleavage, but the underlying molecular mechanisms and the physiological implications have remained unexplored. This review will summarize our current knowledge of Golgi enzyme proteolysis and secretion and will discuss its conceptual implications for the regulation of cellular glycosylation and the organization of the Golgi apparatus. A particular focus will lie on the intramembrane protease SPPL3, which recently emerged as key protease facilitating Golgi enzyme release and has since been shown to affect a multitude of glycosylation-dependent physiological processes.


Asunto(s)
Glicosiltransferasas , Aparato de Golgi , Proteolisis , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Glicosiltransferasas/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo
19.
Acta Neuropathol ; 147(1): 97, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856925

RESUMEN

Β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) is a crucial protease in the production of amyloid-ß (Aß) in Alzheimer's disease (AD) patients. However, the side effects observed in clinical trials of BACE1 inhibitors, including reduction in brain volume and cognitive worsening, suggest that the exact role of BACE1 in AD pathology is not fully understood. To further investigate this, we examined cerebrospinal fluid (CSF) levels of BACE1 and its cleaved product sAPPß that reflects BACE1 activity in the China Aging and Neurodegenerative Disorder Initiative cohort. We found significant correlations between CSF BACE1 or sAPPß levels and CSF Aß40, Aß42, and Aß42/Aß40 ratio, but not with amyloid deposition detected by 18F-Florbetapir PET. Additionally, CSF BACE1 and sAPPß levels were positively associated with cortical thickness in multiple brain regions, and higher levels of sAPPß were linked to increased cortical glucose metabolism in frontal and supramarginal areas. Interestingly, individuals with higher baseline levels of CSF BACE1 exhibited slower rates of brain volume reduction and cognitive worsening over time. This suggests that increased levels and activity of BACE1 may not be the determining factor for amyloid deposition, but instead, may be associated with increased neuronal activity and potentially providing protection against neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Encéfalo , Cognición , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/líquido cefalorraquídeo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/líquido cefalorraquídeo , Ácido Aspártico Endopeptidasas/metabolismo , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Encéfalo/metabolismo , Cognición/fisiología , Fragmentos de Péptidos/líquido cefalorraquídeo , Fragmentos de Péptidos/metabolismo , Tomografía de Emisión de Positrones
20.
J Biol Chem ; 300(8): 107510, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944120

RESUMEN

The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the predominant ß-secretase, cleaving the amyloid precursor protein (APP) via the amyloidogenic pathway. In addition, BACE1 as an amyloid degrading enzyme (ADE), cleaves Aß to produce the C-terminally truncated non-toxic Aß fragment Aß34 which is an indicator of amyloid clearance. Here, we analyzed the effects of BACE1 inhibitors on its opposing enzymatic functions, i.e., amyloidogenic (Aß producing) and amyloidolytic (Aß degrading) activities, using cell culture models with varying BACE1/APP ratios. Under high-level BACE1 expression, low-dose inhibition unexpectedly yielded a two-fold increase in Aß42 and Aß40 levels. The concomitant decrease in Aß34 and secreted APPß levels suggested that the elevated Aß42 and Aß40 levels were due to the attenuated Aß degrading activity of BACE1. Notably, the amyloidolytic activity of BACE1 was impeded at lower BACE1 inhibitor concentrations compared to its amyloidogenic activity, thereby suggesting that the Aß degrading activity of BACE1 was more sensitive to inhibition than its Aß producing activity. Under endogenous BACE1 and APP levels, "low-dose" BACE1 inhibition affected both the Aß producing and degrading activities of BACE1, i.e., significantly increased Aß42/Aß40 ratio and decreased Aß34 levels, respectively. Further, we incubated recombinant BACE1 with synthetic Aß peptides and found that BACE1 has a higher affinity for Aß substrates over APP. In summary, our results suggest that stimulating BACE1's ADE activity and halting Aß production without decreasing Aß clearance could still be a promising therapeutic approach with new, yet to be developed, BACE1 modulators.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Ácido Aspártico Endopeptidasas , Fragmentos de Péptidos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Humanos , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Células HEK293
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA