Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci China Life Sci ; 67(9): 1881-1898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38805063

RESUMEN

Aberrant expression of circular RNAs (circRNAs) is frequently linked to colorectal cancer (CRC). Here, we identified circZFR as a promising biomarker for CRC diagnosis and prognosis. CircZFR was upregulated in CRC tissues and serum exosomes and its level was linked to cancer incidence, advanced-stages, and metastasis. In both in vitro and in vivo settings, circZFR promoted the growth and spread while suppressing apoptosis of CRC. Exosomes with circZFR overexpression promoted the proliferation and migration of cocultured CRC cells. Mechanistically, epithelial splicing regulatory protein 1 (ESRP1) in CRC cells may enhance the production of circZFR. BCL2-associated transcription factor 1 (BCLAF1) bound to circZFR, which prevented its ubiquitinated degradation. Additionally, circZFR sponged miR-3127-5p to boost rhotekin 2 (RTKN2) expression. Our TCP1-CD-QDs nanocarrier was able to carry and deliver circZFR siRNA (si-circZFR) to the vasculature of CRC tissues and cells, which inhibited the growth of tumors in patient-derived xenograft (PDX) models. Taken together, our results show that circZFR is an oncogenic circRNA, which promotes the development and spread of CRC in a BCLAF1 and miR-3127-5p-dependent manner. CircZFR is a possible serum biopsy marker for the diagnosis and a desirable target for further treatment of CRC.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Animales , Ratones , Línea Celular Tumoral , Masculino , Femenino , Movimiento Celular/genética , Ratones Desnudos , Apoptosis/genética , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Exosomas/metabolismo , Exosomas/genética , Proteínas Represoras , Proteínas Supresoras de Tumor
2.
Biochem Genet ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573525

RESUMEN

B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) is a versatile protein involved in the regulation of gene transcription and post-transcriptional processing. Although BCLAF1 exerts a broad tumor suppressor effect or tumor promoter effect in many cancer types, the specific roles concerning its expression levels, and its impact on tumorigenesis in Renal cell carcinoma (RCC) remain unclear. Here, we utilized the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) datasets alongside R software and online tools to unravel the specific roles of BCLAF1 in 33 cancer types, including its expression levels, tumor immune and molecular subtypes, and its correlation with prognosis, diagnosis, DNA methylation, and immune microenvironment. Additionally, we carried out cell biology experiments to independently investigate the expression of BCLAF1 in RCC and its effects on tumor progression. BCLAF1 was differentially expressed in tumor tissues compared to normal tissues across various cancer types and was also differentially expressed in different immune and molecular subtypes. In RCC, patients with high BCLAF1 expression had a better prognosis and BCLAF1 was tightly correlated with the stage, gender, and histological grade of patients. Furthermore, BCLAF1 had higher DNA methylation levels and higher immune infiltration levels in tumor tissues. Additionally, cell functional experiments confirmed the low expression of BCLAF1 in RCC and that BCLAF1 significantly inhibited the proliferation, migration, and invasion, while inducing apoptosis and cell cycle arrest in RCC cells in vitro. Our study under-scored the potential of BCLAF1 as an important actor in tumorigenesis, especially concerning RCC where it may serve as an effective prognostic marker.

3.
Cancer Lett ; 591: 216874, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636894

RESUMEN

Esophageal cancer ranks among the most prevalent malignant tumors, and esophageal squamous cell carcinoma (ESCC) constitutes its predominant histological form. Despite its impact, a thorough insight into the molecular intricacies of ESCC's development is still incomplete, which hampers the advancement of targeted molecular diagnostics and treatments. Recently, B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) has come under investigation for its potential involvement in tumor biology, yet its specific role and mechanism in ESCC remain unclear. In this study, we observed a marked increase in BCLAF1 expression in ESCC tissues, correlating with advanced tumor stages and inferior patient outcomes. Our comprehensive in vitro and in vivo studies show that BCLAF1 augments glycolytic activity and the proliferation, invasion, and spread of ESCC cells. By employing mass spectrometry, we identified YTHDF2 as a key protein interacting with BCLAF1 in ESCC, with further validation provided by colocalization, co-immunoprecipitation, and GST pull-down assay. Further investigations involving MeRIP-seq and RIP-seq, alongside transcriptomic analysis, highlighted SIX1 mRNA as a molecule significantly upregulated and modified by N6-methyladenosine (m6A) in BCLAF1 overexpressing cells. BCLAF1 was found to reduce the tumor-suppressive activities of YTHDF2, and its effects on promoting glycolysis and cancer progression were shown to hinge on SIX1 expression. This research establishes that BCLAF1 fosters glycolysis and tumor progression in ESCC through the YTHDF2-SIX1 pathway in an m6A-specific manner, suggesting a potential target for future therapeutic intervention.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio , Estabilidad del ARN , Proteínas de Unión al ARN , Proteínas Represoras , Animales , Femenino , Humanos , Masculino , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Movimiento Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Glucólisis/genética , Ratones Desnudos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
4.
Comput Biol Med ; 174: 108404, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582000

RESUMEN

BACKGROUND: Glioma is a common and aggressive primary malignant cancer known for its high morbidity, mortality, and recurrence rates. Despite this, treatment options for glioma are currently restricted. The dysregulation of RBPs has been linked to the advancement of several types of cancer, but their precise role in glioma evolution is still not fully understood. This study sought to investigate how RBPs may impact the development and prognosis of glioma, with potential implications for prognosis and therapy. METHODS: RNA-seq profiles of glioma and corresponding clinical data from the CGGA database were initially collected for analysis. Unsupervised clustering was utilized to identify crucial tumor subtypes in glioma development. Subsequent time-series analysis and MS model were employed to track the progression of these identified subtypes. RBPs playing a significant role in glioma progression were then pinpointed using WGCNA and Lasso Cox regression models. Functional analysis of these key RBP-related genes was conducted through GSEA. Additionally, the CIBERSORT algorithm was utilized to estimate immune infiltrating cells, while the STRING database was consulted to uncover potential mechanisms of the identified biomarkers. RESULTS: Six tumor subgroups were identified and found to be highly homogeneous within each subgroup. The progression stages of these tumor subgroups were determined using time-series analysis and a MS model. Through WGCNA, Lasso Cox, and multivariate Cox regression analysis, it was confirmed that BCLAF1 is correlated with survival in glioma patients and is closely linked to glioma progression. Functional annotation suggests that BCLAF1 may impact glioma progression by influencing RNA splicing, which in turn affects the cell cycle, Wnt signaling pathway, and other cancer development pathways. CONCLUSIONS: The study initially identified six subtypes of glioma progression and assessed their malignancy ranking. Furthermore, it was determined that BCLAF1 could serve as an RBP-related prognostic marker, offering significant implications for the clinical diagnosis and personalized treatment of glioma.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Proteínas de Unión al ARN , Glioma/genética , Glioma/clasificación , Glioma/metabolismo , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica
5.
Cell Mol Life Sci ; 81(1): 82, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340178

RESUMEN

Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Muerte Celular Programada 1 , Proteínas Represoras/genética , Proteínas Supresoras de Tumor , Evasión Inmune/genética
6.
Biochem Genet ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198022

RESUMEN

Validating the role of BCLAF1 in the development of Bile Duct Cancer. Differential expression of BCLAF1 in Bile Duct Cancer and normal tissues was analyzed bioinformatically, and immuno-infiltration analysis was performed by R. We also derived the correlation between the expression of BCLAF1 and HIF-1α by bioinformatics analysis and validated it by Western Blotting, qRT-PCR and scratch assays before and after hypoxia. Through bioinformatics analysis, we found that BCLAF1 mRNA was significantly higher in the tumor tissues of Bile Duct Cancer. The high expression of BCLAF1 implied a more advanced stage but a lower mortality rate. KEGG and GO enrichment analysis showed that BCLAF1 overexpression in Bile Duct Cancer was mainly associated with histone modification, peptidyl lysine modification, and macromolecular methylation. We used the TIMER algorithm to show that BCLAF1 expression in Bile Duct Cancer is associated with immune cell infiltration, which affects tumor progression and patient prognosis. We confirmed by normoxia and hypoxia qRT-PCR, Western Blotting and scratch assays that BCLAF1 and HIF-1α expression are positively correlated and that BCLAF1 may be expressed as anti-oncogene in Bile Duct Cancer. These findings demonstrate that BCLAF1 may act as anti-oncogene in Bile Duct Cancer and may be involved in immune cell infiltration in Bile Duct Cancer, suppressing the expression of HIF-1α.

7.
Cancer Immunol Immunother ; 72(12): 4279-4292, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906282

RESUMEN

Bcl-2-associated transcription factor-1 (BCLAF1), an apoptosis-regulating protein of paramount significance, orchestrates the progression of various malignancies. This study reveals increased BCLAF1 expression in hepatocellular carcinoma (HCC) patients, in whom elevated BCLAF1 levels are linked to escalated tumor grades and diminished survival rates. Moreover, novel BCLAF1 expression is particularly increased in HCC patients who were not sensitive to the combined treatment of atezolizumab and bevacizumab, but not in patients who had tumors that responded to the combined regimen. Notably, overexpression of BCLAF1 increases HCC cell proliferation in vitro and in vivo, while the conditioned medium derived from cells overexpressing BCLAF1 strikingly enhances the tube-formation capacity of human umbilical vein endothelial cells. Furthermore, compelling evidence demonstrates that BCLAF1 attenuates the expression of prolyl hydroxylase domain protein 2 (PHD2) and governs the stability of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions without exerting any influence on transcription, as determined by Western blot and RT‒qPCR analyses. Subsequently, employing coimmunoprecipitation and immunofluorescence, we validated the reciprocal interaction between BCLAF1 and Cullin 3 (CUL3), through which BCLAF1 actively upregulates the ubiquitination and degradation of PHD2. The Western blot and RT‒qPCR results suggests that programmed death ligand-1 (PD-L1) is one of the downstream responders to HIF-1α in HCC. Thus, we reveal the pivotal role of BCLAF1 in promoting PD-L1 transcription and, through binding to CUL3, in promoting the accumulation of HIF-1α under normoxic conditions, thereby facilitating the ubiquitination and degradation of PHD2.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1 , Carcinoma Hepatocelular/patología , Línea Celular , Proteínas Cullin , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Hepáticas/patología , Proteínas Represoras , Proteínas Supresoras de Tumor
8.
Front Pharmacol ; 14: 1181622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405054

RESUMEN

Background: Post-infarction chronic heart failure is the most common type of heart failure. Patients with chronic heart failure show elevated morbidity and mortality with limited evidence-based therapies. Phosphoproteomic and proteomic analysis can provide insights regarding molecular mechanisms underlying post-infarction chronic heart failure and explore new therapeutic approaches. Methods and results: Global quantitative phosphoproteomic and proteomic analysis of left ventricular tissues from post-infarction chronic heart failure rats were performed. A total of 33 differentially expressed phosphorylated proteins (DPPs) and 129 differentially expressed proteins were identified. Bioinformatic analysis indicated that DPPs were enriched mostly in nucleocytoplasmic transport and mRNA surveillance pathway. Bclaf1 Ser658 was identified after construction of Protein-Protein Interaction Network and intersection with Thanatos Apoptosis Database. Predicted Upstream Kinases of DPPs based on kinase-substrate enrichment analysis (KSEA) app showed 13 kinases enhanced in heart failure. Proteomic analysis showed marked changes in protein expression related to cardiac contractility and metabolism. Conclusion: The present study marked phosphoproteomics and proteomics changes in post-infarction chronic heart failure. Bclaf1 Ser658 might play a critical role in apoptosis in heart failure. PRKAA1, PRKACA, and PAK1 might serve as potential therapeutic targets for post-infarction chronic heart failure.

9.
Front Genet ; 13: 865111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160019

RESUMEN

Background: To establish a comprehensive differential gene profile for pediatric acute myeloid leukemia patients (pAML) based on two independent databases and verify the differentially expressed genes using in vitro and in vivo analyses. Methods: The mRNA and miRNA sequencing information of GSE2191 and GSE35320, clinically recruited pAML individuals, and human AML cell line (NB4 cells) were utilized in the study. Results: Compared with the control sample, pAML patients demonstrated a total of 778 differentially expressed genes, including 565 upregulated genes and 213 downregulated genes. The genes including ZC3H15, BCLAF1, PPIG, DNTTIP2, SRSF11, KTN1, UBE3A, PRPF40A, TMED5, and GNL2 were the top 10 potential hub genes. At the same time, 12 miRNAs demonstrated remarkable differential expressions in pAML individuals compared with control individuals, as five upregulated and seven downregulated miRNAs. The hsa-miR-133, hsa-miR-181, and hsa-miR-195 were significantly downregulated. Building a miRNA-mRNA regulatory network, hsa-miR-133 regulated ZC3H15, BCLAF1, SRSF11, KTN1, PRPF40A, and GNL2. Using the NB4 cell model, hsa-miR-133 treatment inhibited cell proliferation capacity, which could be attenuated by a single mRNA transfection or a combination of ZC3H15 and BCLAF1. At the same time, hsa-miR-133 mimic treatment could significantly accelerate cell apoptosis in NB4 cells, which was also ZC3H15- and BCLAF1-dependent. The concentrations of ZC3H15 and BCLAF1 were investigated in peripheral blood using the ELISA method for the clinical control and pAML samples. In pAML samples, the expression levels of ZC3H15 and BCLAF1 were significantly enhanced (p < 0.01), regardless of the classification. Conclusion: Collectively, this study hypothesized several promising candidates for pAML formation.

10.
Transl Oncol ; 26: 101502, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36137350

RESUMEN

Heat shock protein 90 (Hsp90) has been an important therapeutic target for cancer therapy for decades. Unexpectedly, the monotherapy of N-terminal Hsp90 inhibitor STA9090 related clinical trials halted in phase III, and metastases were reported in animal models with the treatment of N-terminal Hsp90 inhibitors. Vacuolar protein sorting-associated protein 35 (VPS35) plays a vital role in endosome-derived EV (extracellular vesicle) traffic in neurodegeneration diseases, but no vps35 related EV were reported in tumors till now. Since tumor derived EVs contributes to metastasis and VPS35 is recently found to be involved in the invasion and metastasis of hepatocellular carcinoma (HCC), whether N-terminal Hsp90 inhibitor STA9090 induced EVs generation and the role of VPS35 in it were explored in this study. We found that N-terminal Hsp90 inhibitor STA9090 upregulated Bclaf1 and VPS35 levels, increased the secretion of EVs, and STA9090-induced-EVs promoted the invasion of HepG2 cells. As the clinical data suggested that the increased Bclaf1 and VPS35 levels correlated with increased metastasis and poorer prognosis in HCC, we focused on the Bclaf1-VPS35-EVs axis to further explore the mechanism of VPS35-related metastasis. The results demonstrated that Bclaf1 facilitated the transcription of VPS35 via bZIP domain, and knockdown of Bclaf1 or VPS35 alleviated pro-metastatic capability of STA9090-induced-EVs. All the results revealed the role of Bclaf1-VPS35-EVs axis on metastasis of HCC, and VPS35 knockdown decreased Hsp90 Inhibitor STA9090 induced extracellular vesicle release and metastasis, which provided a new combination therapeutic strategy to inhibit the metastasis of HCC caused by N-terminal Hsp90 inhibitor induced extracellular vesicles.

11.
DNA Repair (Amst) ; 118: 103371, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35930920

RESUMEN

BACH1 (Brca1-Associated C-terminal Helicase) is an important DNA damage response factor, which is involved in DNA damage repair and maintenance of genomic stability. In this study, by using tandem protein affinity purification, we have identified BCLAF1 as a novel functional partner of BACH1. BCLAF1 constitutively interacts with BACH1 regardless of DNA damage. However, in response to DNA damage, along with BACH1, BCLAF1 is recruited to the DNA damage sites and the recruitment of BCLAF1 was regulated by BACH1 and BRCA1. Interestingly, BCLAF1 deficient cells are deficient for DSB-initiated HR, but RAD51 foci formation is intact following IR treatment. Taken together, these findings reveal that BCLAF1 is a functional binding partner of BACH1 playing a key role in DNA damage response.


Asunto(s)
Proteína BRCA1 , Reparación del ADN , Proteína BRCA1/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Inestabilidad Genómica , Humanos , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo
12.
Life Sci ; 306: 120804, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35882275

RESUMEN

Curcumin is a yellow pigment extracted from the rhizome of turmeric, a traditional Chinese medicine. Here, we tested the hypothesis that curcumin-mediated downregulation of BCLAF1 triggers mitochondrial apoptosis in hepatoma cells by inhibiting PI3K/AKT/GSK-3ß signaling. Treatment of the human hepatoma cell lines, HepG2 and SK-Hep-1, with various concentrations of curcumin revealed a time-dependent and concentration-dependent inhibition of cell proliferation, increased apoptosis, cell cycle arrest at the G0/G1 phase, reduced mitochondrial membrane potential, and reduced expression levels of PI3K, p-PI3K, AKT, p-AKT, GSK-3ß, and p-GSK-3ß. Additionally, curcumin suppressed the levels of apoptotic factors after treating the cells with LY294002, a PI3K inhibitor. Curcumin also suppressed the expression of BCLAF1. Treating stable BCLAF1 knockout HepG2 and SK-Hep-1 cells with curcumin further enhanced apoptosis and increased the number of cells in G0/G1 cell cycle arrest, while inhibiting the downregulation of PI3K/AKT/GSK-3ß pathway-related proteins. Treatment of a nude mouse xenograft model bearing HepG2 cells with curcumin inhibited tumor growth, disrupted the cellular structure of the tumor tissue, and suppressed the expression of BCLAF1 and PI3K/AKT/GSK-3ß proteins. In summary, our in vitro and in vivo analyses show that curcumin downregulates BCLAF1 expression, inhibits the activation of the PI3K/AKT/GSK-3ß pathway, and triggers mitochondrial apoptosis in HCC. These findings uncover a potential therapeutic strategy leveraging the antitumor effects of curcumin against HCC.


Asunto(s)
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Animales , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Curcumina/farmacología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras , Proteínas Supresoras de Tumor
13.
J Biol Chem ; 298(7): 102095, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35660018

RESUMEN

Ascl2 has been shown to be involved in tumorigenesis in colorectal cancer (CRC), although its epigenetic regulatory mechanism is largely unknown. Here, we found that methylation of the Ascl2 promoter (bp -1670 ∼ -1139) was significantly increased compared to the other regions of the Ascl2 locus in CRC cells and was associated with elevated Ascl2 mRNA expression. Furthermore, we found that promoter methylation was predictive of CRC patient survival after analyzing DNA methylation data, RNA-Seq data, and clinical data of 410 CRC patient samples from the MethHC database, the MEXPRESS database, and the Cbioportal website. Using the established TET methylcytosine dioxygenase 2 (TET2) knockdown and ectopic TET2 catalytic domain-expression cell models, we performed glucosylated hydroxymethyl-sensitive quatitative PCR (qPCR), real-time PCR, and Western blot assays to further confirm that hypermethylation of the Ascl2 promoter, and elevated Ascl2 expression in CRC cells was partly due to the decreased expression of TET2. Furthermore, BCLAF1 was identified as a TET2 interactor in CRC cells by LC-MS/MS, coimmunoprecipitation, immunofluorescence colocalization, and proximity ligation assays. Subsequently, we found the TET2-BCLAF1 complex bound to multiple elements around CCGG sites at the Ascl2 promoter and further restrained its hypermethylation by inducing its hydroxymethylation using chromatin immunoprecipitation-qPCR and glucosylated hydroxymethyl-qPCR assays. Finally, we demonstrate that TET2-modulated Ascl2-targeted stem gene expression in CRC cells was independent of Wnt signaling. Taken together, our data suggest an additional option for inhibiting Ascl2 expression in CRC cells through TET2-BCLAF1-mediated promoter methylation, Ascl2-dependent self-renewal of CRC progenitor cells, and TET2-BCLAF1-related CRC progression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias Colorrectales , Metilación de ADN , Dioxigenasas , Proteínas Represoras , Proteínas Supresoras de Tumor , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Cromatografía Liquida , Neoplasias Colorrectales/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Espectrometría de Masas en Tándem , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Oncol Lett ; 23(2): 58, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34992690

RESUMEN

Originally identified as a regulator of apoptosis and transcription, B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) has since been shown to be associated with a multitude of biological processes, such as DNA damage response, splicing and processing of pre-mRNA, T-cell activation, lung development, muscle cell proliferation and differentiation, autophagy, ischemia-reperfusion injury, and viral infection. In recent years, an increasing amount of evidence has shown that BCLAF1 acts as either a tumor promoter or tumor suppressor in tumorigenesis depending on the cellular context and the type of cancer. Even in the same tumor type, BCLAF1 may have opposite effects. In the present review, the subcellular localization, structural features, mutations within BCLAF1 will be described, then the regulation of BCLAF1 and its downstream targets will be analyzed. Furthermore, the different roles and possible mechanisms of BCLAF1 in tumorigenesis will also be highlighted and discussed. Finally, BCLAF1 may be considered as a potential target for cancer therapy in the future.

15.
EMBO Rep ; 23(1): e52702, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34693625

RESUMEN

TNF stimulation generates pro-survival signals through activation of NF-κB that restrict the build-in death signaling triggered by TNF. The competition between TNF-induced survival and death signals ultimately determines the fate of a cell. Here, we report the identification of Bclaf1 as a novel component of the anti-apoptotic program of TNF. Bclaf1 depletion in multiple cells sensitizes cells to TNF-induced apoptosis but not to necroptosis. Bclaf1 exerts its anti-apoptotic function by promoting the transcription of CFLAR, a caspase 8 antagonist, downstream of NF-κB activation. Bclaf1 binds to the p50 subunit of NF-κB, which is required for Bclaf1 to stimulate CFLAR transcription. Finally, in Bclaf1 siRNA administered mice, TNF-induced small intestine injury is much more severe than in control mice with aggravated signs of apoptosis and pyroptosis. These results suggest Bclaf1 is a key regulator in TNF-induced apoptosis, both in vitro and in vivo.


Asunto(s)
Apoptosis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , FN-kappa B , Proteínas Represoras , Factor de Necrosis Tumoral alfa , Animales , Apoptosis/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/biosíntesis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Intestino Delgado/lesiones , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología
16.
J Transl Med ; 19(1): 339, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372878

RESUMEN

BACKGROUND: DNA damage response plays critical roles in tumor pathogenesis and radiotherapy resistance. Protein phosphorylation is a critical mechanism in regulation of DNA damage response; however, the key mediators for radiosensitivity in gastric cancer still needs further exploration. METHODS: A quick label-free phosphoproteomics using high-resolution mass spectrometry and an open search approach was applied to paired tumor and adjacent tissues from five patients with gastric cancer. The dysregulated phosphoproteins were identified and their associated-pathways analyzed using Gene Set Enrichment Analysis (GSEA). The mostly regulated phosphoproteins and their potential functions were validated by the specific antibodies against the phosphorylation sites. Specific protein phosphorylation was further analyzed by functional and clinical approaches. RESULTS: 832 gastric cancer-associated unique phosphorylated sites were identified, among which 25 were up- and 52 down-regulated. Markedly, the dysregulated phosphoproteins were primarily enriched in DNA-damage-response-associated pathways. Particularly, the phosphorylation of Bcl-2-associated transcription factor 1 (BCLAF1) at Ser290 was significantly upregulated in tumor. The upregulation of BCLAF1 Ser290 phosphorylation (pBCLAF1 (Ser290)) in tumor was confirmed by tissue microarray studies and further indicated in association with poor prognosis of gastric cancer patients. Eliminating the phosphorylation of BCLAF1 at Ser290 suppressed gastric cancer (GC) cell proliferation. Upregulation of pBCLAF1 (Ser290) was found in association with irradiation-induced γ-H2AX expression in the nucleus, leading to an increased DNA damage repair response, and a marked inhibition of irradiation-induced cancer cell apoptosis. CONCLUSIONS: The phosphorylation of BCLAF1 at Ser290 is involved in the regulation of DNA damage response, indicating an important target for the resistance of radiotherapy.


Asunto(s)
Neoplasias Gástricas , Apoptosis , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Humanos , Fosforilación , Tolerancia a Radiación , Neoplasias Gástricas/genética , Neoplasias Gástricas/radioterapia
17.
Cancer Sci ; 112(10): 4064-4074, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34251713

RESUMEN

Programmed cell death ligand 1 (PD-L1) is a major immunosuppressive checkpoint protein expressed by tumor cells to subvert anticancer immunity. Recent studies have shown that ionizing radiation (IR) upregulates the expression of PD-L1 in tumor cells. However, whether an IR-induced DNA damage response (DDR) directly regulates PD-L1 expression and the functional significance of its upregulation are not fully understood. Here, we show that IR-induced upregulation of PD-L1 expression proceeds through both transcriptional and post-translational mechanisms. Upregulated PD-L1 was predominantly present on the cell membrane, resulting in T-cell apoptosis in a co-culture system. Using mass spectrometry, we identified PD-L1 interacting proteins and found that BCLAF1 (Bcl2 associated transcription factor 1) is an important regulator of PD-L1 in response to IR. BCLAF1 depletion decreased PD-L1 expression by promoting the ubiquitination of PD-L1. In addition, we show that CMTM6 is upregulated in response to IR and participates in BCLAF1-dependent PD-L1 upregulation. Finally, we demonstrated that the ATM/BCLAF1/PD-L1 axis regulated PD-L1 stabilization in response to IR. Together, our findings reveal a novel regulatory mechanism of PD-L1 expression in the DDR.


Asunto(s)
Antígeno B7-H1/metabolismo , Radiación Ionizante , Proteínas Represoras/fisiología , Proteínas Supresoras de Tumor/fisiología , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Antígeno B7-H1/efectos de la radiación , Línea Celular Tumoral , Membrana Celular/metabolismo , Técnicas de Cocultivo , Daño del ADN , Humanos , Células Jurkat , Proteínas con Dominio MARVEL/metabolismo , Proteínas con Dominio MARVEL/efectos de la radiación , Espectrometría de Masas , Proteínas de la Mielina/metabolismo , Proteínas de la Mielina/efectos de la radiación , Proteínas de Neoplasias/metabolismo , Modificación Traduccional de las Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Represoras/deficiencia , Linfocitos T/citología , Linfocitos T/efectos de la radiación , Proteínas Supresoras de Tumor/deficiencia , Ubiquitinación , Regulación hacia Arriba/efectos de la radiación
18.
Wellcome Open Res ; 6: 260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35865489

RESUMEN

Background: Cross-linking mass spectrometry (XL-MS) is a powerful technology capable of yielding structural insights across the complex cellular protein interaction network. However, up to date most of the studies utilising XL-MS to characterise individual protein complexes' topology have been carried out on over-expressed or recombinant proteins, which might not accurately represent native cellular conditions. Methods: We performed XL-MS using MS-cleavable crosslinker disuccinimidyl sulfoxide (DSSO) after immunoprecipitation of endogenous BRG/Brahma-associated factors (BAF) complex and co-purifying proteins. Data are available via ProteomeXchange with identifier PXD027611. Results: Although we did not detect the expected enrichment of crosslinks within the BAF complex, we identified numerous crosslinks between three co-purifying proteins, namely Thrap3, Bclaf1 and Erh. Thrap3 and Bclaf1 are mostly disordered proteins for which no 3D structure is available. The XL data allowed us to map interaction surfaces on these proteins, which overlap with the non-disordered portions of both proteins. The identified XLs are in agreement with homology-modelled structures suggesting that the interaction surfaces are globular. Conclusions: Our data shows that MS-cleavable crosslinker DSSO can be used to characterise in detail the topology and interaction surfaces of endogenous protein complexes without the need for overexpression. We demonstrate that Bclaf1, Erh and Thrap3 interact closely with each other, suggesting they might form a novel complex, hereby referred to as TEB complex. This data can be exploited for modelling protein-protein docking to characterise the three-dimensional structure of the complex. Endogenous XL-MS might be challenging due to crosslinker accessibility, protein complex abundance or isolation efficiency, and require further optimisation for some complexes like the BAF complex to detect a substantial number of crosslinks.

19.
Front Pharmacol ; 11: 583334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363466

RESUMEN

This study aimed to demonstrate that ginsenoside compound K (20 (S)-ginsenoside CK; CK) downregulates Bcl-2-associated transcription factor 1 (Bclaf1), which inhibits the hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis pathway to inhibit the proliferation of liver cancer cells. Treatment of hepatoma cells (Bel-7404 and Huh7) under hypoxic conditions with different concentrations of CK showed that CK inhibited the proliferation of hepatoma cells in a time- and concentration-dependent manner; furthermore, the ability of the cells to form colonies was reduced, and cell growth was blocked in the G0/G1 phase. CK promoted the degradation of HIF-1α ubiquitination in liver cancer cells by regulating the expression of HIF-1α and related ubiquitination proteins; moreover, it reduced the activity of key enzymes involved in glycolysis, the pressure of cellular glycolysis, and the rate of real-time ATP production, thereby inhibiting the glycolysis pathway. It also decreased the expression of Bclaf1 in hypoxic liver cancer cells and thus reduced the ability of Bclaf1 to bind to HIF-1α. CK treatment of Bel-7404 and Huh7 cells with CRISPR/Cas9-engineered knock out of Bclaf1 gene under hypoxic conditions further suppressed the expression of HIF-1α, promoted HIF-1α ubiquitination, and inhibited the glycolysis pathway. In a rat model of primary liver cancer induced by diethylnitrosamine, positron emission tomography and computed tomography scans showed that after CK administration, tumor tissue volumes were reduced and glucose uptake capacity decreased. Increased Bclaf1 and HIF-1α expression promoted the ubiquitination of HIF-1α and inhibited the glycolysis pathway, thereby inhibiting the proliferation of liver cancer cells. In summary, this study confirmed by in vitro and in vivo experiments that in hypoxic liver cancer cells CK downregulates the expression of Bclaf1, inhibits the HIF-1α-mediated glycolysis pathway, and inhibits cell proliferation, suggesting that the CK-mediated effects on Bclaf1 may represent a novel therapeutic approach for the treatment of liver cancer patients.

20.
Aging (Albany NY) ; 12(21): 22291-22312, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33188158

RESUMEN

BACKGROUND: Numerous studies proved that long non-coding RNA (lncRNA) is involved in the progression of multifarious diseases, especially in some carcinomas. As a potential tumor biomarker, plasmacytoma variant translocation 1 gene (PVT1) is involved in the development and progression of multifarious cancers. Nevertheless, the intrinsic and concrete molecular mechanism of PVT1 in bladder cancer still remained unclear, which is also the dilemma faced in many non-coding RNA studies. RESULTS: Our research revealed that PVT1 was significantly higher expression in bladder carcinoma specimens and cell lines. Further experiments indicated that knockdown or overexpression of PVT1 restrained or promoted the malignant phenotype and WNT/ß-catenin signaling in bladder cancer cells. Meanwhile miR-194-5p was in contrast and miR-194-5p could partially reverse the function of PVT1 in malignant bladder tumor cells. As a microRNA sponge, PVT1 actively promotes the expression of b-cells lymphoma-2-associated transcription factor 1 (BCLAF1) to sponge miR-194-5p and subsequently increases malignant phenotypes of bladder cancer cells. Therefore, it performs a carcinogenic effect and miR-194-5p as the opposite function, and serves as an antioncogene in the bladder carcinomas pathogenesis. CONCLUSION: PVT1-miR-194-5p-BCLAF1 axis is involved in the malignant progression and development of bladder carcinomas. Experiments revealed that PVT1 has a significant regulatory effect on bladder cancer (BC) and can be used as a clinical diagnostic marker and a therapeutic molecular marker for patients suffering from BC. METHODS: In urothelial bladder carcinoma specimens and cell lines, the relative expression levels of PVT1 and miR-194-5p were detected by quantitative reverse transcription PCR (RT-qPCR). Through experiments such as loss-function and over-expression, the biological effects of PVT1 and miR-194-5p on the proliferation, migration, apoptosis and tumorigenicity were explored in bladder cancer cells. Co-immunoprecipitation, proteomics experiments, dual luciferase reporter gene analysis, western blot and other methods were adopted to investigate the PVT1 potential mechanism in bladder carcinomas.


Asunto(s)
MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Fenotipo , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA