Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Front Oncol ; 14: 1339737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091920

RESUMEN

Background: Familial 46, XY Disorder of Sexual Development (DSD) was discovered in a Ph+, BCR::ABL1P210+ Acute Lymphoblastic Leukemia (ALL) female with RCBTB2::LPAR6 fusion gene. Siblings developing 46, XY DSD are extremely rare. Patients with 46, XY DSD have much higher rates of gonadal cancers. Nevertheless, the incidence of hematologic malignancies in patients with DSDs has received little attention. RCBTB2::LPAR6 is a rarely reported fusion gene in ALL. Case presentation: Herein, we report a rare case of a newly diagnosed Ph+, BCR::ABL1P210+ ALL patient who was 77 years old and female by social sex. Whole Exome Sequencing (WES) and RNA sequencing revealed TET2 and NF1 mutations in addition to a rarely reported RCBTB2::LPAR6 fusion gene and 17 other genes with uncertain clinical significance. The patient was surprisingly found to have a male karyotype. On ultrasound, neither the uterus nor the ovaries were discernible. A detailed family and marital history revealed that the patient had undergone surgery at an early age for an unexplained inguinal mass. She had slow pubertal development, scanty menstruation, and few overtly feminine characteristics. She had three marriages, but none succeeded in getting pregnant. The patient had never sought therapy for infertility due to the inaccessibility of medical treatment and a lack of medical knowledge. Her sister, 73 years old and female by social sex, who had amenorrhea in adolescence and was unable to conceive, had the same experience. To our surprise, she also had a male karyotype. Conclusions: Due to the absence of long-term social attention and follow-up, studies on the incidence of hematologic malignancies in patients with 46, XY DSD are incredibly uncommon. Siblings developing 46, XY DSD is extremely rare. We report the oldest patient diagnosed with 46, XY DSD. There have not yet been any reports of familial 46, XY DSD with a concurrent diagnosis of Ph+BCR::ABL1P210+ ALL with a rarely reported RCBTB2::LPAR6 fusion gene.

2.
Best Pract Res Clin Haematol ; 37(2): 101552, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39098796

RESUMEN

Chronic myeloid leukemia is defined by the presence of the Philadelphia translocation t (9; 22) resulting in the BCR::ABL1 fusion. The other myeloproliferative neoplasms (MPN) subtypes also carry typical chromosomal abnormalities, which however are not pathognomonic for a specific entity of MPN. According to the WHO classification the distinction between these entities is still based on the integration of cytological, histopathological and molecular findings. Progression of CML into accelerated and blastic phase is usually driven by additional chromosome abnormalities and ABL1 kinase mutations. In the other MPN subtypes the additional mutations besides driver gene mutations in JAK2, MPL and CALR have a decisive impact on the propensity for progression. In addition, the sequence in which the driver mutations and risk conveying additional mutations have been acquired appears to play an important role. Here, we review cytogenetic and molecular changes in CML and MPN that should be evaluated during diagnosis and disease monitoring.


Asunto(s)
Janus Quinasa 2 , Leucemia Mielógena Crónica BCR-ABL Positiva , Mutación , Trastornos Mieloproliferativos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/patología , Janus Quinasa 2/genética , Aberraciones Cromosómicas , Genómica/métodos , Proteínas de Fusión bcr-abl/genética , Receptores de Trombopoyetina/genética , Calreticulina/genética , Translocación Genética
3.
Front Pharmacol ; 15: 1422565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104388

RESUMEN

Leukemia represents a diverse group of hematopoietic neoplasms that can be classified into different subtypes based on the molecular aberration in the affected cell population. Identification of these molecular classification is required to identify specific targeted therapeutic approaches for each leukemic subtype. In general, targeted therapy approaches achieve good responses in some leukemia subgroups, however, resistance against these targeted therapies is common. In this review, we summarize molecular drug resistance biomarkers in targeted therapies in BCR::ABL1-driven chronic myeloid leukemia (CML) and JAK2-driven myeloproliferative neoplasms (MPNs). While acquisition of secondary mutations in the BCR::ABL1 kinase domain is the a common mechanism associated with TKI resistance in CML, in JAK2-driven MPNs secondary mutations in JAK2 are rare. Due to high prevalence and lack of specific therapy approaches in MPNs compared to CML, identification of crucial pathways leading to inhibitor persistence in MPN model is utterly important. In this review, we focus on different alternative signaling pathways activated in both, BCR::ABL1-mediated CML and JAK2-mediated MPNs, by combining data from in vitro and in vivo-studies that could be used as potential biomarkers of drug resistance. In a nutshell, some common similarities, especially activation of PDGFR, Ras, PI3K/Akt signaling pathways, have been demonstrated in both leukemias. In addition, induction of the nucleoprotein YBX1 was shown to be involved in TKI-resistant JAK2-mediated MPN, as well as TKI-resistant CML highlighting deubiquitinating enzymes as potential biomarkers of TKI resistance. Taken together, whole exome sequencing of cell-based or patients-derived samples are highly beneficial to define specific resistance markers. Additionally, this might be helpful for the development of novel diagnostic tools, e.g., liquid biopsy, and novel therapeutic agents, which could be used to overcome TKI resistance in molecularly distinct leukemia subtypes.

4.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125877

RESUMEN

Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.


Asunto(s)
Proteínas de Fusión bcr-abl , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/genética , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Animales , Ratones , Humanos , Péptidos/farmacología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Línea Celular Tumoral , Cromosoma Filadelfia/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
5.
Clin Chem Lab Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39167824

RESUMEN

OBJECTIVES: Chronic myeloid leukemia (CML) is characterized by the Philadelphia chromosome, leading to the BCR::ABL1 fusion gene and hyper-proliferation of granulocytes. Tyrosine kinase inhibitors (TKIs) are effective, and minimal residual disease (MRD) monitoring is crucial. Digital PCR platforms offer increased precision compared to quantitative PCR but lack comparative studies. METHODS: Eighty CML patient samples were analyzed in parallel using digital droplet PCR (ddPCR) (QXDx™ BCR-ABL %IS Kit) and chip digital PCR (cdPCR) (Dr. PCR™ BCR-ABL1 Major IS Detection Kit). RESULTS: Overall, qualitative and quantitative agreement was good. Sensitivity analysis showed positive percentage agreement and negative percentage agreement were both ≥90 %, and the quadratic weighted kappa index for molecular response (MR) level categorization was 0.94 (95 %CI 0.89, 0.98). MR levels subgroup analysis showed perfect categorical agreement on MR level at MR3 or above, while 35.4 % (17/48) of patient samples with MR4 or below showed discordant categorizations. Overall, Lin's concordance correlation coefficient (CCC) for the ratio of %BCR::ABL1/ABL1 converted to the International Scale (BCR::ABL1 IS) was almost perfect quantitative agreement (Lin's CCC=0.99). By subgroups of MR levels, Lin's CCC showed a quantitative agreement of BCR::ABL1 IS decreased as MR deepened. CONCLUSIONS: Both cdPCR and ddPCR demonstrated comparable performance in detecting BCR::ABL1 transcripts with high concordance in MR3 level or above. Choosing between platforms may depend on cost, workflow, and sensitivity requirements.

6.
Front Oncol ; 14: 1457832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144830

RESUMEN

The incorporation of tyrosine kinase inhibitors (TKIs) in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) led to significant improvement. However, in the pediatric setting, the outcomes of Ph+ ALL are still inferior compared to those of other ALL subtypes even in the TKI era due to higher relapse rate. Herein, we report a very peculiar case of late extramedullary Ph+ ALL relapse in a child, characterized by lymphomatous presentation in the tonsils and lymphoid lineage switch. The diagnostic dilemma between the occurrence of a second malignant neoplasm and the recurrence of the primary disease is further discussed, highlighting the importance of molecular backtracking analysis. This case report emphasizes the high plasticity and polyclonal nature of ALL and expands the heterogeneity of possible clinical presentation of Ph+ ALL at relapse.

7.
Glob Pediatr Health ; 11: 2333794X241256863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070153

RESUMEN

Objectives. This study aimed to find the association between clinical characteristics, cytogenetics, and post-induction outcomes of childhood acute lymphoblastic leukemia. Methods. The study was conducted at the Indus Hospital in Karachi. Initial total leukocyte count (TLC), cytogenetics, CNS status, and post-induction remission status were recorded. Results. Out of 108 children diagnosed with ALL, 66 (61.1%) were male and 42 (38.9%) were female. The majority 90 (83.3%) had B-ALL. CNS1 status was observed in 76 (84.4%) B-ALL and 18 (88.9%) T-ALL. All T-ALL and 89 (98.8%) B-ALL achieved remission post-induction. In B-ALL, 50 (55.5%) had a normal diploid karyotype, and 22 (24.4%) had numerical abnormalities. No typical gene rearrangement was observed in 66 (73.3%), 11 (12.2%) had BCR::ABL1, 10 (11.1%) had ETV6::RUNX1 and 3 (3.3%) KMT2A on FISH. No significant difference was observed between cytogenetics and clinical characteristics (P > .05). Conclusion. The study provides valuable data on childhood acute lymphoblastic leukemia in the Pakistani population.

8.
Eur J Haematol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994654

RESUMEN

Precise and reliable predictive parameters to accurately identify chronic myeloid leukemia (CML) patients who can successfully discontinue their tyrosine kinase inhibitor (TKI) treatment are lacking. One promising parameter is depth of molecular response measured by BCR::ABL1 digital PCR (dPCR). The aim of this study was to validate a previously described prediction cutoff of 0.0023%IS and to assess the value of dPCR for treatment-free remission (TFR) prediction in relation to other clinical parameters. A droplet-based dPCR assay assessed BCR::ABL1 %IS prior to TKI discontinuation. The primary endpoint was molecular recurrence (MolR) by 36 months. A total of 186 patients from Canada, Germany, and the Netherlands were included. In patients with a first TKI discontinuation attempt (n = 163), a BCR::ABL1 dPCR < and ≥0.0023%IS had a MolR probability of 33% and 70%, respectively. Patients treated less than 6 years with a BCR::ABL1 dPCR <0.0023%IS had a MolR probability of 31%. After correction for treatment duration, both high dPCR value and the use of imatinib (vs. second-generation TKI) were significantly associated with a higher risk of MolR (HR of 3.66, 95%CI 2.06-6.51, p < .001; and 2.85, 95%CI 1.25-6.46, p = .013, respectively). BCR::ABL1 dPCR was not associated with TFR outcome after second TKI discontinuation, however, with the limitation of a small number of patients analyzed (n = 23). In conclusion, BCR::ABL1 digital PCR based on the cutoff of 0.0023%IS is a valuable predictive tool to identify CML patients with a high probability of TFR success after first TKI discontinuation, including patients treated for less than 6 years.

9.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063200

RESUMEN

While BCR::ABL1 tyrosine kinase inhibitors have transformed the treatment paradigm for chronic myeloid leukemia (CML), disease progression and treatment resistance due to BCR::ABL1-dependent and BCR::ABL1-independent mechanisms remain a therapeutic challenge. Natural compounds derived from plants have significantly contributed to cancer pharmacotherapy. This study investigated the efficacy of an active component of Leea indica, a local medicinal plant, in CML. Using high-performance liquid chromatography-electrospray ionization-mass spectrometry, a chemical constituent from L. indica extract was isolated and identified as gallic acid. Commercially obtained gallic acid was used as a chemical standard. Gallic acid from L. indica inhibited proliferation and induced apoptosis in CML cell lines, as did the chemical standard. Furthermore, gallic acid induced apoptosis and decreased the colony formation of primary CML CD34+ cells. The combination of isolated gallic acid or its chemical standard with BCR::ABL1 tyrosine kinase inhibitors resulted in a significantly greater inhibition of colony formation and cell growth compared to a single drug alone. Mechanistically, CML cells treated with gallic acid exhibited the disruption of multiple oncogenic pathways including ERK/MAPK, FLT3 and JAK/STAT, as well as impaired mitochondrial respiration. Rescue studies showed that gallic acid is significantly less effective in inducing apoptosis in mitochondrial respiration-deficient ρ0 cells compared to wildtype cells, suggesting that the action of gallic acid is largely through the inhibition of mitochondrial respiration. Our findings highlight the therapeutic potential of L. indica in CML and suggest that gallic acid may be a promising lead chemical constituent for further development for CML treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Fusión bcr-abl , Ácido Gálico , Leucemia Mielógena Crónica BCR-ABL Positiva , Mitocondrias , Inhibidores de Proteínas Quinasas , Transducción de Señal , Ácido Gálico/farmacología , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
10.
Mol Cell Biochem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009935

RESUMEN

BCR::ABL1 inhibitors, the treatment of choice for the majority of patients with chronic myeloid leukaemia (CML), can cause vascular side effects that vary between agents. The exact underlying mechanisms are still poorly understood, but the vascular endothelium has been proposed as a site of origin. The present study investigates the effects of three BCR::ABL1 inhibitors, ponatinib, nilotinib and imatinib, on angiogenesis and signalling in human endothelial cells in response to vascular endothelial growth factor (VEGF). The experiments were performed in endothelial cells isolated from human umbilical veins. After exposure to imatinib, ponatinib and nilotinib, the angiogenic capacity of endothelial cells was assessed in spheroid assays. VEGF-induced signalling pathways were examined in Western blotting experiments using different specific antibodies. RNAi technology was used to downregulate proteins of interest. Intracellular cGMP levels were measured by ELISA. Imatinib had no effect on endothelial function. Ponatinib inhibited VEGF-induced sprouting, while nilotinib increased spontaneous and VEGF-stimulated angiogenesis. These effects did not involve wild-type ABL1 or ABL2, as siRNA-mediated knockdown of these kinases did not affect angiogenesis and VEGF signalling. Consistent with their effects on sprouting, ponatinib and nilotinib affected angiogenic pathways in opposite directions. While ponatinib inhibited VEGF-induced signalling and cGMP formation, nilotinib activated angiogenic signalling, in particular phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2). The latter occurred in an epidermal growth factor receptor (EGFR)-dependent manner possibly via suppressing Fyn-related kinase (FRK), a negative regulator of EGFR signalling. Both, pharmacological inhibition of Erk1/2 or EGFR suppressed nilotinib-induced angiogenic sprouting. These results support the notion that the vascular endothelium is a site of action of BCR::ABL1 inhibitors from which side effects may arise, and that the different vascular toxicity profiles of BCR::ABL1 inhibitors may be due to their different actions at the molecular level. In addition, the as yet unknown pro-angiogenic effect of nilotinib should be considered in the treatment of patients with comorbidities associated with pathological angiogenesis, such as ocular disease, arthritis or obesity.

11.
Elife ; 122024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056282

RESUMEN

The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2' C-terminus absence in Tp53-/- mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Fusión bcr-abl , Proteínas de Homeodominio , Recombinación V(D)J , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Recombinación V(D)J/genética , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Carcinogénesis/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo
12.
Ann Hematol ; 103(8): 3247-3250, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888615

RESUMEN

Here, we present a rare case of myeloproliferative neoplasms (MPN) with eosinophilia harboring both BCR::ABL1 and PDGFRB rearrangements, posing a classification dilemma. The patient exhibited clinical and laboratory features suggestive of chronic myeloid leukemia (CML) and myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK), highlighting the diagnostic challenges associated with overlapping phenotypes. Despite the complexity, imatinib treatment swiftly achieved deep molecular remission, underscoring the therapeutic efficacy of tyrosine kinase inhibitors in such scenarios. Furthermore, the rapid attainment of deep remission by this patient in response to imatinib closely resembles that observed in MLN-TK patients with PDGFRB rearrangements. Further research is warranted to elucidate the underlying mechanisms driving the coexistence of multiple oncogenic rearrangements in MPNs and to optimize therapeutic strategies for these complex cases.


Asunto(s)
Eosinofilia , Proteínas de Fusión bcr-abl , Mesilato de Imatinib , Trastornos Mieloproliferativos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Humanos , Mesilato de Imatinib/uso terapéutico , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/complicaciones , Eosinofilia/genética , Eosinofilia/tratamiento farmacológico , Proteínas de Fusión bcr-abl/genética , Reordenamiento Génico , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/uso terapéutico , Femenino
13.
Mol Carcinog ; 63(8): 1429-1435, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860593

RESUMEN

Mixed phenotype acute leukemia (MPAL) is a type of acute leukemia in which encompasses mixed features of myeloid, T-lymphoid, and/or B-lymphoid differentiation. Philadelphia chromosome-positive (Ph+) MPAL is a rare subgroup with a poor prognosis and accounts for <1% of adult acute leukemia. Until now, there is still no consensus on how to best treat Ph+ MPAL. Here, we report a 62-year-old male with Ph+ (atypical e13a2 BCR-ABL1 fusion protein) MPAL. This patient presented with recurrent and intense bone pain due to bone marrow necrosis (BMN). Besides, he did not achieve a complete remission for the first two chemotherapies, until he received flumatinib combined with hyper-CVAD (B) (a dose-intensive regimen include methotrexate and cytarabine). To our knowledge, this is the first report to describe the coexistence of BMN and atypical e13a2 BCR-ABL1 transcripts in patients with MPAL. This finding will bring new understandings in the diagnosis and treatment of Ph+ MPAL.


Asunto(s)
Médula Ósea , Proteínas de Fusión bcr-abl , Necrosis , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Fusión bcr-abl/genética , Médula Ósea/patología , Leucemia Bifenotípica Aguda/genética , Leucemia Bifenotípica Aguda/patología , Leucemia Bifenotípica Aguda/tratamiento farmacológico
14.
BMC Cancer ; 24(1): 734, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877512

RESUMEN

BACKGROUND: The role of familial influence in chronic myeloid leukaemia (CML) occurrence is less defined. Previously, we conducted a study to determine the prevalence of harbouring BCR::ABL1 in our local adult normal population (designated as StudyN). We present our current study, which investigated the prevalence of harbouring BCR::ABL1 in the normal first-degree relatives of local CML patients (designated as StudyR). We compared and discussed the prevalence of StudyR and StudyN to assess the familial influence in CML occurrence. METHODS: StudyR was a cross-sectional study using convenience sampling, recruiting first-degree relatives of local CML patients aged ≥ 18 years old without a history of haematological tumour. Real-time quantitative polymerase chain reaction standardised at the International Scale (BCR::ABL1-qPCRIS) was performed according to standard laboratory practice and the manufacturer's protocol. RESULTS: A total of 96 first-degree relatives from 41 families, with a mean age of 39 and a male-to-female ratio of 0.88, were enrolled and analysed. The median number of relatives per family was 2 (range 1 to 5). Among them, 18 (19%) were parents, 39 (41%) were siblings, and 39 (41%) were offspring of the CML patients. StudyR revealed that the prevalence of harbouring BCR::ABL1 in the first-degree relatives was 4% (4/96), which was higher than the prevalence in the local normal population from StudyN, 0.5% (1/190). All four positive relatives were Chinese, with three of them being female (p > 0.05). Their mean age was 39, compared to 45 in StudyN. The BCR::ABL1-qPCRIS levels ranged between 0.0017%IS and 0.0071%IS, similar to StudyN (0.0023%IS to 0.0032%IS) and another study (0.006%IS to 0.016%IS). CONCLUSION: Our study showed that the prevalence of harbouring BCR::ABL1 in the first-degree relatives of known CML patients was higher than the prevalence observed in the normal population. This suggests that familial influence in CML occurrence might exist but could be surpassed by other more dominant influences, such as genetic dilutional effects and protective genetic factors. The gender and ethnic association were inconsistent with CML epidemiology, suggestive of a higher familial influence in female and Chinese. Further investigation into this topic is warranted, ideally through larger studies with longer follow-up periods.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Transversales , Prevalencia , Proteínas de Fusión bcr-abl/genética , Familia , Adulto Joven , Anciano , Adolescente
15.
EJHaem ; 5(3): 607-615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895060

RESUMEN

A distinct subset of acute myeloid leukemia (AML) is characterized by the presence of the Philadelphia chromosome (Ph+), due to reciprocal translocation t(9;22)(q34;q11.2). This chromosomal rearrangement leads to the fusion of the breakpoint cluster region (BCR) gene on chromosome 22 with the ABL1 gene on chromosome 9, generating the BCR::ABL1 fusion gene. The Ph+ AML subtype is associated with poor prognosis and resistance to conventional chemotherapy. Beyond the well-established BCR::ABL1 fusion, recent studies have shed light on additional genetic abnormalities in Ph+ AML, including associations with rearrangements involving core binding factor beta (CBFB). We describe a case of de novo AML with concurrent BCR::ABL1 and CBFB::MYH11 rearrangements.

16.
South Asian J Cancer ; 13(2): 132-141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38919665

RESUMEN

Atreye MajumdarSambit K. MohantyObjective This article identifies and evaluates the frequency of mutations in the BCR-ABL1 kinase domain (KD) of chronic myeloid leukemia (CML) patients who showed suboptimal response to their current tyrosine kinase inhibitor (TKI) regime and assesses their clinical value in further treatment decisions. Materials and Methods Peripheral and/or bone marrow were collected from 791 CML patients. Ribonucleic acid was extracted, reverse transcribed, and Sanger sequencing method was utilized to detect single-nucleotide variants (SNVs) in BCR-ABL1 KD. Results Thirty-eight different SNVs were identified in 29.8% ( n = 236/791) patients. T315I, E255K, and M244V were among the most frequent mutations detected. In addition, one patient harbored a novel L298P mutation. A subset of patients from the abovementioned harbored compound mutations (13.3%, n = 33/236). Follow-up data was available in 28 patients that demonstrated the efficacy of TKIs in correlation with mutation analysis and BCR-ABL1 quantitation. Molecular response was attained in 50% patients following an appropriate TKI shift. A dismal survival rate of 40% was observed in T315I-harboring patients on follow-up. Conclusion This study shows the incidence and pattern of mutations in one of the largest sets of Indian CML patients. In addition, our findings strengthen the prognostic value of KD mutation analysis among strategies to overcome TKI resistance.

17.
Am J Physiol Cell Physiol ; 327(1): C184-C192, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38826137

RESUMEN

Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 µM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva , Oligonucleótidos , Inhibidores de Proteínas Quinasas , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Línea Celular Tumoral , Oligonucleótidos/farmacología , Apoptosis/efectos de los fármacos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Dasatinib/farmacología , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Biomolecules ; 14(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38927048

RESUMEN

Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Terapia Molecular Dirigida , ARN Interferente Pequeño , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Animales , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN
19.
Clin Case Rep ; 12(5): e8917, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751957

RESUMEN

Key Clinical Message: In a patient with de novo AML, co-existing BCR::ABL1 p190 isoform and RUNX1::MECOM rearrangement is accompanied by a very poor prognosis including limited response to treatment and no molecular remission. It is essential to develop a consensus on the therapeutic modalities different from the current regimen. Abstract: Acquisition of BCR::ABL1 fusion as a primary or secondary event and RUNX1::MECOM fusion independently is reported in de novo and therapy-related MDS/AML, albeit with low frequency (<0.5%). Coexistence of BCR::ABL1 and MECOM translocation is known to cause leukemogenesis in animal models and progression towards blast crisis CML but not AML. Here we report a unique case of pediatric AML with concomitant BCR::ABL1 and RUNX1::MECOM fusion.Routine diagnostic work-up included WBC manual differential, immunophenotype, morphology, qPCR, FISH, and NGS-based CNV analyses. The patient presented with history of fever, dizziness, fatigue, gingival bleeding, and epistaxis associated with ecchymosis in right hand and heavy, prolonged menstrual period. At presentation, her hemoglobin was 5.3 g/dL, WBC 52.1(10*9/L), PLT 10(10*9/L), ESR 5 mm/h and LDH 2658 U/L. Bone marrow was hypercellular with 71% blasts, and flow cytometry showed myeloid markers including CD11c, CD33, CD34, and CD45 among others indicating AML with monocytic differentiation. FISH analyses showed variant t(9;22) (q34.1;q11.1), one additional copy each of chromosome 8 and Runx1 gene, while NGS-based CNV analyses revealed a terminal and proximal pathogenic gain within 9q34.12q34.3 and 22q11.1q11.23, respectively, and gain of entire chromosome 8 and 12 in mosaic state. qPCR confirmed the presence of p190 and also revealed RUNX1::MECOM fusion. Patient received ADE (cytarabine, daunorubicin, and etoposide) induction regimen but required multiple ICU admissions due to sepsis, cardiac shock, acute myocarditis, and thyroiditis. Coexisting BCR::ABL1 and RUNX1::MECOM fusion is suggestive of poor prognosis, and a need for consensus on the treatment modalities other than the current regimen is warranted.

20.
Front Oncol ; 14: 1393191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779092

RESUMEN

Tyrosine kinase inhibitors (TKI) have revolutionized the treatment of patients with chronic myeloid leukemia. Patients who achieve sustained deep molecular response are eligible for treatment discontinuation. DES-CML is an ongoing, phase 2 multicentric discontinuation trial. Adult patients with CML in chronic phase with typical BCR::ABL1 transcripts, stable deep molecular response (MR4.5 IS) for two years, and no previous resistance were eligible. Patients underwent a phase of TKI dose de-escalation for six months before discontinuation. TKI was reintroduced at the previous dose if the patient lost major molecular response (MMR) at any time. This study aimed to assess the impact of BCR-ABL transcript kinetics during TKI de-escalation and discontinuation phases on treatment-free survival. So far, the study recruited 41 patients, and 38 patients discontinued therapy (4 were in the second discontinuation attempt). Eleven patients lost MMR, one during the de-escalation phase and ten after discontinuation. 24-month treatment-free survival was 66% (95% CI: 48-84%) in a median follow-up of 7 (1-30) months. No patient lost hematological response or had disease progression. A higher rate of molecular relapses occurred in patients with fluctuating BCR::ABL1 levels after the discontinuation phase (with loss of MR4.5, but no loss of MMR) (P=0.04, HR-4.86 (1.03-22.9) but not confirmed in the multivariate analysis. The longer duration of TKI treatment (P=0.03, HR-1.02, 95%CI - 1.00-1.04) and MMR (P=0.004, HR-0.95, 95%CI - 0.92-098) were independent factors of a lower relapse rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA