Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Rep ; 14(1): 23084, 2024 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366981

RESUMEN

Liposarcoma (LPS) is the second most common kind of soft tissue sarcoma, and a heterogeneous malignant tumor derived from adipose tissue. Up to now, the prognostic value of BAG1 or BAG2 in LPS has not been defined yet. Expression profiling data of LPS patients were collected from TCGA and GEO database. Survival curves were plotted to verify the outcome differences of patients based on BAG1 or BAG2 expression. Univariate and multivariate Cox regression models were used to analyze the prognostic ability of BAG1 or BAG2. Chaperone's regulators BAG1 and BAG2 were identified as prognostic biomarkers for LPS patients, which exhibited distinct expression patterns and survival outcome prediction performances. Patients with high BAG2 expression and/or low BAG1 expression had worse prognosis. Enrichment analysis showed that BAG1 was involved in negative regulation of TGF-ß signaling. Low expression of BAG1 was associated with high abundance of regulatory T cells (Tregs). The 2-gene signature model further confirmed the improved risk assessment performance of BAG1 and BAG2: high risk patients displayed poor prognosis. BAG1 and BAG2 are supposed to be potential prognostic biomarkers for LPS and have impacts on liposarcomagenesis and immune infiltration in distinctive manners, which may function as potential therapy targets (BAG1 agonists/BAG2 inhibitors) for LPS.


Asunto(s)
Biomarcadores de Tumor , Proteínas de Unión al ADN , Liposarcoma , Humanos , Pronóstico , Liposarcoma/genética , Liposarcoma/mortalidad , Liposarcoma/metabolismo , Liposarcoma/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Persona de Mediana Edad , Chaperonas Moleculares
2.
Int Immunopharmacol ; 140: 112737, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39128415

RESUMEN

BACKGROUND: The incidence of clear cell renal cell carcinoma (ccRCC) is increasing annually. While the cure rate and prognosis of early ccRCC are promising, the 5-year survival rate of patients with metastatic ccRCC is below 12%. Autophagy disfunction is closely related to infection, cancer, neurodegeneration and aging. Nevertheless, there has been limited exploration of the association between autophagy and ccRCC through bioinformatics analysis. METHODS: A novel risk model of autophagy-related genes (ARGs) was constructed to predict the prognosis of patients with ccRCC and guide the individualized treatment to some extent. Relevant data samples were obtained from the TCGA database, and ccRCC-related ARGs were identified by Pearson correlation analysis, leading to the establishment of a risk model covering 10 ccRCC-related ARGs. Many indicators were used to assess the accuracy of the risk model. RESULTS: Receiver operating characteristic (ROC) curve analysis showed that the risk model had high accuracy, indicating that the risk model could predict the prognosis of ccRCC patients. Moreover, the findings revealed significant differences about immune and metabolic features in low- and high-risk groups. The study also found that BAG1 within the risk model was closely related to the prognosis of ccRCC and an independent risk factor. In vitro and in vivo experiments validated for the first time that BAG1 could suppress the proliferation, migration, and invasion of ccRCC. CONCLUSION: The construction of ARGs risk model, can well predict the prognosis of ccRCC patients, and provide guidance for individual therapy to patients. It was also found that BAG1 has significant prognostic value for ccRCC patients and acts as a tumor suppressor gene in ccRCC. These findings have crucial implications for the prognosis and treatment of ccRCC patients.


Asunto(s)
Autofagia , Carcinoma de Células Renales , Proliferación Celular , Proteínas de Unión al ADN , Neoplasias Renales , Factores de Transcripción , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Humanos , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Pronóstico , Autofagia/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Masculino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Femenino , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Movimiento Celular/genética , Ratones Desnudos
3.
FEBS Open Bio ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049197

RESUMEN

According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl-2-associated athanogene (Bag)-1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag-1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor-1 (HSF1)-dependent survival of breast cancer cells. HER2-negative (MCF-7) and HER2-positive (BT-474) cell lines were used to examine the impact of Bag-1 expression on HSF1 and HSPs. We demonstrated that Bag-1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1-HSP axis. The activation of HSP results in the stabilization of several tumor-promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag-1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.

4.
Parasit Vectors ; 17(1): 322, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080770

RESUMEN

BACKGROUND: Toxoplasma gondii is an opportunistic pathogenic protozoan that infects all warm-blooded animals, including humans, and causes zoonotic toxoplasmosis. The bradyzoite antigen 1 (BAG1), known as heat-shock protein (HSP)30, is a specific antigen expressed during the early stage of T. gondii tachyzoite-bradyzoite conversion. METHODS: A bag1 gene knockout strain based on the T. gondii type II ME49 was constructed and designated as ME49Δbag1. The invasion, proliferation, and cyst formation efficiency in the cell model and survival in the mouse model were compared between the ME49 and ME49Δbag1 strains after infection. Quantitative polymerase chain reaction (qPCR) was used to detect the transcriptional level of important genes, and western-blot was used to detect protein levels. RESULTS: ME49Δbag1 displayed significantly inhibited cyst formation, although it was not completely blocked. During early differentiation induced by alkaline and starvation conditions in vitro, the proliferation of ME49Δbag1 was significantly accelerated relative to the ME49 strain. Meanwhile, the transcription of the HSP family and bradyzoite formation deficient 1 (bfd1) were significantly enhanced. The observed upregulation suggests a compensatory mechanism to counterbalance the impaired stress responses of T. gondii following bag1 knockout. On the other hand, the elevated transcription levels of several HSP family members, including HSP20, HSP21, HSP40, HSP60, HSP70, and HSP90, along with BFD1, implied the involvement of alternative regulatory factors in bradyzoite differentiation aside from BAG1. CONCLUSIONS: The data suggested that when bag1 was absent, the stress response of T. gondii was partially compensated by increased levels of other HSPs, resulting in the formation of fewer cysts. This highlighted a complex regulatory network beyond BAG1 influencing the parasite's transformation into bradyzoites, emphasizing the vital compensatory function of HSPs in the T. gondii life cycle adaptation.


Asunto(s)
Proteínas de Choque Térmico , Proteínas Protozoarias , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Animales , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Técnicas de Inactivación de Genes , Toxoplasmosis Animal/parasitología , Femenino , Humanos , Proteínas de Unión al ADN , Factores de Transcripción
5.
Cell Stress Chaperones ; 29(3): 497-509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763404

RESUMEN

Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since Bag1 knockout mice exhibited fetal lethality, the in vivo function of Bag1 remains unclear. In this study, we established a mouse line expressing Bag1 gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (Bag1Δex5) expressing undetectable levels of Bag1, Bag1Δex5 homozygous mice developed without abnormalities. Bag1Δex5 protein was found to be highly unstable in cells and in vitro. We found that the growth of mouse embryonic fibroblasts derived from Bag1Δex5-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, Bag1Δex5-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.


Asunto(s)
Proteínas de Unión al ADN , Fibroblastos , Glutatión , Factores de Transcripción , Animales , Fibroblastos/metabolismo , Glutatión/metabolismo , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Doxorrubicina/farmacología , Butionina Sulfoximina/farmacología , Embrión de Mamíferos/metabolismo , Proliferación Celular , Ratones Noqueados , Peróxido de Hidrógeno/metabolismo
6.
J Control Release ; 368: 623-636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479445

RESUMEN

Chemoresistance to cisplatin remains a significant challenge affecting the prognosis of advanced oral squamous cell carcinoma (OSCC). However, the specific biomarkers and underlying mechanisms responsible for cisplatin resistance remain elusive. Through comprehensive bioinformatic analyses, we identified a potential biomarker, BCL2 associated athanogene-1 (BAG1), showing elevated expression in head and neck squamous cell carcinoma (HNSCC). Since OSCC represents the primary pathological type of HNSCC, we investigated BAG1 expression in human tumor tissues and cisplatin resistant OSCC cell lines, revealing that silencing BAG1 induced apoptosis in cisplatin-resistant cells both in vitro and in vivo. This effect led to impaired cell viability of cisplatin resistant OSCC cells and indicated a positive correlation between BAG1 expression and the G1/S transition during cell proliferation. Based on these insights, the administration of a CDK4/6 inhibitor in combination with cisplatin effectively overcame cisplatin resistance in OSCC through the CDK4/6-BAG1 axis. Additionally, to enable simultaneous drug delivery and enhance synergistic antitumor efficacy, we developed a novel supramolecular nanodrug LEE011-FFERGD/CDDP, which was validated in an OSCC orthotopic mouse model. In summary, our study highlights the potential of a combined administration of CDK4/6 inhibitor and cisplatin as a promising therapeutic regimen for treating advanced or cisplatin resistant OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Resistencia a Antineoplásicos , Neoplasias de la Boca , Nanopartículas , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores
7.
Parasite Immunol ; 46(2): e13023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38372452

RESUMEN

Toxoplasmosis is one of the most dangerous zoonotic diseases, causing serious economic losses worldwide due to abortion and reproductive problems. Vaccination is the best way to prevent disease; thus, it is imperative to develop a candidate vaccine for toxoplasmosis. BAG1 and ROP8 have the potential to become vaccine candidates. In this study, rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 were used to evaluate the immune effect of vaccines in each group by detecting the humoral and cellular immune response levels of BABL/c mice after immunization and the ability to resist acute and chronic infection with Toxoplasma gondii (T. gondii). We divided the mice into vaccine groups with different proteins, and the mice were immunized on days 0, 14, and 28. The protective effects of different proteins against T. gondii were analysed by measuring the cytokines, serum antibodies, splenocyte proliferation assay results, survival time, and number and diameter of brain cysts of mice after infection. The vaccine groups exhibited substantially higher IgG, IgG1, and IgG2a levels and effectively stimulated lymphocyte proliferation. The levels of IFN-γ and IL-2 in the vaccine group were significantly increased. The survival time of the mice in each vaccine group was prolonged and the diameter of the cysts in the vaccine group was smaller; rTgBAG1-rTgROP8 had a better protection. Our study showed that the rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 recombinant protein vaccines are partial but effective approaches against acute or chronic T. gondii infection. They are potential candidates for a toxoplasmosis vaccine.


Asunto(s)
Vacunas Antiprotozoos , Toxoplasmosis , Animales , Ratones , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Inmunidad Celular , Inmunización , Inmunoglobulina G , Ratones Endogámicos BALB C , Proteínas Protozoarias , Vacunas Antiprotozoos/inmunología , Proteínas Recombinantes/genética , Toxoplasma , Toxoplasmosis/prevención & control , Vacunación
8.
Lab Invest ; 103(11): 100245, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652207

RESUMEN

BCL-2-associated athanogene-1L (BAG-1L) is a critical co-regulator that binds to and enhances the transactivation function of the androgen receptor, leading to prostate cancer development and progression. Studies investigating the clinical importance of BAG-1L protein expression in advanced prostate cancer have been limited by the paucity of antibodies that specifically recognize the long isoform. In this study, we developed and validated a new BAG-1L-specific antibody using multiple orthogonal methods across several cell lines with and without genomic manipulation of BAG-1L and all BAG-1 isoforms. Following this, we performed exploratory immunohistochemistry to determine BAG-1L protein expression in normal human, matched castration-sensitive prostate cancer (CSPC) and castration-resistant prostate cancer (CRPC), unmatched primary and metastatic CRPC, and early breast cancer tissues. We demonstrated higher BAG-1L protein expression in CRPC metastases than in unmatched, untreated, castration-sensitive prostatectomies from men who remained recurrence-free for 5 years. In contrast, BAG-1L protein expression did not change between matched, same patient, CSPC and CRPC biopsies, suggesting that BAG-1L protein expression may be associated with more aggressive biology and the development of castration resistance. Finally, in a cohort of patients who universally developed CRPC, there was no association between BAG-1L protein expression at diagnosis and time to CRPC or overall survival, and no association between BAG-1L protein expression at CRPC biopsy and clinical outcome from androgen receptor targeting therapies or docetaxel chemotherapy. The limitations of this study include the requirement to validate the reproducibility of the assay developed, the potential influence of pre-analytical factors, timing of CRPC biopsies, relatively small patient numbers, and heterogenous therapies on BAG-1L protein expression, and the clinical outcome analyses performed. We describe a new BAG-1L-specific antibody that the research community can further develop to elucidate the biological and clinical significance of BAG-1L protein expression in malignant and nonmalignant diseases.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Reproducibilidad de los Resultados , Factores de Transcripción , Anticuerpos
9.
Biomedicines ; 11(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36979842

RESUMEN

Bcl-2-associated athanogene 1 (Bag-1) is a multifunctional prosurvival protein that binds to several intracellular targets and promotes cell survival. HSP70 and Raf-1 are important targets of Bag-1; however, the protective function of Bag-1 in nucleus pulposus (NP) cells remains unclear. In this study, we determined the effects of Bag-1 on NP cells under oxidative stress induced by treatment with hydrogen peroxide (H2O2). We found that Bag-1 was bound to HSP70, but Bag-1-Raf1 binding did not occur in NP cells. Bag-1 overexpression in NP cells enhanced cell viability and mitochondrial function and significantly suppressed p38/MAPKs phosphorylation during oxidative stress, although NP cells treated with a Bag-1 C-terminal inhibitor, which is the binding site of HSP70 and Raf-1, decreased cell viability and mitochondrial function during oxidative stress. Furthermore, the phosphorylation of the ERK/MAPKs was significantly increased in Bag-1 C-terminal inhibitor-treated NP cells without H2O2 treatment but did not change with H2O2 exposure. The phosphorylation of Raf-1 was not influenced by Bag-1 overexpression or Bag-1 C-terminal binding site inhibition. Overall, the results suggest that Bag-1 preferentially interacts with HSP70, rather than Raf-1, to protect NP cells against oxidative stress.

10.
Biomedicines ; 10(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35884913

RESUMEN

STAT3 is a transcription factor which is activated via various signaling transduction pathways or Epstein-Barr virus (EBV) infection and plays an oncogenic role in lymphoid malignancies including Hodgkin lymphoma (HL). The tumor cells of HL are derived from germinal center B-cells and transformed by chromosomal rearrangements, aberrant signal transduction, deregulation of developmental transcription factors, and EBV activity. HL cell lines represent useful models to investigate molecular principles and deduced treatment options of this malignancy. Using cell line L-540, we have recently shown that constitutively activated STAT3 drives aberrant expression of hematopoietic NKL homeobox gene HLX. Here, we analyzed HL cell line AM-HLH which is EBV-positive but, nevertheless, HLX-negative. Consistently, AM-HLH expressed decreased levels of STAT3 proteins which were additionally inactivated and located in the cytoplasm. Combined genomic and expression profiling data revealed several amplified and overexpressed gene candidates involved in opposed regulation of STAT3 and EBV. Corresponding knockdown studies demonstrated that IRF4 and NFATC2 inhibited STAT3 expression. MIR155 (activated by STAT3) and SPIB (repressed by HLX) showed reduced and elevated expression levels in AM-HLH, respectively. However, treatment with IL6 or IL27 activated STAT3, elevated expression of HLX and MIR155, and inhibited IRF4. Taken together, this cell line deals with two conflicting oncogenic drivers, namely, JAK2-STAT3 signaling and EBV infection, but is sensitive to switch after cytokine stimulation. Thus, AM-HLH represents a unique cell line model to study the pathogenic roles of STAT3 and EBV and their therapeutic implications in HL.

11.
Front Cell Infect Microbiol ; 12: 1029768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590582

RESUMEN

Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoan parasite T. gondii which is widely prevalent in humans and animals worldwide. The diagnosis of toxoplasmosis and distinguishing acute or chronic T. gondii infections have utmost importance for humans and animals. The TgSAG1, TgGRA7, and TgBAG1 proteins were used in the present study to develop the serological rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA methods for the testing of T. gondii specific IgG and IgM antibodies and differentiating acute or chronic toxoplasmosis in 3733 animals, including Tibetan sheep, yaks, pigs, cows, cattle, horses, chickens, camels and donkeys from the Qinghai-Tibetan Plateau. The ELISA tests showed that the overall positivity of IgG antibody was 21.1% (786/3733), 15.3% (570/3733) and 18.2% (680/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively, and the positivity of IgM antibody was 11.8% (439/3733), 13.0% (486/3733) and 11.8% (442/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively. A total of 241 animals (6.5%) positive for all rSAG1-, rGRA7- and rBAG1-IgG were found in this study, and the 141 animals (3.8%) tested were anti-T. gondii IgM positive in all three ELISAs. Moreover, the 338, 284 and 377 animals were IgG positive in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1- ELISAs respectively, and the 346, 178 and 166 animals in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1-ELISAs were IgM positive respectively. The results confirmed that the application of SAG1, GRA7, and BAG1 recombinant antigens could successfully be used in the detection of specific IgG and IgM antibodies for distinguishing between acute or chronic T. gondii infections. It is inferred that the forms in which current animal species in the plateau area were infected with T. gondii, and the period of infection or the clinical manifestations of the current infections may be different. The present study provides substantial clinical evidence for the differential diagnosis of toxoplasmosis, and the classification of acute and chronic T. gondii infections.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Humanos , Femenino , Bovinos , Animales , Caballos , Porcinos , Ovinos , Toxoplasmosis Animal/diagnóstico , Proteínas Protozoarias , Antígenos de Protozoos , Proteínas Recombinantes , Anticuerpos Antiprotozoarios , Pollos , Pruebas Serológicas/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G , Inmunoglobulina M
12.
Turk J Biol ; 46(2): 118-136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37533517

RESUMEN

The multifunctional BAG-1 (Bcl-2 athanogene-1) protein promotes breast cancer survival through direct or indirect interaction partners. The number of the interacting partners determines its cellular role in different conditions. As well as interaction partner variability, the amount of BAG-1 protein in the cells could cause dramatic alterations. According to previous studies, while the transient silencing of Bag-1 enhanced drug-induced apoptosis, deletion of BAG-1 could induce stemness properties and Akt-mediated actin remodeling in MCF-7 breast cancer cells. Considering the heterogeneity of breast cancer and the variability of BAG-1 -mediated cell response, it has become essential to determine microRNA (miRNA) functions in breast cancer depending on Bag-1 expression level. This study aims to compare microRNA expression levels in wt and Bag-1 knockout (KO) MCF-7 breast cancer cells. hsa-miR-429 was selected as a potential miRNA in BAG-1KO MCF-7 cells because of the downregulation both in bioinformatics and validation qRT-PCR assay. According to predicted mRNA targets and functional enrichment analysis the ten hub proteins that are phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit alpha (PIK3CA), kinase insert domain receptor (KDR), GRB2 associated binding protein 1 (GAB1), Rac family small GTPase1 (RAC1), vascular endothelial growth factor A (VEGFA), Cbl proto-oncogene (CBL), syndecan 2 (SDC2), phospholipase C gamma 1 (PLCG1), E1A binding protein p300 (EP300), and CRK like proto-oncogene, adaptor protein (CRKL) were identified as targets of hsa-miR-429. The functional enrichment analysis showed that the most significant proteins were enriched in PI3K/Akt, focal adhesion, cytoskeleton regulation, proteoglycans in cancer, and Ras signaling pathways. It was determined that hsa-miR-429 targeted these pathways in Bag-1 deficient conditions and could be used as a potential therapeutic target in future studies.

13.
J Cell Mol Med ; 25(18): 9060-9065, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34402163

RESUMEN

BCL2-associated athanogene-1 (BAG1) is a multi-functional protein that is found deregulated in several solid cancers and in paediatric acute myeloid leukaemia. The investigation of BAG1 isoforms expression and intracellular localization in B-cell acute lymphoblastic leukaemia (B-ALL) patient-derived specimens revealed that BAG1 levels decrease during disease remission, compared to diagnosis, but drastically increase at relapse. In particular, at diagnosis both BAG1-L and BAG1-M isoforms are mainly nuclear, while during remission the localization pattern changes, having BAG1-M almost exclusively in the cytosol indicating its potential cytoprotective role in B-ALL. In addition, knockdown of BAG1/BAG3 induces cell apoptosis and G1-phase cell cycle arrest and, more intriguingly, shapes cell response to chemotherapy. BAG1-depleted cells show an increased sensitivity to the common chemotherapeutic agents, dexamethasone or daunorubicin, and to the BCL2 inhibitor ABT-737. Moreover, the BAG1 inhibitor Thio-2 induces a cytotoxic effect on RS4;11 cells both in vitro and in a zebrafish xenograft model and strongly synergizes with pan-BCL inhibitors. Collectively, these data sustain BAG1 deregulation as a critical event in assuring survival advantage to B-ALL cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Factores de Transcripción/metabolismo , Antineoplásicos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Cultivo Primario de Células , Células Tumorales Cultivadas
14.
Acta Trop ; 221: 105992, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34089696

RESUMEN

BACKGROUND: The restricted effect, significant toxicity, and emerging resistance of anti-toxoplasmosis synthetic agents impose the search for alternatives. The current research aimed to evaluate the prophylactic and therapeutic efficacy of Rosmarinus officinalis extracts and their mixtures against chronic murine toxoplasmosis and to clarify the phenomenon of delayed death. METHODS: This research included two experimental designs, the first to test the preventive and curative efficacy of the extracts and the second to assess delayed death in mice infected with the ME49 strain of Toxoplasma gondii. The essential oils of the plant were analyzed by gas chromatography/mass spectrometry. RESULTS: Treatment with a mixture of rosemary extracts displayed reduction rates of 81% for T. gondii cyst burden and 23% for cyst viability. The reinfected group with the pretreated cysts reported 93.4% reduction in cyst burden and 95.4% in cyst viability. Moreover, 90% reduction of the infectivity rate was obtained. The therapeutic efficacy of this mixture was superior to its valuable prophylactic effect. Histopathological examination of liver and brain tissue exhibited marked improvement. Both extracts possess free radical scavenging and antioxidant activities evidenced by high expression of iNOS stain. Our results were signified by low BAG-1 gene expression and massive mutilation of T. gondii cyst in the targeted group using scanning electron microscopy. Analysis of R. officinalis revealed the presence of isobornylformate as a novel ingredient. CONCLUSIONS: R. officinalis displays a therapeutic rather than prophylactic potential, indicating the emergence of an effective safe alternative therapy.


Asunto(s)
Aceites Volátiles , Rosmarinus , Toxoplasma , Toxoplasmosis , Animales , Enfermedad Crónica , Ratones , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/prevención & control
15.
Molecules ; 26(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561998

RESUMEN

Expression levels of the major mammalian autophagy regulator Beclin 1 and its interaction with Bcl-2 regulate the switch between autophagic cell survival and apoptotic cell death pathways. However, some of the regulators and the precise mechanisms of these processes still remain elusive. Bag-1 (Bcl-2 associated athanogene-1), a member of BAG family proteins, is a multifunctional pro-survival molecule that possesses critical functions in vital cellular pathways. Herein, we report the role of Bag-1 on Bcl-2/Beclin 1 crosstalk through indirectly interacting with Beclin 1. Pull-down experiments suggested a molecular interaction between Bag-1 and Beclin 1 in breast cancer cell lines. On the other hand, in vitro binding assays showed that Bag-1/Beclin 1 interaction does not occur directly but occurs through a mediator molecule. Bag-1 interaction with p-Beclin 1 (T119), indicator of early autophagy, is increased during nutrient starvation suggesting involvement of Bag-1 in the autophagic regulation. Furthermore, CRISPR/Cas9-mediated Bag-1 knock-out in MCF-7 cells hampered cell survival and proliferation and resulted in decreased levels of total LC3 under starvation. Collectively, we suggest that Bag-1 modulates cell survival/death decision through maintaining macroautophagy as a component of Beclin 1-associated complexes.


Asunto(s)
Autofagia , Beclina-1/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Humanos , Unión Proteica
16.
BMC Cancer ; 21(1): 160, 2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33581726

RESUMEN

BACKGROUND: BCL2 associated Athano-Gene 1 (BAG1) has been described to be involved in the development and progression of cancer. But the role of BAG1 in kidney renal clear cell carcinoma (KIRC) has remained largely unknown. METHODS: We performed bioinformatic analysis of data from TCGA and GEO dataset. The role of BAG1 in KIRC was explored by Logistic and Cox regression model. The molecular mechanisms of BAG1 was revealed by GSEA. RESULTS: The current study found that the KIRC tumor samples have a low level of BAG1 mRNA expression compared to the matched normal tissues based on TCGA data and GEO databases. Low expression of BAG1 in KIRC was significantly associated with Sex, clinical pathological stage, tumor-node-metastasis (TNM) stage, hemoglobin levels, cancer status and history of neoadjuvant treatment. Kaplan-Meier survival analysis indicated that KIRC patients with BAG1 high expression have a longer survival time than those with BAG1 low expression (p < 0.000). Cox regression analysis showed that BAG1 remained independently associated with overall survival, with a hazard ratio (HR) of 1.75(CI:1.05-2.90; p = 0.029). GSEA indicated that the signaling pathways including fatty acid metabolism and oxidative phosphorylation were differentially enriched in high BAG1 expression phenotype. CONCLUSIONS: These findings suggested that BAG1 expression may act as a potential favorable prognostic marker and challenging therapeutic target.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/patología , Biología Computacional/métodos , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Renales/patología , Factores de Transcripción/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas/estadística & datos numéricos , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Tasa de Supervivencia , Factores de Transcripción/genética
17.
J Neurochem ; 158(2): 358-372, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33025573

RESUMEN

Molecular abnormalities within the Glucocorticoid Receptor (GR) stress signaling pathway involved in dysfunction of mitochondria and confer vulnerability to stress-related psychiatric disorders. Bcl-2 associated athanogene (Bag-1) is a target for the actions of mood stabilizers. Bag-1 interacts with GR, thereby regulating glucocorticoid function. In this study, we investigate the potential role of Bag-1 in regulating GR translocation into mitochondria. Corticosterone (CORT) treatment significantly enhanced Bag-1/GR complex formation and GR mitochondrial translocation in cultured rat cortical neurons after treatment for 30 min and 24 hr. By contrast, after stimulation with CORT for 3 days, localization of the Bag-1/GR complex and mitochondrial GR were reduced. Similar results were obtained in mice, in which administrated CORT in drinking water for 21 days significantly impaired the GR levels in the mitochondria, while Bag-1 over-expression rescued this reduction. Furthermore, chronic CORT exposure led to anhedonia-like and depression-like behaviors in the sucrose-consumption test and forced swimming test, and these behaviors were rescued by Bag-1 over-expression. These results suggest that Bag-1 mediates GR trafficking to mitochondria and regulates affective resilience in response to a CORT increase and provide potential insight into the mechanisms by which Bag-1 and GR could contribute to the physiology and pathogenesis of psychiatric disorders in response to the change of stress hormone.


Asunto(s)
Afecto/efectos de los fármacos , Corticosterona/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Receptores de Glucocorticoides/metabolismo , Resiliencia Psicológica/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Anhedonia , Animales , Depresión/psicología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Neuronas/efectos de los fármacos , Embarazo , Cultivo Primario de Células , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Estimulación Química , Natación/psicología
18.
Brain Res ; 1751: 147192, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152339

RESUMEN

BCL-2-associated athanogene-1 (BAG-1) is a multifunctional protein that was first identified as a binding partner of BCL-2. Our previous results indicated that BAG-1 large (BAG-1L) overexpression significantly increases cell viability and decreases apoptosis by upregulating HSP70 and p-AKT in response to hypoxia/reoxygenation in SY-SH5Y cells. However, the functional domain of BAG-1L that exerts these protective effects against hypoxic damage has not been identified. In this study, we examined changes in HSP70 and p-AKT protein levels in SH-SY5Y cells with or without BAG-1L domain mutation after six hours of hypoxia/reoxygenation treatment. The BAG-1 domain mutant (BAG-1MUT) attenuated neuronal viability and proliferation while enhancing apoptosis after hypoxia/reoxygenation, which was achieved in part by inhibiting the HSP70 and p-AKT signalling pathways. This evidence illustrates that the BAG-1 domain plays a key role in protecting cells from hypoxia/reoxygenation injury.


Asunto(s)
Hipoxia de la Célula/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Apoptosis/fisiología , Hipoxia de la Célula/genética , Línea Celular , Supervivencia Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas HSP70 de Choque Térmico/fisiología , Humanos , Hipoxia/genética , Neuronas/metabolismo , Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Dominios Proteicos/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/genética , Activación Transcripcional
19.
Front Aging Neurosci ; 12: 191, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792938

RESUMEN

Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs-spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)-and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.

20.
Onco Targets Ther ; 12: 8977-8989, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31802907

RESUMEN

PURPOSE: B-cell lymphoma-2 (Bcl-2) associated athanogene 1 (Bag-1) is a multifunctional protein, and Bag -1 overexpression is associated with progression, metastasis, and drug resistance in lung cancer. This study assessed the effects of Bag-1 siRNA on sensitization of cisplatin on non-small cell lung cancer (NSCLC) cells. MATERIAL AND METHODS: NSCLC A549 cell line was transfected with Bag-1 or negative control siRNA and then treated with cisplatin for cell viability, CCK-8, LDH, and flow cytometry assays. The Ca2+ levels were analyzed using Fluo-3/AM fluorescence staining, and the protein levels were assessed using Western blot analysis. RESULTS: Bag-1 siRNA significantly knocked down Bag-1 expression and inhibited cell invasion versus the negative control siRNA, while Bag-1 silence sensitized cisplatin to induce A549 cells to apoptosis by induction of cell cycle G1 arrest. At protein level, Bag-1 silence reduced the expression ratio of Bcl-2 to Bcl-2 associated X protein (Bax), downregulated activity of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways, and potently upregulated the calcium signaling-mediated pathway. CONCLUSION: This study demonstrated that Bag-1 silencing sensitized A549 to cisplatin to enhance A549 cell apoptosis by modified multiple gene pathways. Further study will evaluate the usefulness of Bag-1 siRNA as a potential targeting therapy for NSCLC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA