Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.059
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124955, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173323

RESUMEN

Designing persistent dual-band afterglow materials with thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) contributed to solving the problems of homogenization and singularity in long afterglow materials. Here, six aryl acetonitrile (CBM) and aryl dicyanoaniline (AMBT) derivatives, used as host and guest materials respectively, were successfully designed and synthesized based on the isomerization effect. Among of them, 0.1 % m-CBM/p-AMBT showed the longest dual-band TADF (540 ms) and RTP lifetimes (721 ms), as well as persistent afterglow over 8 s, whose fluorescence (ΦFL), TADF (ΦT) and RTP (ΦP) quantum yields were 0.11, 0.06 and 0.22 in sequence. More interestingly, some doping systems constructed by CBM and AMBT series compounds showed persistent triple-band emissions composed of TADF, unimolecular and aggregated AMBT series compounds. What's more, ΦFL, ΦT and ΦP of 1 % o-AMBT@PMMA film were up to 0.17, 0.17, 0.23 in turn, with TADF, RTP and afterglow lifetimes of 606 ms, 727 ms, and 10 s respectively. TADF and RTP emission of CBM/AMBT series doping systems was attributed to host sensitized guest emission. Besides, the comparison displayed AMBT series compounds had bigger intensity ratios between TADF and RTP emission in PMMA films compared to in CBM series compounds. Finally, a series of data encryption were successfully constructed based on different afterglow lifetimes of the doping systems, and a dynamic anti-counterfeiting pattern was prepared by using different temperature responses of TADF and RTP emissions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38817687

RESUMEN

Objective: A newly launched endoscopy system (EVIS X1, CV-1500; Olympus) is equipped with texture and color enhancement imaging (TXI). We aimed to investigate the efficacy of TXI for the visibility and diagnostic accuracy of non-polypoid colorectal lesions. Methods: We examined 100 non-polypoid lesions in 42 patients from the same position, angle, and distance of the view in three modes: white light imaging (WLI), narrow-band imaging (NBI), and TXI. The primary outcome was to compare polyp visibility in the three modes using subjective polyp visibility score and objective color difference values. The secondary outcome was to compare the diagnostic accuracy without magnification. Results: Overall, the visibility score of TXI was significantly higher than that of WLI (3.7 ± 1.1 vs. 3.6 ± 1.1; p = 0.008) and lower than that of NBI (3.7 ± 1.1 vs. 3.8 ± 1.1; p = 0.013). Color difference values of TXI were higher than those of WLI (11.5 ± 6.9 vs. 9.1 ± 5.4; p < 0.001) and lower than those of NBI (11.5 ± 6.9 vs. 13.1 ± 7.7; p = 0.002). No significant differences in TXI and NBI (visibility score: 3.7 ± 1.0 vs. 3.8 ± 1.1; p = 0.833, color difference values: 11.6 ± 7.1 vs. 12.9 ± 8.3; p = 0.099) were observed for neoplastic lesions. Moreover, the diagnostic accuracy of TXI was significantly higher than that of NBI (65.5% vs. 57.6%, p = 0.012) for neoplastic lesions. Conclusions: TXI demonstrated higher visibility than that of WLI and lower than that of NBI. Further investigations are warranted to validate the performance of the TXI mode comprehensively.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38808314

RESUMEN

A 68-year-old man was admitted with hematochezia. Emergency computed tomography showed multiple diverticula throughout the colon. Initial colonoscopy on day 2 showed no active bleeding, but massive hematochezia on day 3 led to the performance of an emergency endoscopy. Substantial bleeding in the ileocecal area obscured the visual field, making it challenging to view the area around the bleeding site. Two endoscopic band ligations (EBLs) were applied at the suspected bleeding sites. Hemostasis was achieved without active bleeding after EBL. However, the patient developed lower right abdominal pain and fever (39.4°C) on day 6. Urgent computed tomography revealed appendiceal inflammation, necessitating emergency open ileocecal resection for acute appendicitis. Pathological examination confirmed acute phlegmonous appendicitis, with EBLs noted at the appendiceal orifice and on the anal side. This case illustrates the efficacy of EBL in managing colonic diverticular bleeding. However, it also highlights the risk of appendicitis due to EBL in cases of ileocecal hemorrhage exacerbated by poor visibility due to substantial bleeding. Endoscopists need to consider this rare but important complication when performing EBL in similar situations.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39144408

RESUMEN

Objectives: We aimed to conduct a systematic review and meta-analysis to assess the value of image-enhanced endoscopy including blue laser imaging (BLI), linked color imaging, narrow-band imaging (NBI), and texture and color enhancement imaging to detect and diagnose gastric cancer (GC) compared to that of white-light imaging (WLI). Methods: Studies meeting the inclusion criteria were identified through PubMed, Cochrane Library, and Japan Medical Abstracts Society databases searches. The pooled risk ratio for dichotomous variables was calculated using the random-effects model to assess the GC detection between WLI and image-enhanced endoscopy. A random-effects model was used to calculate the overall diagnostic performance of WLI and magnifying image-enhanced endoscopy for GC. Results: Sixteen studies met the inclusion criteria. The detection rate of GC was significantly improved in linked color imaging compared with that in WLI (risk ratio, 2.20; 95% confidence interval [CI], 1.39-3.25; p < 0.01) with mild heterogeneity. Magnifying endoscopy with NBI (ME-NBI) obtained a pooled sensitivity, specificity, and area under the summary receiver operating curve of 0.84 (95 % CI, 0.80-0.88), 0.96 (95 % CI, 0.94-0.97), and 0.92, respectively. Similarly, ME-BLI showed a pooled sensitivity, specificity, and area under the curve of 0.81 (95 % CI, 0.77-0.85), 0.85 (95 % CI, 0.82-0.88), and 0.95, respectively. The diagnostic efficacy of ME-NBI/BLI for GC was evidently high compared to that of WLI, However, significant heterogeneity among the NBI studies still existed. Conclusions: Our meta-analysis showed a high detection rate for linked color imaging and a high diagnostic performance of ME-NBI/BLI for GC compared to that with WLI.

5.
Adv Mater ; : e2408104, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295469

RESUMEN

The development of a lasing wavelength switch, particularly from a single inorganic gain material, is challenging but highly demanded for advanced photonics. Nonetheless, all current lasing emission of inorganic gain materials arises from band-edge states, and the inherent fixed bandgap limitation of the band-edge system leads to the inaccessibility of lasing wavelength switching from a single inorganic gain material. Here the realization of a single inorganic gain material-based lasing wavelength switch is reported by proposing an alternative lasing emission strategy, that is, lasing emission from surface gain. Previous efforts to achieve surface-gain-enabled lasing emission have been hindered by the limited gain volume provided by surface states due to the broad emission bandwidth and/or low emission efficiency. This challenge is overcome by introducing extended surface bands onto the surface of sulfur quantum dots. The extended surface bands contribute to a high photoluminescence quantum yield and narrow emission bandwidth, thereby providing sufficient gain volume and facilitating stimulated emission. When combined with whispering gallery mode microcavity, surface gain enabled lasing emission manifests an ultralow threshold of 8.3 µJ cm-2. Remarkably, the reconfigurable perturbation to surface gain, facilitated by molecular affinity, allows for the realization of the lasing wavelength switch from a single inorganic gain material.

6.
BMC Surg ; 24(1): 266, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300438

RESUMEN

BACKGROUND: Weight recurrence, suboptimal clinical response and functional disorder (such as reflux) after a Sleeve Gastrectomy (SG) are problems that may require conversional surgery. For reflux, conversion to Roux-en-Y Gastric Bypass (RYGB) is considered effective. Regarding treatment for suboptimal clinical response, the technique of choice remains a subject of debate. This study aims to evaluate the safety and effectiveness of conversion from SG to Ring-augmented RYGB ( RaRYGB). METHODS: All laparoscopic SG to RaRYGB conversions performed between January 2016 and January 2022 were included. Primary outcome was percentage total weight loss (%TWL) after 1-year follow-up. Secondary outcomes consisted of cumulative %TWL, complications (with a focus on ring-related complications), and resolution of medical-associated problems. RESULTS: We included 50 patients of whom 44 were female. Mean pre-conversion BMI was 37.6 kg/m2. All patients have reached the 1-year follow-up point, however 10 were lost to follow-up. After 1-year mean TWL was 17.8% while mean cumulative TWL, calculated from primary SG, was 32%. A total of 10 complications occurred in 8 patients within 30 days, 6 of which were ≤ CD3a and 4 ≥ CD3b. One MiniMizer was removed for complaints of severe dysphagia. Of the 35 medical-associated problems present at screening 5 remained unchanged(14.2%), 15 improved(42.9%) and 15 achieved remission(42.9%). CONCLUSION: Our series of 50 patients undergoing conversion from SG to RaRYGB is adequate and successful regarding additional weight loss 1 year after conversion, cumulative weight loss, complication rate and achievement of improvement or remission of medical-associated problems.


Asunto(s)
Gastrectomía , Derivación Gástrica , Laparoscopía , Obesidad Mórbida , Pérdida de Peso , Humanos , Femenino , Derivación Gástrica/métodos , Derivación Gástrica/efectos adversos , Masculino , Gastrectomía/métodos , Gastrectomía/efectos adversos , Adulto , Obesidad Mórbida/cirugía , Resultado del Tratamiento , Persona de Mediana Edad , Estudios Retrospectivos , Laparoscopía/métodos , Complicaciones Posoperatorias/epidemiología , Estudios de Seguimiento , Reoperación/estadística & datos numéricos
7.
PeerJ ; 12: e17839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221286

RESUMEN

Background: The objective of this study was to compare and analyze the representative opening and closing movement of Tai Chi elastic band exercise with the reverse fly movement of elastic band resistance training. The aim was to explore the biomechanical differences between the two exercises and provide theoretical support for the application of Tai Chi elastic band exercise in health intervention. Methods: A total of 26 male participants were recruited and randomly divided into two groups in a 1:1 ratio. There were 13 participants in each Tai Chi elastic band exercise group and elastic band resistance training group. Both groups of participants used an elastic band to perform movement in the experiment. Experimental data were collected using the Vicon infrared motion capture system and Delsys surface EMG system. The AnyBody software was utilized to simulate the creation of a musculoskeletal model for both exercises. Result: The study found that the Tai Chi elastic band exercise group exhibited smaller horizontal abduction angle and flexion angle of the shoulder joint, as well as normalized RMS of the anterior deltoid and triceps brachii, compared to the elastic band resistance training group (P < 0.01); the Tai Chi elastic band exercise group exhibited greater elbow flexion angle, elbow flexion torque, and muscle strength of the infraspinatus, coracobrachialis, biceps brachii, brachialis and brachioradialis, compared to the elastic band resistance training group (P < 0.01); the Tai Chi elastic band exercise group exhibited smaller horizontal abduction angular velocity of the shoulder joint and a lower normalized RMS of the posterior deltoid, compared to the elastic band resistance training group (P < 0.05). Conclusion: (1) The opening and closing movement of Tai Chi elastic band exercise is characterized by a large elbow flexion angle, a small shoulder joint horizontal angle and flexion angle, and a slow and uniform speed of movement. The reverse fly movement of elastic band resistance training is characterized by a large horizontal abduction angle of the shoulder joint, a large flexion angle of the shoulder joint, a small flexion angle of the elbow joint, and a fast and uneven speed. (2) The opening and closing movement exerts a greater torque on the elbow flexion, while the reverse fly movement exerts a greater torque on the shoulder joint horizontal abduction and external rotation. (3) The opening and closing movement provide greater stimulation to the infraspinatus, coracobrachialis, and elbow flexor, while the reverse fly movement provides greater stimulation to the posterior deltoid, anterior deltoid, subscapularis, and elbow extensor. In summary, the variation in joint angle, joint angular velocity, and hand position could be the factor contributing to the differences in joint torque and muscle activity between the opening and closing movement of Tai Chi elastic band exercise and the reverse fly movement of elastic band resistance training.


Asunto(s)
Rango del Movimiento Articular , Entrenamiento de Fuerza , Taichi Chuan , Humanos , Masculino , Entrenamiento de Fuerza/métodos , Taichi Chuan/métodos , Fenómenos Biomecánicos/fisiología , Rango del Movimiento Articular/fisiología , Adulto , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Articulación del Hombro/fisiología , Electromiografía , Movimiento/fisiología
8.
Nano Lett ; 24(36): 11163-11169, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225119

RESUMEN

Prolonging hot carrier cooling, a crucial factor in optoelectronic applications, including hot carrier photovoltaics, presents a significant challenge. High-energy band-nesting excitons within parallel bands offer a promising and underexplored avenue for addressing this issue. Here, we exploit an exceptional D exciton cooling prolongation of 2 to 3 orders of magnitude compared to sub-picosecond in typical transition metal dichalcogenides (TMDs) owing to the complex Coulomb environment and the sequential and mismatch-valley relaxation. Simultaneously, the intervalley scattering upconversion of band-edge excitons with the slow D exciton formation in the metastable Γ valley/hill also reduces the cooling rate. We successfully extract D and C excitons as hot carriers through integrating with various thicknesses of TiOx, achieving the highest efficiency of 98% and 85% at a Ti thickness of 2 nm. Our findings highlight the potential of band-nesting excitons for extending hot carrier cooling time, paving the way for advancements in hot carrier-based optoelectronic devices.

9.
Adv Mater ; : e2410464, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235583

RESUMEN

The interfacial management in perovskite solar cells (PSCs), including mitigating the carrier transport barrier and suppressing non-radiative recombination, still remains a significant challenge for efficiency and stability enhancement. Herein, by screening a family of fluorine (F) terminated dual-site organic dipole molecules, the study aims to gain insight into the molecular dipole array toward tunable interfacial field. Both experimental and theoretical results reveal that these functional interfacial dipole molecules can effectively anchor on perovskite surface through Lewis acid-base interaction. In addition, the tailored side-chain with terminated F atoms allows for altering and constructing a well matched perovskite/Spiro-OMeTAD interfacial contact. As a result, the inserting dual-site organic dipole array effectively modulates the interface to deliver a gradient energy level alignment, facilitating carrier extraction and transport. The optimal dual-site dipole trifluoro-methanesulfonamide mediated N-i-P PSCs achieve the highest efficiency of 25.47%, together with enhanced operational stability under 1000 h of the simulated 1-sun illumination exposure. These findings are believed to provide insight into the design of dual-site molecular dipole with sufficient interfacial tunability for perovskite-based optoelectronic devices.

10.
Small ; : e2402668, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235584

RESUMEN

Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.

11.
Nano Lett ; 24(37): 11454-11461, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231534

RESUMEN

Cryogenic field-effect transistors (FETs) offer great potential for applications, the most notable example being classical control electronics for quantum information processors. For the latter, on-chip FETs with low power consumption are crucial. This requires operating voltages in the millivolt range, which are only achievable in devices with ultrasteep subthreshold slopes. However, in conventional cryogenic metal-oxide-semiconductor (MOS)FETs based on bulk material, the experimentally achieved inverse subthreshold slopes saturate around a few mV/dec due to disorder and charged defects at the MOS interface. FETs based on two-dimensional materials offer a promising alternative. Here, we show that FETs based on Bernal stacked bilayer graphene encapsulated in hexagonal boron nitride and graphite gates exhibit inverse subthreshold slopes of down to 250 µV/dec at 0.1 K, approaching the Boltzmann limit. This result indicates an effective suppression of band tailing in van der Waals heterostructures without bulk interfaces, leading to superior device performance at cryogenic temperature.

12.
Brain Lang ; 256: 105463, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243486

RESUMEN

We investigated how neural oscillations code the hierarchical nature of stress rhythms in speech and how stress processing varies with language experience. By measuring phase synchrony of multilevel EEG-acoustic tracking and intra-brain cross-frequency coupling, we show the encoding of stress involves different neural signatures (delta rhythms = stress foot rate; theta rhythms = syllable rate), is stronger for amplitude vs. duration stress cues, and induces nested delta-theta coherence mirroring the stress-syllable hierarchy in speech. Only native English, but not Mandarin, speakers exhibited enhanced neural entrainment at central stress (2 Hz) and syllable (4 Hz) rates intrinsic to natural English. English individuals with superior cortical-stress tracking capabilities also displayed stronger neural hierarchical coherence, highlighting a nuanced interplay between internal nesting of brain rhythms and external entrainment rooted in language-specific speech rhythms. Our cross-language findings reveal brain-speech synchronization is not purely a "bottom-up" but benefits from "top-down" processing from listeners' language-specific experience.


Asunto(s)
Percepción del Habla , Humanos , Femenino , Masculino , Percepción del Habla/fisiología , Adulto , Electroencefalografía , Encéfalo/fisiología , Adulto Joven , Habla/fisiología , Lenguaje , Estimulación Acústica
13.
PNAS Nexus ; 3(9): pgae383, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39328473

RESUMEN

In photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of isotropic photonic band gaps. Here, we report the first ever 3D isotropic photonic band gap for an optimized disordered stealthy hyperuniform structure for microwaves. The transmission spectra are directly compared to a diamond pattern and an amorphous structure with similar node density. The band structure is measured experimentally for all three microwave structures, manufactured by 3D laser printing for metamaterials with refractive index up to n = 2.1 . Results agree well with finite-difference-time-domain numerical investigations and a priori calculations of the band gap for the hyperuniform structure: the diamond structure shows gaps but being anisotropic as expected, the stealthy hyperuniform pattern shows an isotropic gap of very similar magnitude, while the amorphous structure does not show a gap at all. Since they are more easily manufactured, prototyping centimeter scaled microwave structures may help optimizing structures in the technologically very interesting region of infrared.

14.
ACS Appl Mater Interfaces ; 16(38): 51212-51220, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39255231

RESUMEN

Dual-band photodetectors (PDs) have attracted extensive research attention due to their great potential for diverse and refreshing application scenarios in full-color imaging, optical communication, and imaging detection. Here, a self-driven dual-band PD without filters and other auxiliary equipment to achieve a narrowband response in Mode 1 and a broadband response in Mode 2 was designed based on carrier-selective transmission narrowing (CSTN). The polymer material poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), which has the appropriate energy level, was selected to be the carrier-selective transmission layer. In Mode 1, the dual-band PD exhibits a near-infrared (NIR) narrowband response in 750-900 nm, which indicates a responsivity of 360 mA/W, a full-width at half-maximum (fwhm) of 81 nm, and a specific detectivity (D*) of 7.49 × 1010 Jones at 810 nm. Simultaneously, in Mode 2, the dual-band PD exhibits a UV-visible-NIR broadband responsivity of 180 mA/W and a specific detectivity (D*) of 3.8 × 1010 Jones at 520 nm. Our study provides a reliable idea for the commercial applications of dual-function photodetectors.

15.
ACS Appl Mater Interfaces ; 16(38): 51346-51353, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39265542

RESUMEN

The exploration of novel two-dimensional (2D) materials with a direct band gap and high mobility has attracted huge attention due to their potential application in electronic and optoelectronic devices. Here, we propose a feasible way to construct multiatomic monolayer Ca2A2Z5 (A = Al and Ga and Z = S, Se, and Te) by first-principles calculations. Our results indicated that the energies of α1-phase Ca2A2Z5 are slightly lower than those of experimentally synthesized α3-phase-like Ca2A2Z5 monolayers with excellent structural stability. Moreover, the α1- and α3-phase Ca2A2Z5 monolayers possess not only direct band gaps but also high electron mobilities (up to ∼103 cm2 V-1 s-1), demonstrating an intriguing range of visible light absorption. Importantly, α1- and α3-phase Ca2Ga2Se5 monolayers are good donor materials, and the corresponding Ca2Ga2Se5/ZrSe2 type-II heterostructures exhibit desirable power conversion efficiencies of 22.4% and 22.9%, respectively. Our findings provide a feasible way to explore new 2D materials and offer several Ca2A2Z5 candidate monolayers for the application of high-performance solar cells.

16.
Nano Lett ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331415

RESUMEN

Two-dimensional materials have enormous development prospects in the bulk photovoltaic effect (BPVE). The enhancement and manipulation of the BPVE are some of the key roles of its various applications. Through a simplified Hamiltonian model, this work shows that a substantial band mixture between occupied and unoccupied states could produce a large optical absorption rate with trivial topological features, resulting in a significantly enhanced shift current generation. Furthermore, this mechanism is illustrated in a realistic C3B/C3N bilayer material based on density functional theory calculation and tight-binding model. As each layer of C3B/C3N is centrosymmetric, the in-plane shift current arises from the interfacial interaction. The electron transfer between the layers gives a controllable band mixture, which offers a giant shift current reaching over ∼1500 µA/V2. In addition, we propose that interlayer sliding could reverse the in-plane shift current. Our work suggests a feasible approach for giant and switchable nonlinear optical processes.

17.
J Am Heart Assoc ; : e034351, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291506

RESUMEN

BACKGROUND: Type A aortic dissection presents challenges with postoperative cerebral complications, and this study evaluates the predictive value of quantitative electroencephalography for perioperative brain function prognosis. METHODS AND RESULTS: Amplitude-integrated electroencephalography (aEEG) processes raw signals through filtering, amplitude integration, and time compression, displaying the data in a semilogarithmic format. Using this method, postoperative relative band power (post-RBP) α% and dynamic aEEG (ΔaEEG) grade were significantly associated with neurological dysfunction in univariate and multivariable analyses, with area under the receiver operating characteristic curve of 0.876 (95% CI, 0.825-0.926) for the combined model. Postoperative relative band power α% and ΔaEEG were significantly associated with adverse outcomes, with area under the receiver operating characteristic curve of 0.903 (95% CI, 0.835-0.971) for the combined model. Postoperative relative band power α% and ΔaEEG were significantly associated with transient neurological dysfunction and stroke, with areas under the receiver operating characteristic curve of 0.818 (95% CI, 0.760-0.876) and 0.868 (95% CI, 0.810-0.926) for transient neurological dysfunction, and 0.815 (95% CI, 0.743-0.886) and 0.831 (95% CI, 0.746-0.916) for stroke. Among 56 patients, the Alberta Stroke Program Early Computed Tomography score was superior to ΔaEEG in predicting neurological outcomes (area under the receiver operating characteristic curve of 0.872 versus 0.708 [95% CI, 0.633-0.783]; P<0.05). CONCLUSIONS: Perioperative quantitative electroencephalography monitoring offers valuable insights into brain function changes in patients with type A aortic dissection. ∆aEEG grades can aid in early detection of adverse outcomes, while postoperative relative band power and ∆aEEG grades predict transient neurological dysfunction. Quantitative electroencephalography can assist cardiac surgeons in assessing brain function and improving outcomes in patients with type A aortic dissection. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2200055980.

18.
Small ; : e2405137, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291916

RESUMEN

Hybrid metal halides display a range of optical properties and hold promise for various applications such as solid-state lighting, anti-counterfeiting measures, backlight displays, and X-ray detection. The incorporation of zinc into (C13H26N)2MnBr4 aims to enhance its structural rigidity and improve its narrow band green light emission properties. The resulting (C13H26N)2ZnBr4 compound exhibits an identical crystal structure to (C13H26N)2MnBr4, indicating the potential for a solid solution of varying Zn and Mn ratios within this structural framework. (C13H26N)2Zn0.2Mn0.8Br4 exhibits significantly enhanced properties, including a photoluminescence quantum yield of 92%, a minimum full width at half maximum of 43 nm, and 85% retention of room temperature emission at 420 K. Additionally, crystals of (C13H26N)2ZnCl4 and (C7H18N)2ZnX4 (X = Br, I) are synthesized, with (C7H18N)2ZnBr4 displaying luminescent color changes dependent on excitation. (C7H18N)2Zn0.2Mn0.8Br4 demonstrates reversible phase transitions and alterations in optical properties. A white light-emitting diode utilizing (C13H26N)2Zn0.2Mn0.8Br4 and commercial phosphors exhibited a color gamut of 112.2% of the National Television Standards Committee 1931 Standard. This investigation introduces a stable and highly efficient narrow-band green phosphor suitable for displays.

19.
Ecol Evol ; 14(9): e70286, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39296737

RESUMEN

Estimating correlations among demographic parameters is an important method in population ecology. A recent paper by Deane et al. (Ecology and Evolution 13:e9847, 2023) attempted to explore the effects of different priors for covariance matrices on inference when using mark-recovery data. Unfortunately, Deane et al. (2023) made a mistake when parameterizing some of their models. Rather than exploring the effects of different priors, they examined the effects of the use of incorrect equations on inference. In this manuscript, we clearly describe the mistake in Deane et al. (2023). We then demonstrate the use of an alternative and appropriate method and reach different conclusions regarding the effects of priors on inference. Consistent with other recent literature, informative inverse Wishart priors can lead to flawed inference, while vague priors on covariance matrix components have little impact when sample sizes are adequate.

20.
Proc Natl Acad Sci U S A ; 121(39): e2401430121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39298483

RESUMEN

The heavy fermion (HF) state of [Formula: see text]-electron systems is of great current interest since it exhibits various exotic phases and phenomena that are reminiscent of the Kondo effect in [Formula: see text]-electron HF systems. Here, we present a combined infrared spectroscopy and first-principles band structure calculation study of the [Formula: see text]-electron HF compound YFe[Formula: see text]Ge[Formula: see text]. The infrared response exhibits several charge-dynamical hallmarks of HF and a corresponding scaling behavior that resemble those of the [Formula: see text]-electron HF systems. In particular, the low-temperature spectra reveal a dramatic narrowing of the Drude response along with the appearance of a hybridization gap ([Formula: see text] 50 meV) and a strongly enhanced quasiparticle effective mass. Moreover, the temperature dependence of the infrared response indicates a crossover around [Formula: see text] 100 K from a coherent state at low temperature to a quasi-incoherent one at high temperature. Despite of these striking similarities, our band structure calculations suggest that the mechanism underlying the HF behavior in YFe[Formula: see text]Ge[Formula: see text] is distinct from the Kondo scenario of the [Formula: see text]-electron HF compounds and even from that of the [Formula: see text]-electron iron-arsenide superconductor KFe[Formula: see text]As[Formula: see text]. For the latter, the HF state is driven by orbital-selective correlations due to a strong Hund's coupling. Instead, for YFe[Formula: see text]Ge[Formula: see text] the HF behavior originates from the band flatness near the Fermi level induced by the combined effects of kinetic frustration from a destructive interference between the direct Fe-Fe and indirect Fe-Ge-Fe hoppings, band hybridization involving Fe [Formula: see text] and Y [Formula: see text] electrons, and electron correlations. This highlights that rather different mechanisms can be at the heart of the HF state in [Formula: see text]-electron systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA