Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Environ Monit Assess ; 196(8): 709, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970718

RESUMEN

This article focuses on the study of the distribution of 137Cs in the bottom sediments of Arctic rivers of the Barents Sea basin (using the example of the Nenets Autonomous Okrug, Russian Arctic). This research is relevant due to the poorly studied region and the significant number of radiation-hazardous facilities in the Arctic zone of Russia, both those currently in operation and those that are "nuclear heritage sites". The study of 137Cs specific activity in bottom sediments was carried out in the period from 2020 to 2023 in the rivers Chizha, Nes, Vizhas, Oma, Pechora (river delta), as well as the rivers Kolva and Usa (first and second order tributaries, respectively, of the Pechora River). A total of 199 samples were collected. In addition to 137Cs specific activity, the samples were analysed for sediment particle size distribution, organic matter content, carbonate content and ash content. The 137Cs specific activity mainly ranged from the minimum detectable specific activity to 5.4 ± 0.8 Bq·kg-1. In the Nes River basin (Kaninskaya tundra), the 137Cs content in bottom sediments reached 36.0 ± 3.2 Bq·kg-1 (in the case of lake sediments) and 22.9 ± 3.7 Bq·kg-1 (in the case of river sediments), values that are higher than those of the North-West of Russia. Considering the large area of the study area (Kaninskaya tundra, Pechora river delta, southern part of Bolshezemelskaya tundra) and the similarity of physical and chemical parameters of the studied rivers, it is possible to assume the existence of a zone of increased radionuclide content in the Nes river basin. This may be due to the runoff from the Nes River catchment area, its hydrological features, and the accumulation of 137Cs in the small fractions of bottom sediments. The results confirm the conclusions of previous soil studies in the Nes river basin. The main sources of elevated 137Cs content are global atmospheric deposition and the Chernobyl Nuclear Power Plant accident.


Asunto(s)
Radioisótopos de Cesio , Sedimentos Geológicos , Monitoreo de Radiación , Ríos , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Ríos/química , Sedimentos Geológicos/química , Contaminantes Radiactivos del Agua/análisis , Federación de Rusia , Regiones Árticas
2.
Mar Pollut Bull ; 204: 116517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850754

RESUMEN

Beached macrolitter (>2,5 cm) abundance and composition in the Russian (Eastern) part of the Barents Sea and the adjacent part of the Kara Sea was assessed for 2021-2023. Average densities of beach litter on the coasts are 675 items/100 m and 37 kg/100 m (0.27 items/m2 and 0.015 kg/m2). Annual litter budgets for Cape Zhelaniya beaches are 0.49 items/m2 per year and 0.023 kg/m2 per year. The northernmost tip of Novaya Zemlya is shown to be a beach litter accumulation hot-spot on Novaya Zemlya archipelago, where litter is brought by surface currents and trapped by sea ice margins. Up to 80 % of beached marine macrolitter is made of plastics, originating from vessels. A certain accumulation strip of a beach was identified (14 m - 27.5 m distance from the waterline), and significance of the beach backshore was shown in litter accumulation. Beach litter accounting methodologies on the Arctic beaches are discussed.


Asunto(s)
Playas , Monitoreo del Ambiente , Regiones Árticas , Federación de Rusia , Plásticos/análisis
3.
Mar Pollut Bull ; 203: 116473, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820879

RESUMEN

EcoQS assessment of the marine intertidal zone based on its fauna is challenging because the assemblages have a low diversity and consist of stress tolerant species. The new approach we propose is to pool foraminiferal diversity (effective number of species exp(H'bc)) across the whole intertidal zone including the salt marsh and tidal flat. In seven fjordheads studied in northern Fennoscandia, polycyclic aromatic hydrocarbon (PAH) concentrations indicated low levels of pollution (EcoQSPAH Excellent to Moderate). Jadammina or Balticammina dominated the salt marsh, Elphidium albiumbilicatum, Elphidium williamsoni, Elphidium clavatum, and Buccella frigida occurred in the tidal flat. Ovammina opaca thrived in both belts. While foraminiferal test abnormalities are often proposed to measure pollution impacts, we did not detect any correlation with PAHs. EcoQS based on foraminiferal diversity (EcoQSforam Excellent to Good) matched EcoQS based on PAHs suggesting that pooled foraminiferal diversity reliably measures intertidal EcoQS.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Foraminíferos , Hidrocarburos Policíclicos Aromáticos , Foraminíferos/fisiología , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente/métodos , Regiones Árticas , Contaminantes Químicos del Agua/análisis
4.
Microorganisms ; 12(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399791

RESUMEN

The Barents Sea shelf is one of the most economically promising regions in the Arctic in terms of its resources and geographic location. However, benthic microbial communities of the northeastern Barents Sea are still barely studied. Here, we present a detailed systematic description of the structures of microbial communities located in the sediments and bottom water of the northeastern Barents Sea based on 16S rRNA profiling and a qPCR assessment of the total prokaryotic abundance in 177 samples. Beta- and alpha-diversity analyses revealed a clear difference between the microbial communities of diverse sediment layers and bottom-water fractions. We identified 101 microbial taxa whose representatives had statistically reliable distribution patterns between these ecotopes. Analysis of the correlation between microbial community structure and geological data yielded a number of important results-correlations were found between the abundance of individual microbial taxa and bottom relief, thickness of marine sediments, presence of hydrotrolite interlayers, and the values of pH and Eh. We also demonstrated that a relatively high abundance of prokaryotes in sediments can be caused by the proliferation of Deltaproteobacteria representatives, in particular, sulfate and iron reducers.

5.
Animals (Basel) ; 14(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254400

RESUMEN

The Iceland scallop from the Barents Sea is a commercially important species with promising aquaculture potential, but information on the biochemical properties of its tissues is limited. Our analysis of the adductor muscle, gonad, and mantle of this bivalve mollusk from coastal waters provided insight into its amino acid composition. Biochemical analysis revealed predominant levels of glycine (11.8, 11.5, and 9.6 mg g-1, respectively) and arginine (11.2, 8.3, and 5.8 mg g-1, respectively). While multivariate comparisons did not reveal significant differences in amino acid composition between the tissues, single comparisons showed significantly higher levels of arginine and leucine in the adductor muscle compared to those of the mantle. The abundant presence of glycine and arginine underscores their importance in maintaining basic physiological processes, consistent with other scallop species. Redundancy analysis identified water depth and scallop gonad index as influential factors shaping the amino acid profile in the adductor muscle. In the case of the mantle, water temperature emerged as the main driver of amino acid content. Our results confirm the richness of essential amino acids in scallop by-products and highlight their potential for human consumption, production of feed ingredients for farmed animals, and nutraceuticals.

6.
Animals (Basel) ; 14(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275807

RESUMEN

The red king crab, Paralithodes camtschaticus, was introduced into the Barents Sea where, after a period of 30 years of adaptation, it has established a new population. This population has been commercially exploited over the past two decades, supporting profitable fisheries in both Russia and Norway. Biochemical studies aimed at assessing fatty acid profiles have been conducted, focusing primarily on the edible parts of red king crabs. Only recently have by-products been included in this research. Capture of female red king crabs is prohibited in Russia but is allowed in Norway. The fatty acids of the egg masses carried by these females have not yet been studied. To fill this knowledge gap, we assayed the fatty acid composition of eggs using gas-liquid chromatography. Our results showed a predominance of polyunsaturated fatty acids, while the concentrations of saturated and monounsaturated fatty acids were similar. Multivariate comparisons showed no significant differences in fatty acid profiles in terms of egg developmental stage (nauplius vs. metanauplius), habitat conditions (soft vs. hard bottoms), female size class, or number of autotomized limbs. However, individual comparisons showed some differences in fatty acids, the most important being the lower content of docosahexaenoic acid in eggs at the metanauplius stage compared to eggs at the nauplius stage, which is likely due to its essential role in the development of red king crab embryos. The total fatty acid content (53.94 mg g-1) was 2-87 times higher in eggs than in other red king crab tissues, confirming the critical role that fatty acids play in maintaining physiological processes during vitellogenesis. The high content of essential fatty acids and an optimal omega-3-to-omega-6 ratio (4.9) suggest that red king crab eggs are a good product for a healthy diet and a valuable source for extracting essential fatty acids.

7.
J Fish Biol ; 104(3): 797-806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37986023

RESUMEN

The recent, rapid spreading of non-native pink salmon Oncorhynchus gorbuscha in the North Atlantic area has raised concerns about their possible negative impacts on native salmonid species. Potential interactions include competition for food resources during the short freshwater phase of juvenile O. gorbuscha, but little is known about their feeding behavior in the newly occupied North Atlantic rivers. Using stable isotope and stomach content analyses, patterns of freshwater feeding of non-native O. gorbuscha fry were studied in a large Fennoscandian river, the Teno, that discharges to the Barents Sea. Changes in stable isotope values (δ13 C, δ15 N, δ34 S) and stomach contents from the period of emergence (April to mid-May) to estuarine entry (late May/June) were examined and provided both temporally integrated and short-term indicators of freshwater feeding dependency. In addition, the occurrence of juvenile O. gorbuscha and changes in their length and weight during their emergence/migration period were investigated. Juvenile O. gorbuscha were at the spawning grounds from April through to mid-May with abundance peaking in mid-May. Fish moved to the estuary by late May and their abundance decreased toward June, and their body size increased concurrently. Stomach analyses indicated no feeding activity in April-early May in the spawning areas, but the stomach fullness indices increased markedly in fish sampled in the estuary in May and June. The most important prey items in stomachs were Chironomidae and Ephemeroptera larvae. Significant changes in all analysed stable isotopes were detected among sample periods, with a peak in mid-May and June showing significantly lower values than other sample periods. A change from the higher values reflective of parental marine feeding to the lower values reflective of freshwater feeding indicated active in-river feeding by juveniles during the study period. The documented active freshwater feeding of non-native juvenile O. gorbuscha suggests potential resource competition with native fluvial fishes, particularly salmonids.


Asunto(s)
Ríos , Salmón , Animales , Agua Dulce , Dieta/veterinaria , Isótopos
8.
Mar Environ Res ; 193: 106250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006853

RESUMEN

The Barents Sea, as the largest Arctic shelf region with high productivity, supports vital commercial fisheries. The region's ecosystem is significantly impacted by both warm Atlantic Water (AW) and cold Arctic Water (ARW), resulting in frontal zones that delineate differing water masses. Zooplankton populations serve as the primary link between primary producers and higher trophic levels. To evaluate the potential influence of frontal zones on copepods, we conducted a summer survey focusing on sites where diverse water masses interacted. Our findings revealed that species richness, diversity, biomass, and daily production of common copepods were highest in the Polar Front, separating AW and ARW, as well as in the eastern frontal zones (Barents Sea Water and Novaya Zemlya Coastal Water). Herbivorous copepods, such as Calanus spp. and Pseudocalanus spp., dominated in terms of total copepod biomass and production, whereas the small omnivore Oithona similis prevailed by abundance. Multivariate analysis demonstrated a strong correspondence between frontal zones and copepod assemblages. The primary factors explaining spatial variations in copepod biomass and production included the geographic positions of sampling stations, depth, and chlorophyll a concentration. Our research underscores the significance of oceanographic fronts as zones of critical importance for overall pelagic productivity in Arctic regions.


Asunto(s)
Copépodos , Ecosistema , Animales , Biomasa , Clorofila A , Biodiversidad , Regiones Árticas , Zooplancton , Agua
9.
Biology (Basel) ; 12(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37887020

RESUMEN

The Barents Sea is one of the most rapidly changing Arctic regions, with an unprecedented sea ice decline and increase in water temperature and salinity. We have studied the diversity of prokaryotic communities using 16S metabarcoding in the western and northeastern parts of the Barents Sea along the Kola Section and the section from Novaya Zemlya to Franz Joseph Land. The hypothesis-independent clustering method revealed the existence of two distinct types of communities. The most common prokaryotic taxa were shared between two types of communities, but their relative abundance was different. It was found that the geographic location of the sampling sites explained more than 30% of the difference between communities, while no statistically significant correlation between environmental parameters and community composition was found. The representatives of the Psychrobacter, Sulfitobacter and Polaribacter genera were dominant in samples from both types of communities. The first type of community was also dominated by members of Halomonas, Pseudoalteromonas, Planococcaceae and an unclassified representative of the Alteromonadaceae family. The second type of community also had a significant proportion of Nitrincolaceae, SAR92, SAR11 Clade I, NS9, Cryomorphaceae and SUP05 representatives. The origin of these communities can be explained by the influence of environmental factors or by the different origins of water masses. This research highlights the importance of studying biogeographic patterns in the Barents Sea in comparison with those in the North Atlantic and Arctic Ocean prokaryote communities.

10.
Mol Ecol ; 32(21): 5724-5741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37795906

RESUMEN

Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.


Asunto(s)
Mytilus edulis , Mytilus , Neoplasias , Animales , Mytilus edulis/genética , Bahías , Mytilus/genética , ADN Mitocondrial/genética
11.
Environ Pollut ; 338: 122706, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37821039

RESUMEN

The Northeast Arctic cod (Gadus morhua) is the world's northernmost stock of Atlantic cod and is of considerable ecological and economic importance. Northeast Arctic cod are widely distributed in the Barents Sea, an environment that supports a high degree of ecosystem resiliency and food web complexity. Here using 121 years of ocean temperature data (1900-2020), 41 years of sea ice extent information (1979-2020) and 27 years of total mercury (Hg) fillet concentration data (1994-2021, n = 1999, ≥71% Methyl Hg, n = 20) from the Barents Sea ecosystem, we evaluate the effects of climate change dynamics on Hg temporal trends in Northeast Arctic cod. We observed low and consistently stable, Hg concentrations (yearly, least-square means range = 0.022-0.037 mg/kg wet wt.) in length-normalized fish, with a slight decline in the most recent sampling periods despite a significant increase in Barents Sea temperature, and a sharp decline in regional sea ice extent. Overall, our data suggest that recent Arctic amplification of ocean temperature, "Atlantification," and other perturbations of the Barents Sea ecosystem, along with rapidly declining sea ice extent over the last ∼30 years did not translate into major increases or decreases in Hg bioaccumulation in Northeast Arctic cod. Our findings are consistent with similar long-term, temporal assessments of Atlantic cod inhabiting Oslofjord, Norway, and with recent investigations and empirical data for other marine apex predators. This demonstrates that Hg bioaccumulation is highly context specific, and some species may not be as sensitive to current climate change-contaminant interactions as currently thought. Fish Hg bioaccumulation-climate change relationships are highly complex and not uniform, and our data suggest that Hg temporal trends in marine apex predators can vary considerably within and among species, and geographically. Hg bioaccumulation regimes in biota are highly nuanced and likely driven by a suite of other factors such as local diets, sources of Hg, bioenergetics, toxicokinetic processing, and growth and metabolic rates of individuals and taxa, and inputs from anthropogenic activities at varying spatiotemporal scales. Collectively, these findings have important policy implications for global food security, the Minamata Convention on Mercury, and several relevant UN Sustainable Development Goals.


Asunto(s)
Gadus morhua , Mercurio , Animales , Ecosistema , Mercurio/metabolismo , Cambio Climático , Cadena Alimentaria , Peces , Regiones Árticas
12.
J Anim Ecol ; 92(11): 2214-2227, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37750026

RESUMEN

Disentangling empirically the many processes affecting spatial population synchrony is a challenge in population ecology. Two processes that could have major effects on the spatial synchrony of wild population dynamics are density dependence and variation in environmental conditions like temperature. Understanding these effects is crucial for predicting the effects of climate change on local and regional population dynamics. We quantified the direct contribution of local temperature and density dependence to spatial synchrony in the population dynamics of nine fish species inhabiting the Barents Sea. First, we estimated the degree to which the annual spatial autocorrelations in density are influenced by temperature. Second, we estimated and mapped the local effects of temperature and strength of density dependence on annual changes in density. Finally, we measured the relative effects of temperature and density dependence on the spatial synchrony in changes in density. Temperature influenced the annual spatial autocorrelation in density more in species with greater affinities to the benthos and to warmer waters. Temperature correlated positively with changes in density in the eastern Barents Sea for most species. Temperature had a weak synchronizing effect on density dynamics, while increasing strength of density dependence consistently desynchronised the dynamics. Quantifying the relative effects of different processes affecting population synchrony is important to better predict how population dynamics might change when environmental conditions change. Here, high degrees of spatial synchrony in the population dynamics remained unexplained by local temperature and density dependence, confirming the presence of additional synchronizing drivers, such as trophic interactions or harvesting.


Asunto(s)
Ecología , Ecosistema , Animales , Temperatura , Dinámica Poblacional
13.
Glob Chang Biol ; 29(19): 5582-5595, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37477068

RESUMEN

Arctic food webs are being impacted by borealisation and environmental change. To quantify the impact of these multiple forcings, it is crucial to accurately determine the temporal change in key ecosystem metrics, such as trophic position of top predators. Here, we measured stable nitrogen isotopes (δ15 N) in amino acids in harp seal teeth from across the North Atlantic spanning a period of 60 years to robustly assess multi-decadal trends in harp seal trophic position, accounting for changes in δ15 N at the base of the food web. We reveal long-term variations in trophic position of harp seals which are likely to reflect fluctuations in prey availability, specifically fish- or invertebrate-dominated diets. We show that the temporal trends in harp seal trophic position differ between the Northwest Atlantic, Greenland Sea and Barents Sea, suggesting divergent changes in each local ecosystem. Our results provide invaluable data for population dynamic and ecotoxicology studies.


Asunto(s)
Caniformia , Phocidae , Animales , Ecosistema , Invertebrados , Cadena Alimentaria , Biomarcadores/metabolismo
14.
Mar Pollut Bull ; 193: 115249, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37423083

RESUMEN

Marine pollution by lost, abandoned or otherwise discarded fishing gear (ALDFG) often has negative impact on the ecosystem through plastic pollution and continuous capture of marine animals, so-called "ghost fishing". ALDFG in pot fisheries is associated with high ghost fishing risk. The snow crab (Chionoecetes opilio) pot fishery is conducted in harsh weather conditions increasing the risk of fishing gear loss. Due to plastic materials used in the pot construction, lost gear can most likely continue fishing for decades. This study presents a method to quantify ghost fishing efficiency relative to catch efficiency of actively fished pots. On average, the ghost fishing pots captured 8.29 % (confidence intervals: 4.33-13.73 %) target-sized snow crab compared to the actively fished pots, demonstrating that lost pots can continue fishing even when the bait is decayed. Given the large number of pots lost each year, the ghost fishing efficiency is a considerable challenge in this fishery.


Asunto(s)
Braquiuros , Ecosistema , Animales , Explotaciones Pesqueras , Contaminación del Agua , Monitoreo del Ambiente/métodos
15.
Animals (Basel) ; 13(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37508097

RESUMEN

The continental shelf of the northeastern Barents Sea is presently experiencing a weak influx of Atlantic water from the west. In recent times, warming in Arctic regions has led to an increase in extended ice-free periods in this area, instead of significantly elevating water temperatures. The implications of this phenomenon on the structure and functioning of benthic communities were investigated during the autumn of 2019 within the Makarov Strait, located in the southwestern part of the St. Anna Trough. The macrozoobenthic communities exhibited a clear connection with the duration of ice-free periods. This variable influenced a vertical carbon flux, which subsequently served as the primary predictor for faunal abundance and diversity, as demonstrated by redundancy and correlation analyses. Two faunal groups were identified, corresponding to short and long open-water periods. Both groups had similar alpha diversity (65 ± 6 and 61 ± 9 species per station) and biomasses (39 ± 13 and 47 ± 13 g m-2) but displayed differing abundances (1140 ± 100 vs. 4070 ± 790 ind. m-2) and other diversity indices. We observed a decline in the proportion of polychaetes, accompanied by an increase in the proportion and diversity of bivalves, as well as a rise in the abundance of infaunal species, sub-surface deposit feeders, and mobile suspension feeders, in response to the increasing vertical carbon flux. The potential increase in anthropogenic pressures related to oil development in the northeastern Barents Sea highlights the importance of our study for conservation and monitoring efforts in the region.

16.
PeerJ ; 11: e15472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334111

RESUMEN

Over the past few decades, the Earth's climate has been characterized by a stable increase in temperature, which in many regions leads to a change in the composition of flora and fauna. A striking manifestation of this process is the appearance in ecological communities of new, uncharacteristic for them, species of animals and plants. One of the most productive and at the same time the most vulnerable in this respect are the marine ecosystems of the Arctic. This article is devoted to the analysis of findings of vagrant phytoplankton species in the Barents Sea, a body of water experiencing especially rapid warming due to an increase in the volume and temperature of incoming Atlantic water. For the first time, fundamental questions are considered: how widely these species are distributed over the Barents Sea area, and in what seasons do they reach high levels of abundance. The material for the present work was planktonic collections made during expedition surveys of 2007-2019 in different seasons throughout the Barents Sea. The water samples were taken using a rosette Niskin bottle sampler. The plankton net with a 29 µm mesh size was applied for filtering. The obtained material was processed according to standard hydrobiological methods and followed by subsequent microscopy for taxonomic identification of organisms and cell counting. The results of our observations show that vagrant microplankton species do not create a stable population that persists throughout the annual development cycle. Their major presence is noted in the autumn-winter period, the smallest in the summer. The distribution of invaders is strictly tied to warm jets of currents, while the weakening of the inflow of Atlantic water masses deep into the Barents Sea from the west is a limiting factor for their penetration into its eastern part. The southwestern and western parts of the basin are characterized by the most significant number of floristic finds; from here, towards the north and east, their number decreases. It can be concluded that at present the proportion of vagrant species in the Barents Sea, both in species diversity and in the total biomass of the algocenosis, is insignificant. They do not change the structure of the community as a whole, and their presence does not have any negative impact on the ecosystem of the Barents Sea pelagic. However, at this stage of research, it is too early to predict the environmental consequences of the phenomenon under study. Given the growing number of recorded cases of finds of species uncharacteristic for the Arctic, there is a possibility that this process may disrupt the biological stability of the ecosystem and even lead to its destabilization.


Asunto(s)
Ecosistema , Fitoplancton , Animales , Cambio Climático , Biomasa , Plancton , Agua
17.
Ecol Evol ; 13(6): e10187, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37342457

RESUMEN

Knowledge of trophic interaction is necessary to understand the dynamics of ecosystems and develop ecosystem-based management. The key data to measure these interactions should come from large-scale diet analyses with good taxonomic resolution. To that end, molecular methods that analyze prey DNA from guts and feces provide high-resolution dietary taxonomic data. However, molecular diet analysis may also produce unreliable results if the samples are contaminated by external sources of DNA. Employing the freshwater European whitefish (Coregonus lavaretus) as a tracer for sample contamination, we studied the possible route of whitefish in beaked redfish (Sebastes mentella) guts sampled in the Barents Sea. We used whitefish-specific COI primers for diagnostic analysis, and fish-specific 12S and metazoa-specific COI primers for metabarcoding analyses of intestine and stomach contents of fish samples that were either not cleaned, water cleaned, or bleach cleaned after being in contact with whitefish. Both the diagnostic and COI metabarcoding revealed clear positive effects of cleaning samples as whitefish were detected in significantly higher numbers of uncleaned samples compared to water or bleach-cleaned samples. Stomachs were more susceptible to contamination than intestines and bleach cleaning reduced the frequency of whitefish contamination. Also, the metabarcoding approach detected significantly more reads of whitefish in the stomach than in intestine samples. The diagnostic analysis and COI metabarcoding detected contaminants in a higher and comparable number of gut samples than the 12S-based approach. Our study underlines thus the importance of surface decontamination of aquatic samples to obtain reliable diet information from molecular data.

18.
Fish Oceanogr ; 32(1): 91-105, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37063112

RESUMEN

Fish populations may spawn a vast number of offspring, while only a small and highly variable fraction of a new cohort survives long enough to enter into the fisheries as recruits. It is intuitive that the size and state of the spawning stock, the adult part of the fish population, is important for recruitment. Additionally, environmental conditions can greatly influence survival through vulnerable early life stages until recruitment. To understand what regulates recruitment, an essential part of fish population dynamics, it is thus necessary to explain the impact of fluctuations in both spawning stock and environment, including interactions. Here, we examine if the connection between the environment and recruitment is affected by the state of the spawning stock, including biomass, mean age and age diversity. Specifically, we re-evaluate the hypothesis stating that recruitment from a spawning stock dominated by young fish and few age classes is more vulnerable to environmental fluctuations. We expand upon earlier work on the Barents Sea stock of Atlantic cod, now with data series extended in time both backwards and forwards to cover the period 1922-2019. While our findings are correlative and cannot prove a specific cause and effect mechanism, they support earlier work and strengthen the evidence for the hypothesis above. Furthermore, this study supports that advice to fisheries management should include considerations of environmental status.

19.
Mar Pollut Bull ; 191: 114892, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062131

RESUMEN

The concentrations and composition of hydrocarbons - HCs (aliphatic - AHCs and polycyclic aromatic hydrocarbons - PAHs) in the Barents and Kara Seas (cruises 80, 83 and 89 of the R/V «Akademik Mstislav Keldysh¼, August 2020, June 2021, September 2022 respectively) are analyzed in the paper. The concentrations of the HC dissolved and suspended forms were measured in the surface microlayer (SML, 100-1000 µm thick), melting ice and surface waters. Higher concentration of HCs in SML was found in suspended particulate matter (SPM). AHC concentration in SPM in the Barents Sea were lower (31-96, on average 68 µg/L) than in the Kara Sea in June 2021 (187-1051, 573 µg/L on average), where the studies were carried out in the early summer season. The concentrations of AHCs in the SPM in the SML of the Kara Sea were 3.6 times higher than in the dissolved form (127-217, on average 187 µg/L), and they were almost 15 times higher than those in the surface waters. The accumulation of organic compounds also occurs in ice, but to a lesser extent than in the SML. The composition of alkanes in SML and melting ice mainly indicates the slight influence of autochthonous processes shaping HCs. The average content of PAHs in SPM was also 4.8 times higher than that in the dissolved form. According to the markers, the influence of combustion products of marine fuel was traced in the composition of PAHs. In September 2022, AHC and PAH concentrations in the Kara Sea were lower than in June 2021: on average, 159 µg/L and 492 ng/L accordingly, that is due to a decrease in the content of SPM from an average of 1.89 to 1.21 mg/L.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Agua de Mar , Agua , Hielo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Océanos y Mares , Hidrocarburos , Hidrocarburos Policíclicos Aromáticos/análisis , Atmósfera
20.
Mar Pollut Bull ; 189: 114809, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36913803

RESUMEN

This article is devoted to the study of the activity of technogenic 137Cs and 90Sr, as well as natural radionuclides 40K, 232Th and 226Ra in bottom sediments of the Kola coast of the Barents Sea, where a significant number of radiation objects are concentrated. In order to characterize and assess the accumulation of radioactivity in the bottom sediments, we studied the particle size distribution and some physicochemical parameters, such as the content of organic matter, carbonates and ash components. The average activities of natural radionuclides 226Ra, 232Th and 40K were 325.0, 25.1 and 466.7 Bq·kg-1, respectively. Levels of natural radionuclides in the coastal zone of the Kola Peninsula are within the range of marine sediments worldwide. Still, they are slightly higher than those observed in the central areas of the Barents Sea, most likely due to the formation of coastal bottom sediments as a result of the destruction of the natural radionuclide-enriched crystalline basement rocks that make up the Kola coast. The average activities of technogenic 90Sr and 137Cs in the bottom sediments of the Kola coast of the Barents Sea are 3.5 and 5.5 Bq·kg-1, respectively. The highest activities of 90Sr and 137Cs were found in the bays of the Kola coast, while they remain below detection limits in the open parts of the Barents Sea. Despite the presence of potential sources of radiation pollution in the coastal zone of the Barents Sea, we did not find any short-lived radionuclides in the bottom sediments, which indicates the absence of a significant influence of local sources on the transformation of the technogenic radiation background. The study of particle size distribution and physicochemical parameters showed that the accumulation of natural radionuclides is largely related to the content of organic matter and carbonates, while the accumulation of technogenic isotopes occurs in the composition of organic matter and the smallest fractions of bottom sediments.


Asunto(s)
Sedimentos Geológicos , Monitoreo de Radiación , Sedimentos Geológicos/química , Radioisótopos de Cesio/análisis , Radioisótopos de Estroncio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA