Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.018
Filtrar
1.
J Orthop Translat ; 48: 39-52, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39087139

RESUMEN

Background: Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods: We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results: Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion: Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article: This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.

3.
Front Endocrinol (Lausanne) ; 15: 1440070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145314

RESUMEN

Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (TIBAT, a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase TIBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9 ± 2.0, 77.4 ± 12.7 and 93.6 ± 4.6% (P<0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on TIBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated TIBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7 ± 2.23% and 6.6 ± 1.4% in sham and denervated mice (P<0.05), respectively, and this effect was similar between groups (P=NS). OT produced corresponding reductions in whole body fat mass (P<0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.


Asunto(s)
Tejido Adiposo Pardo , Adiposidad , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Oxitocina , Sistema Nervioso Simpático , Animales , Oxitocina/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/inervación , Masculino , Ratones , Obesidad/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Adiposidad/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Ratones Obesos , Metabolismo Energético/efectos de los fármacos , Norepinefrina/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-39147897

RESUMEN

Considering the growing use of permeable pavements, the prediction of runoff passing through this pavement model is of considerable importance. The prediction of rainfall-runoff relationships can be a challenge because of several factors including data uncertainty, non-linear relationships, and high temporal and spatial variability. To deal with these challenges, intelligent algorithms are often used to predict such complex phenomena. In this research, runoff control parameters were investigated in two types of permeable pavements (permeable interlocking concrete pavement (PICP) and high strength clogging resistant permeable pavement (CRP)) using support vector machine (SVM), support vector machine-bat (SVM-BA) and support vector machine-grasshopper (SVM-GOA). Variables used in the models included percentage of coverage by permeable pavement (A), rainfall intensity (I), slope (S), and pavement type coefficient (K) as input data, and runoff coefficient (C), time to runoff (Tr), and peak discharge (Qp) as output data. In this research, from the total of 108 data extracted from the experimental results, 86 data were used in the training period, and 22 data were used in the test period. The results of the test period show that the SVM-BA model has the best performance with values of MAE = 0.010 in predicting C, MAE = 1.330 min in predicting Tr, and MAE = 0.029 lit/min in predicting Qp. The SVM-GOA model is ranked second with values of MAE = 0.051 in predicting C, MAE = 3.285 min in predicting Tr, and MAE = 0.097 lit/min in predicting Qp. Also, the SVM model is ranked third with values of MAE = 0.063 in predicting C, MAE = 4.470 min in predicting Tr, and MAE = 0.121 lit/min in predicting Qp. In summary, the SVM-BA algorithm showed the best performance and the SVM algorithm showed the weakest performance in predicting runoff characteristics in permeable pavements.

5.
J Cell Physiol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138923

RESUMEN

The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. For example, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.

6.
Viruses ; 16(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39066178

RESUMEN

Hepatitis B virus (HBV) infection leads to around 800,000 deaths yearly and is considered to be a major public health problem worldwide. However, HBV origins remain poorly understood. Here, we looked for bat HBV (BtHBV) in different bat species in Gabon to investigate the role of these animals as carriers of ancestral hepadnaviruses because these viruses are much more diverse in bats than in other host species. DNA was extracted from 859 bat livers belonging to 11 species collected in caves and villages in the southeast of Gabon and analyzed using PCRs targeting the surface gene. Positive samples were sequenced using the Sanger method. BtHBV DNA was detected in 64 (7.4%) individuals belonging to eight species mainly collected in caves. Thirty-six (36) sequences among the 37 obtained after sequencing were phylogenetically close to the RBHBV strain recently isolated in Gabonese bats, while the remaining sequence was close to a rodent HBV strain isolated in America. The generalized linear mixed model showed that the variable species best explained the occurrence of BtHBV infection in bats. The discovery of a BtHBV strain homologous to a rodent strain in bats raises the possibility that these animals may be carriers of ancestral hepadnaviruses.


Asunto(s)
Quirópteros , Variación Genética , Virus de la Hepatitis B , Hepatitis B , Filogenia , Quirópteros/virología , Animales , Gabón/epidemiología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/aislamiento & purificación , Prevalencia , Hepatitis B/virología , Hepatitis B/epidemiología , Hepatitis B/veterinaria , ADN Viral/genética , Análisis de Secuencia de ADN
7.
Viruses ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39066279

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 and responsible for the global coronavirus pandemic which started in 2019. Despite exhaustive efforts to trace its origins, including potential links with pangolins and bats, the precise origins of the virus remain unclear. Bats have been recognized as natural hosts for various coronaviruses, including the Middle East respiratory coronavirus (MERS-CoV) and the SARS-CoV. This study presents a comparative analysis of the SARS-CoV-2 nucleocapsid protein (N) interactome in human and bat cell lines. We identified approximately 168 cellular proteins as interacting partners of SARS-CoV-2 N in human cells and 196 cellular proteins as interacting partners with this protein in bat cells. The results highlight pathways and events that are both common and unique to either bat or human cells. Understanding these interactions is crucial to comprehend the reasons behind the remarkable resilience of bats to viral infections. This study provides a foundation for a deeper understanding of host-virus interactions in different reservoirs.


Asunto(s)
COVID-19 , Quirópteros , Proteínas de la Nucleocápside de Coronavirus , Fosfoproteínas , Proteómica , SARS-CoV-2 , Quirópteros/virología , Humanos , SARS-CoV-2/metabolismo , Animales , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Línea Celular , Proteómica/métodos , Fosfoproteínas/metabolismo , COVID-19/virología , COVID-19/metabolismo , Interacciones Huésped-Patógeno , Mapas de Interacción de Proteínas
8.
J R Soc Interface ; 21(216): 20230593, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981517

RESUMEN

Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.


Asunto(s)
Quirópteros , Vuelo Animal , Modelos Biológicos , Músculo Esquelético , Alas de Animales , Animales , Quirópteros/fisiología , Quirópteros/anatomía & histología , Alas de Animales/fisiología , Alas de Animales/anatomía & histología , Vuelo Animal/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/anatomía & histología , Fenómenos Biomecánicos , Fenómenos Fisiológicos de la Piel
9.
Wellcome Open Res ; 9: 107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022322

RESUMEN

We present a genome assembly from an individual male Myotis daubentonii (Daubenton's bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 2,127.8 megabases in span. Most of the assembly is scaffolded into 23 chromosomal pseudomolecules, including the X and Y sex chromosomes. The mitochondrial genome has also been assembled and is 17.34 kilobases in length.

10.
J Virol ; : e0034224, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028202

RESUMEN

The recurrent spillovers of coronaviruses (CoVs) have posed severe threats to public health and the global economy. Bat severe acute respiratory syndrome (SARS)-like CoVs RsSHC014 and WIV1, currently circulating in bat populations, are poised for human emergence. The trimeric spike (S) glycoprotein, responsible for receptor recognition and membrane fusion, plays a critical role in cross-species transmission and infection. Here, we determined the cryo-electron microscopy (EM) structures of the RsSHC014 S protein in the closed state at 2.9 Å, the WIV1 S protein in the closed state at 2.8 Å, and the intermediate state at 4.0 Å. In the intermediate state, one receptor-binding domain (RBD) is in the "down" position, while the other two RBDs exhibit poor density. We also resolved the complex structure of the WIV1 S protein bound to human ACE2 (hACE2) at 4.5 Å, which provides structural basis for the future emergence of WIV1 in humans. Through biochemical experiments, we found that despite strong binding affinities between the RBDs and both human and civet ACE2, the pseudoviruses of RsSHC014, but not WIV1, failed to infect 293T cells overexpressing either human or civet ACE2. Mutagenesis analysis revealed that the Y623H substitution, located in the SD2 region, significantly improved the cell entry efficiency of RsSHC014 pseudoviruses, which is likely accomplished by promoting the open conformation of spike glycoproteins. Our findings emphasize the necessity of both efficient RBD lifting and tight RBD-hACE2 binding for viral infection and underscore the significance of the 623 site of the spike glycoprotein for the infectivity of bat SARS-like CoVs. IMPORTANCE: The bat SARS-like CoVs RsSHC014 and WIV1 can use hACE2 for cell entry without further adaptation, indicating their potential risk of emergence in human populations. The S glycoprotein, responsible for receptor recognition and membrane fusion, plays a crucial role in cross-species transmission and infection. In this study, we determined the cryo-EM structures of the S glycoproteins of RsSHC014 and WIV1. Detailed comparisons revealed dynamic structural variations within spike proteins. We also elucidated the complex structure of WIV1 S-hACE2, providing structural evidence for the potential emergence of WIV1 in humans. Although RsSHC014 and WIV1 had similar hACE2-binding affinities, they exhibited distinct pseudovirus cell entry behavior. Through mutagenesis and cryo-EM analysis, we revealed that besides the structural variations, the 623 site in the SD2 region is another important structural determinant of spike infectivity.

11.
Elife ; 132024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037770

RESUMEN

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.


Asunto(s)
Quirópteros , Fibroblastos , Quirópteros/metabolismo , Humanos , Fibroblastos/metabolismo , Animales , Metabolómica , Especies Reactivas de Oxígeno/metabolismo , Proteómica/métodos , Línea Celular , Consumo de Oxígeno , Multiómica
12.
Parasitol Res ; 123(7): 269, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995426

RESUMEN

Nycteribiidae encompasses a specialized group of wingless blood-sucking flies that parasitize bats worldwide. Such relationships are frequently species- or genus-specific, indicating unique eco-evolutionary processes. However, despite this significance, comprehensive studies on the relationships of these flies with their hosts, particularly in the New World, have been scarce. Here, we provide a detailed description of the parasitological patterns of nycteribiid flies infesting a population of Myotis lavali bats in the Atlantic Forest of northeastern Brazil, considering the potential influence of biotic and abiotic factors on the establishment of nycteribiids on bat hosts. From July 2014 to June 2015, we captured 165 M. lavali bats and collected 390 Basilia travassosi flies. Notably, B. travassosi displayed a high prevalence and was the exclusive fly species parasitizing M. lavali in the surveyed area. Moreover, there was a significant predominance of female flies, indicating a female-biased pattern. The distribution pattern of the flies was aggregated; most hosts exhibited minimal or no parasitism, while a minority displayed heavy infestation. Sexually active male bats exhibited greater susceptibility to parasitism compared to their inactive counterparts, possibly due to behavioral changes during the peak reproductive period. We observed a greater prevalence and abundance of flies during the rainy season, coinciding with the peak reproductive phase of the host species. No obvious correlation was observed between the parasite load and bat body mass. Our findings shed light on the intricate dynamics of nycteribiid-bat interactions and emphasize the importance of considering various factors when exploring bat-parasite associations.


Asunto(s)
Quirópteros , Dípteros , Interacciones Huésped-Parásitos , Animales , Quirópteros/parasitología , Dípteros/fisiología , Brasil , Masculino , Femenino , Prevalencia , Estaciones del Año
13.
Wellcome Open Res ; 9: 246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045151

RESUMEN

We present a genome assembly from a female Plecotus auritus (Brown Long-eared bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 2163.2 megabases in span. Most of the assembly is scaffolded into 16 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 16.91 kilobases in length.

14.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063092

RESUMEN

Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.


Asunto(s)
Tejido Adiposo , Contaminación del Aire , Cambio Climático , Diabetes Mellitus Tipo 2 , Obesidad , Humanos , Contaminación del Aire/efectos adversos , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/epidemiología , Obesidad/metabolismo , Obesidad/etiología , Obesidad/epidemiología , Animales , Tejido Adiposo/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Adiposidad
15.
Zool Res ; 45(5): 961-971, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39016174

RESUMEN

Bats, notable as the only flying mammals, serve as natural reservoir hosts for various highly pathogenic viruses in humans (e.g., SARS-CoV and Ebola virus). Furthermore, bats exhibit an unparalleled longevity among mammals relative to their size, particularly the Myotis bats, which can live up to 40 years. However, the mechanisms underlying these distinctive traits remain incompletely understood. In our prior research, we demonstrated that bats exhibit dampened STING-interferon activation, potentially conferring upon them the capacity to mitigate virus- or aging-induced inflammation. To substantiate this hypothesis, we established the first in vivo bat-mouse model for aging studies by integrating Myotis davidii bat STING ( MdSTING) into the mouse genome. We monitored the genotypes of these mice and performed a longitudinal comparative transcriptomic analysis on MdSTING and wild-type mice over a 3-year aging process. Blood transcriptomic analysis indicated a reduction in aging-related inflammation in female MdSTING mice, as evidenced by significantly lower levels of pro-inflammatory cytokines and chemokines, immunopathology, and neutrophil recruitment in aged female MdSTING mice compared to aged wild-type mice in vivo. These results indicated that MdSTING knock-in attenuates the aging-related inflammatory response and may also improve the healthspan in mice in a sex-dependent manner. Although the underlying mechanism awaits further study, this research has critical implications for bat longevity research, potentially contributing to our comprehension of healthy aging in humans.


Asunto(s)
Envejecimiento , Quirópteros , Inflamación , Proteínas de la Membrana , Animales , Femenino , Ratones , Quirópteros/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Citocinas/genética , Citocinas/metabolismo
16.
Microbiol Spectr ; 12(8): e0067524, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38990026

RESUMEN

Bats are natural hosts of multiple viruses, many of which have clear zoonotic potential. The search for emerging viruses has been aided by the implementation of metagenomic tools, which have also enabled the detection of unprecedented viral diversity. Currently, this search is mainly focused on RNA viruses, which are largely over-represented in databases. To compensate for this research bias, we analyzed fecal samples from 189 Spanish bats belonging to 22 different species using viral metagenomics. This allowed us to identify 52 complete or near-complete viral genomes belonging to the families Adenoviridae, Circoviridae, Genomoviridae, Papillomaviridae, Parvoviridae, Polyomaviridae and Smacoviridae. Of these, 30 could constitute new species, doubling the number of viruses currently described in Europe. These findings open the door to a more thorough analysis of bat DNA viruses and their zoonotic potential. IMPORTANCE: Metagenomics has become a fundamental tool to characterize the global virosphere, allowing us not only to understand the existing viral diversity and its ecological implications but also to identify new and emerging viruses. RNA viruses have a higher zoonotic potential, but this risk is also present for some DNA virus families. In our study, we analyzed the DNA fraction of fecal samples from 22 Spanish bat species, identifying 52 complete or near-complete genomes of different viral families with zoonotic potential. This doubles the number of genomes currently described in Europe. Metagenomic data often produce partial genomes that can be difficult to analyze. Our work, however, has characterized a large number of complete genomes, thus facilitating their taxonomic classification and enabling different analyses to be carried out to evaluate their zoonotic potential. For example, recombination studies are relevant since this phenomenon could play a major role in cross-species transmission.


Asunto(s)
Quirópteros , Virus ADN , Heces , Genoma Viral , Metagenómica , Filogenia , Heces/virología , Animales , Quirópteros/virología , Virus ADN/genética , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , España , Secuenciación Completa del Genoma , Zoonosis/virología
17.
Ecotoxicol Environ Saf ; 282: 116758, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029226

RESUMEN

Heavy metal residues in natural ecosystems have emerged as a significant global environmental problem requiring urgent resolution. Because these elements are non-biodegradable, organisms can accumulate excessive levels of heavy metal elements into their tissues. Previous studies suggest that prolonged exposure to heavy metal enrichment poses comprehensive toxicity to various organs in vertebrates. However, few studies have focused on elucidating the molecular mechanism underlying the hepatotoxic effects of heavy metal enrichment in Chiroptera. In this study, 10 Hipposideros armiger individuals were dissected from Yingde City (YD, relatively pollution-free) and Chunwan City (CW, excessive heavy metals emission). Environmental samples were also obtained. To investigate the mechanism of heavy metal toxicity in bat livers, we employed a combination of multi-omics, pathology, and molecular biology methods. Our results revealed significant enrichment of Cd and Pb in the bat livers and food sources in the CW group (P<0.05). Furthermore, prolonged accumulation of heavy metals disrupted hepatic transcription profiles associated with the solute carriers family, the ribosome pathway, ATP usage, and heat shock proteins. Excessive heavy metal enrichment also altered the relative abundance of typical gut microbe taxa significantly (P<0.05), inhibiting tight-junction protein expression. We observed a significant decrease in the levels of superoxide dismutase, glutathione peroxidase, and glutathione (P<0.05), along with elevated reactive oxygen species (ROS) density and malondialdehyde content following excessive heavy metal enrichment. Additionally, hepatic fat accumulation and inflammation injuries were present under conditions of excessive heavy metal enrichment, while the contents of metabolism biomarkers significantly decreased (P<0.05). Consequently, prolonged heavy metal enrichment can induce hepatotoxicity by disturbing the microbes-gut-liver axis and hepatic transcription modes, leading to a decrease in overall metabolic activity in bats. Our study offers strategies for biodiversity conservation and highlights the importance of addressing environmental pollution to raise public awareness.


Asunto(s)
Quirópteros , Microbioma Gastrointestinal , Hígado , Metales Pesados , Animales , Metales Pesados/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Monitoreo del Ambiente/métodos , Estrés Oxidativo/efectos de los fármacos
18.
PeerJ ; 12: e17651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993980

RESUMEN

Background: Genomic resource development for non-model organisms is rapidly progressing, seeking to uncover molecular mechanisms and evolutionary adaptations enabling thriving in diverse environments. Limited genomic data for bat species hinder insights into their evolutionary processes, particularly within the diverse Myotis genus of the Vespertilionidae family. In Mexico, 15 Myotis species exist, with three-M. vivesi, M. findleyi, and M. planiceps-being endemic and of conservation concern. Methods: We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for genomic analysis. Each of three genomic DNA was extracted, sequenced, and assembled. The scaffolding was carried out utilizing the M. yumanensis genome via a genome-referenced approach within the ntJoin program. GapCloser was employed to fill gaps. Repeat elements were characterized, and gene prediction was done via ab initio and homology methods with MAKER pipeline. Functional annotation involved InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFERNAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a phylogenomic tree was reconstructed using IQ-TREE. Results: We present genome assemblies of these endemic species using Illumina NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes according to BUSCO analyses. Transposable elements, including LINEs and SINEs, constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were identified. Values around 20,000 genes from each of the three assemblies were derived from gene annotation and their correlation with specific functions. Comparative analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789 being single copy orthogroups. Non-coding RNA elements were annotated. Phylogenomic tree analysis supported evolutionary chiropterans' relationships. These resources contribute significantly to understanding gene evolution, diversification patterns, and aiding conservation efforts for these endangered bat species.


Asunto(s)
Quirópteros , Genoma , Genómica , Filogenia , Animales , México , Genoma/genética , Quirópteros/genética , Genómica/métodos
19.
Trop Med Infect Dis ; 9(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39058193

RESUMEN

Lyssaviruses are neurotropic viruses capable of inducing fatal encephalitis. While rabies virus has been successfully eradicated in Belgium, the prevalence of other lyssaviruses remains uncertain. In this study, we conducted a survey on live animals and passive surveillance to investigate the presence of lyssaviruses in Belgium. In 2018, a total of 113 saliva samples and 87 blood samples were collected from bats. Saliva was subjected to RT-qPCR to identify lyssavirus infections. Additionally, an adapted lyssavirus neutralisation assay was set up for the detection of antibodies neutralising EBLV-1 in blood samples. Furthermore, we examined 124 brain tissue samples obtained from deceased bats during passive surveillance between 2016 and 2018. All saliva samples tested negative for lyssaviruses. Analysis of the blood samples uncovered the presence of lyssavirus-neutralising antibodies in five bat species and 32% of samples with a wide range depending on bat species, suggesting past exposure to a lyssavirus. Notably, EBLV-1 was detected in brain tissue samples from two Eptesicus serotinus specimens collected in 2016 near Bertrix and 2017 near Étalle, confirming for the first time the presence of EBLV-1 in Belgium and raising awareness of the potential risks associated with this species of bats as reservoirs of the virus.

20.
Horm Behav ; 164: 105606, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059233

RESUMEN

Several polygynous mammals exhibit reproductive skew in which only a few males reproduce. Successful males need strength, stamina and fighting ability to exclude competitors. Consequently, during the mating season their androgens and glucocorticoids are expected to increase to support spermatogenesis and aggressive behavior. But, during the nonmating season these hormones should decline to minimize deleterious effects, such as reduced immune function. Bats that exhibit harem polygyny in which males aggressively defend large groups of females year-round are ideal for assessing hormonal and other consequences of extreme polygyny. Here we use DNA methylation to estimate age and gas chromatography, tandem mass spectrometry to profile steroid metabolites in urine of wild greater spear-nosed bats, Phyllostomus hastatus, across seasons. We find that condition, measured by relative weight, is lower during the mating season for both sexes, although it remains high in harem males during the mating season. Average age of females is greater than males, and females exhibit substantial seasonal differences in androgens, estrogens and glucocorticoids with higher levels of all hormones during the mating season. Males, however, show little seasonal differences but substantial age-associated increases in most steroid metabolites. Harem males have larger, persistently scrotal testes and are older than bachelor males. While cortisone generally declines with age, harem males maintain higher amounts of biologically active cortisol than bachelor males all year and cortisol levels increase more quickly in response to restraint in males than in females. Taken together, these results suggest that attaining reproductive dominance requires hormone levels that reduce lifespan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA