Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Pharm Biomed Anal ; 247: 116268, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823222

RESUMEN

Methotrexate (MTX) is commonly prescribed as the initial treatment for gestational trophoblastic neoplasia (GTN), but MTX monotherapy may not be effective for high-risk GTN and choriocarcinoma. The cellular uptake of MTX is essential for its pharmacological activity. Thus, our study aimed to investigate the cellular pharmacokinetics and transport mechanisms of MTX in choriocarcinoma cells. For the quantification of MTX concentrations in cellular matrix, a liquid chromatography-tandem mass spectrometry method was created and confirmed initially. MTX accumulation in BeWo, JEG-3, and JAR cells was minimal. Additionally, the mRNA levels of folate receptor α (FRα) and breast cancer resistance protein (BCRP) were relatively high in the three choriocarcinoma cell lines, whereas proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and organic anion transporter (OAT) 4 were low. Furthermore, the expression of other transporters was either very low or undetectable. Notably, the application of inhibitors and small interfering RNAs (siRNAs) targeting FRα, RFC, and PCFT led to a notable decrease in the accumulation of MTX in BeWo cells. Conversely, the co-administration of multidrug resistance protein 1 (MDR1) and BCRP inhibitors increased MTX accumulation. In addition, inhibitors of OATs and organic-anion transporting polypeptides (OATPs) reduced MTX accumulation, while peptide transporter inhibitors had no effect. Results from siRNA knockdown experiments and transporter overexpression cell models indicated that MTX was not a substrate of nucleoside transporters. In conclusion, the results indicate that FRα and multiple transporters such as PCFT, RFC, OAT4, and OATPs are likely involved in the uptake of MTX, whereas MDR1 and BCRP are implicated in the efflux of MTX from choriocarcinoma cells. These results have implications for predicting transporter-mediated drug interactions and offer potential directions for further research on enhancing MTX sensitivity.


Asunto(s)
Coriocarcinoma , Metotrexato , Espectrometría de Masas en Tándem , Metotrexato/farmacología , Humanos , Coriocarcinoma/metabolismo , Coriocarcinoma/tratamiento farmacológico , Espectrometría de Masas en Tándem/métodos , Línea Celular Tumoral , Transporte Biológico , Cromatografía Liquida/métodos , Femenino , Proteínas de Neoplasias/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/metabolismo , Embarazo , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/genética , ARN Interferente Pequeño , Proteína Portadora de Folato Reducido/metabolismo , Proteína Portadora de Folato Reducido/genética , Cromatografía Líquida con Espectrometría de Masas
2.
Placenta ; 154: 110-121, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38945098

RESUMEN

INTRODUCTION: This study aimed to explore the association between ferroptosis, a newly identified type of cell death, and the role of retinoic acid in developing pregnancy complications. Therefore, the effects of all-trans retinoic acid (ATRA) on ferroptosis susceptibility in BeWo cells were assessed to understand abnormal placental development. METHODS: BeWo cells were used as surrogates for cytotrophoblasts. The effect of ATRA on ferroptosis sensitivity was assessed on BeWo cells pretreated with ATRA or dimethyl sulfoxide (DMSO; control), following which the LDH-releasing assay was performed. The effects of ATRA pretreatment on the antioxidant defense system (including glutathione [GSH], mitochondrial membrane potential, and heme oxygenase-1 [HMOX1]) in BeWo cells were assessed using assay kits, RT-qPCR, and HMOX1 immunostaining. To evaluate the effect of ATRA on BeWo cells, HMOX1 was silenced in BeWo cells using shRNA. RESULTS: ATRA pretreatment increased ferroptosis resistance in BeWo cells. Although with pretreatment, qPCR indicated upregulation of HMOX1, no significant change was observed in the GSH levels or mitochondrial membrane potential. This was corroborated by intensified immunostaining for heme oxygenase-1 protein (HO-1). Notably, the protective effect of ATRA against ferroptosis was negated when HO-1 was inhibited. Although HMOX1-silenced BeWo cells exhibited heightened ferroptosis sensitivity compared with controls, ATRA pretreatment counteracted ferroptosis in these cells. DISCUSSION: ATRA pretreatment promotes BeWo cell viability by suppressing ferroptosis and upregulating HMOX1 and this can be used as a potential therapeutic strategy for addressing placental complications associated with ferroptosis.

3.
Vaccine ; 42(17): 3710-3720, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38755066

RESUMEN

One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.


Asunto(s)
Brucella melitensis , Brucelosis , Placenta , Animales , Brucella melitensis/patogenicidad , Brucella melitensis/inmunología , Brucella melitensis/genética , Femenino , Ovinos , Brucelosis/prevención & control , Brucelosis/inmunología , Brucelosis/veterinaria , Embarazo , Placenta/microbiología , Ratones , Enfermedades de las Ovejas/prevención & control , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/microbiología , Trofoblastos/inmunología , Trofoblastos/microbiología , Vacuna contra la Brucelosis/inmunología , Vacuna contra la Brucelosis/administración & dosificación , Vacuna contra la Brucelosis/genética , Humanos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación
4.
Parasitol Res ; 123(5): 217, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772951

RESUMEN

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Asunto(s)
Autofagia , Aceites Volátiles , Origanum , Especies Reactivas de Oxígeno , Toxoplasma , Aceites Volátiles/farmacología , Aceites Volátiles/química , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo , Origanum/química , Humanos , Autofagia/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Antiprotozoarios/farmacología , Concentración 50 Inhibidora , Necrosis/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
5.
SAR QSAR Environ Res ; 35(6): 433-456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38785078

RESUMEN

Curcumin, an extensively utilized natural pigment in the food industry, has attracted considerable attention due to its potential therapeutic effects, such as anti-tumorigenic and anti-inflammatory activities. The enzyme 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) holds a crucial position in oestradiol production and exhibits significant involvement in oestrogen-responsive breast cancers and endometriosis. This study investigated the inhibitory effects of curcuminoids, metabolites, and analogues on 17ß-HSD1, a key enzyme in oestradiol synthesis. Screening 10 compounds, including demethoxycurcumin (IC50, 3.97 µM) and dihydrocurcumin (IC50, 5.84 µM), against human and rat 17ß-HSD1 revealed varying inhibitory potencies. These compounds suppressed oestradiol secretion in human BeWo cells at ≥ 5-10 µM. 3D-Quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses elucidated the interaction mechanisms. Docking studies and Gromacs simulations suggested competitive or mixed binding to the steroid or NADPH/steroid binding sites of 17ß-HSD1. Predictive 3D-QSAR models highlighted the importance of hydrophobic regions and hydrogen bonding in inhibiting 17ß-HSD1 activity. In conclusion, this study provides valuable insights into the inhibitory effects and mode of action of curcuminoids, metabolites, and analogues on 17ß-HSD1, which may have implications in the field of hormone-related disorders.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Curcumina , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Humanos , Ratas , Animales , Curcumina/análogos & derivados , Curcumina/farmacología , Curcumina/química , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Estradiol/análogos & derivados , Estradiol/química , Estradiol/farmacología , Estradiol/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
6.
J Steroid Biochem Mol Biol ; 240: 106510, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508472

RESUMEN

The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69 µM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 µM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 µM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.


Asunto(s)
Hidrocarburos Clorados , Simulación del Acoplamiento Molecular , Plaguicidas , Animales , Humanos , Ratas , Hidrocarburos Clorados/química , Hidrocarburos Clorados/farmacología , Relación Estructura-Actividad , Femenino , Plaguicidas/química , Plaguicidas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/química , Embarazo , Placenta/metabolismo , Estradiol/metabolismo , Estradiol/química , Insecticidas/química , Insecticidas/farmacología
7.
Biol Reprod ; 110(5): 950-970, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330185

RESUMEN

Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.


Asunto(s)
Placenta , Trofoblastos , Humanos , Trofoblastos/citología , Trofoblastos/fisiología , Femenino , Embarazo , Placenta/citología , Placenta/fisiología , Línea Celular
8.
Chem Biol Interact ; 390: 110895, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38301883

RESUMEN

Asbestos has been widely used due to its unique characteristics. It is known that exposure to asbestos causes serious damage to health but one species, chrysolite, is still used because it is considered less toxic and not biopersistent in some countries. The aim of our study was to investigate if cellular process underlying the proliferation, differentiation and cell death of placental tissues could be modify in presence of asbestos fibres (50 µg/ml final concentration), long chrysolite fibres (CHR-L) and short chrysolite fibres (CHR-S), using BeWo cell line, an in vitro model that mimics the syncytiotrophoblast (STB), the outer layer of placental villi. Our data demonstrated that none of the fibres analysed alter syncytiotrophoblast formation but all of them induce ROS formation and reduced cell proliferation. Moreover, we showed that only CHR-L fibre induced was able to induce irreversible DNA alterations that carried cells to apoptosis. In fact, BeWo cells exposed to CHR-L fibre showed a significant increase in cleaved CASP3 protein, a marker of apoptosis. These data suggest that CHR-L may induce death of the placental villi leading to impaired placental development. The impairment of placental development is the basis of many gestational pathologies such as preeclampsia and intrauterine growth retardation. Since these pathologies are very dangerous for foetal and maternal life, we suggest to the gynaecologists to carefully evaluate the area of maternal residence, the working environment, the food used, and the materials used daily to avoid contact with these fibres as much as possible.


Asunto(s)
Amianto , Placenta , Humanos , Embarazo , Femenino , Fibras Minerales/toxicidad , Trofoblastos/metabolismo , Amianto/metabolismo , Amianto/toxicidad , Apoptosis
9.
J Hazard Mater ; 466: 133205, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278074

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have received global concern on adverse effects on pregnancy outcomes. Although human studies have reported fetal exposure to PFAS, the underlying mechanisms driving transplacental transfer of PFAS have not been sufficiently understood. The present study aimed to investigate chemical-specific transplacental transfer of PFAS and potential mechanisms based on a BeWo cell monolayer model. The findings of concentration- and time-dependent transport, asymmetry in bidirectional transport, molecular docking and transporter inhibition experiments indicate that passive diffusion and membrane transporter-involved active transport could collectively determine transplacental transport of PFAS. Membrane transporters could play important roles in chemical-specific transport. The inhibition of OAT transporter resulted in promotion of trans-monolayer transport for most PFAS, while an opposite trend was observed when P-gp, BCRP and MRP transporters were prohibited. By contrast, inhibition of OCT resulted in inhibitory effects on the transport of some PFAS (i.e., PFHxA, PFHpA, PFOA, and PFNA), and promotive effects on the other substances (i.e., PFUdA, PFHpS, PFOS, 6:2 Cl-PFESA and PFOSA). Therefore, simultaneous involvement of diverse membrane transporters in utero could result in complicated influence on transplacental transport. Our work constitutes a solid ground for further exploration of the effects of gestational PFAS exposure on birth outcomes.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Embarazo , Femenino , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias , Proteínas de Transporte de Membrana
10.
Reprod Toxicol ; 123: 108519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043629

RESUMEN

The placenta is a unique organ with an active metabolism and dynamically changing physiology throughout pregnancy. It is difficult to elucidate the structure of cell-cell and cell-extracellular matrix interactions of the placenta in in vivo studies due to interspecies differences and ethical constraints. In this study, human umbilical cord vein cells (HUVEC) and human placental choriocarcinoma cells (BeWo) were co-cultured for the first time to form spheroids (microtissues) on a three-dimensional (3D) Petri Dish® mold and compared with a traditional two-dimensional (2D) system. Vortioxetine is an antidepressant with a lack of literature on its use in pregnancy in established cultures, the toxicity of vortioxetine was studied to investigate the response of spheroids representing placental tissue. Spheroids were characterised by morphology and exposed to vortioxetine. Cell viability and barrier integrity were then measured. Intercellular junctions and the localisation of serotonin transporter (SERT) proteins were demonstrated by immunofluorescence (IF) staining in BeWo cells. Human chorionic gonadotropin (beta-hCG) hormone levels were also measured. In the 3D system, cell viability and hormone production were higher than in the 2D system. It was observed that the barrier structure was impaired, the structure of intracellular skeletal elements was altered and SERT expression decreased depending on vortioxetine exposure. These results demonstrate that the multicellular microtissue placenta model can be used to obtain results that more closely resemble in vivo toxicity studies of various xenobiotics than other 2D and mono-culture spheroid models in the literature. It also describes the use of 3D models for soft tissues other than the placenta.


Asunto(s)
Antidepresivos , Placenta , Embarazo , Femenino , Humanos , Placenta/metabolismo , Vortioxetina/toxicidad , Vortioxetina/metabolismo , Antidepresivos/toxicidad , Técnicas de Cocultivo , Hormonas/metabolismo
11.
Reprod Toxicol ; 121: 108466, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660740

RESUMEN

Cadmium (Cd) is a ubiquitous environmental metal detectable in most pregnant women. Animal and human studies demonstrate that in utero exposure to Cd reduces birth weight and impairs perinatal growth due to placental toxicity. BCRP is a prominent transporter that can efflux xenobiotics from the placenta. This study sought to investigate Cd transport and toxicity in cultured human BeWo trophoblasts with reduced expression and function of the placental barrier transporter BCRP. Knockdown (KD) of BCRP protein expression and function in BeWo trophoblasts increased the intracellular accumulation of Cd by 100% following treatment with 1 µM CdCl2. No change in the expression of Cd uptake transporters was observed between control and BCRP-KD cells. Reduced BCRP expression impaired viability of BeWo cells exposed to CdCl2 for 48 hr (BCRP-KD IC50: 11 µM, control cells IC50: 18 µM). Moreover, BCRP-KD cells were more sensitive to CdCl2-induced cytotoxicity compared to control BeWo cells. CdCl2 treatment strongly induced the expression of the metal-binding protein metallothionein (MT) in both control and BCRP-KD cells, with significantly greater MT upregulation in Cd-treated BCRP-KD cells. These data suggest that the BCRP transporter reduces Cd accumulation in syncytiotrophoblasts, which may be one mechanism to reduce subsequent toxicity to the placenta and developing fetus.

12.
Metabolites ; 13(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37623828

RESUMEN

Maternal obesity and gestational diabetes mellitus (GDM) are linked with impaired placental function and early onset of non-communicable cardiometabolic diseases in offspring. Previous studies have highlighted that the dietary non-esterified fatty acids (NEFAs) palmitate (PA) and oleate (OA), key dietary metabolites associated with maternal obesity and GDM, are potential modulators of placental lipid processing. Using the BeWo cell line model, the current study integrated transcriptomic (mRNA microarray), metabolomic, and lipidomic readouts to characterize the underlying impacts of exogenous PA and OA on placental villous trophoblast cell metabolism. Targeted gas chromatography and thin-layer chromatography highlighted that saturated and monounsaturated NEFAs differentially impact BeWo cell lipid profiles. Furthermore, cellular lipid profiles differed when exposed to single and multiple NEFA species. Additional multi-omic analyses suggested that PA exposure is associated with enrichment in ß-oxidation pathways, while OA exposure is associated with enrichment in anti-inflammatory and antioxidant pathways. Overall, this study further demonstrated that dietary PA and OA are important regulators of placental lipid metabolism. Encouraging appropriate dietary advice and implementing dietary interventions to maintain appropriate placental function by limiting excessive exposure to saturated NEFAs remain crucial in managing at-risk obese and GDM pregnancies.

13.
Mol Cell Endocrinol ; 577: 112035, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506870

RESUMEN

BACKGROUND: and purpose: Ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (GHS-R1). Ghrelin, and GHS-R1, may have a role in placental growth and function, and its unacylated form desacylghrelin (DAG) could be involved in fetal growth. Nevertheless, the effects of DAG on placental function, and the receptor involved in its actions, remain to be determined. We aimed to investigate the effect of DAG in placental BeWo cells viability, proliferation, differentiation, and GSH-R1 expression. METHODS: BeWo cells, a human trophoblast cell line, was cultured with 3 nM DAG during 12, 24, 48, and 72 h. Cell viability, proliferation, differentiation (assessed by human Chorionic Gonadotropin quantification), and GSH-R1 expression were analyzed. To evaluate the mechanism of DAG effect on GSH-R1, 30 nM receptor antagonist ([D-Lys3]-GHRP-6) was added alone or in combination with 3 nM DAG during 12 h and 24 h. RESULTS: DAG has no effect on cell proliferation or viability, but it has an inhibitory effect on cell differentiation. DAG had a stimulatory effect on GSH-R1 expression at 12 and 24 h (p = 0.029 and p = 0.025, respectively). On the contrary, culture with 48 h DAG inhibits GSH-R1 expression compared to the control (p = 0.005), while GSH-R1 antagonist inhibited the effect of DAG on GSH-R1 expression. DAG also reduces intracellular (p = 0.020) and secreted (p = 0.011) hCG concentration in BeWo cells. CONCLUSION: DAG increases GHS-R1 expression, potentially mediated through GHS-R1 itself. DAG may also inhibit placental BeWo cell differentiation, suggesting a possible role of DAG in placental and fetal physiology.


Asunto(s)
Ghrelina , Placenta , Embarazo , Femenino , Humanos , Placenta/metabolismo , Ghrelina/farmacología , Ghrelina/metabolismo , Receptores de Ghrelina/metabolismo , Diferenciación Celular
14.
Curr Issues Mol Biol ; 45(5): 3815-3828, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232715

RESUMEN

The HtrA serine peptidase 1 (HTRA1) is a multidomain secretory protein with serine-protease activity involved in the regulation of many cellular processes in both physiological and pathological conditions. HTRA1 is normally expressed in the human placenta, and its expression is higher in the first trimester compared to the third trimester, suggesting an important role of this serine protease in the early phases of human placenta development. The aim of this study was to evaluate the functional role of HTRA1 in in vitro models of human placenta in order to define the role of this serine protease in preeclampsia (PE). BeWo and HTR8/SVneo cells expressing HTRA1 were used as syncytiotrophoblast and cytotrophoblast models, respectively. Oxidative stress was induced by treating BeWo and HTR8/SVneo cells with H2O2 to mimic PE conditions in order to evaluate its effect on HTRA1 expression. In addition, HTRA1 overexpression and silencing experiments were performed to evaluate the effects on syncytialization, cell mobility, and invasion processes. Our main data showed that oxidative stress significantly increased HTRA1 expression in both BeWo and HTR8/SVneo cells. In addition, we demonstrated that HTRA1 has a pivotal role in cell motility and invasion processes. In particular, HTRA1 overexpression increased while HTRA1 silencing decreased cell motility and invasion in HTR8/SVneo cell model. In conclusion, our results suggest an important role of HTRA1 in regulating extravillous cytotrophoblast invasion and motility during the early stage of placentation in the first trimester of gestation, suggesting a key role of this serine protease in PE onset.

15.
Front Cell Dev Biol ; 11: 1167097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250894

RESUMEN

Metformin is a widely prescribed medication whose mechanism of action is not completely defined and whose role in gestational diabetes management remains controversial. In addition to increasing the risk of fetal growth abnormalities and preeclampsia, gestational diabetes is associated with abnormalities in placental development including impairments in trophoblast differentiation. Given that metformin impacts cellular differentiation events in other systems, we assessed metformin's impact on trophoblast metabolism and differentiation. Using established cell culture models of trophoblast differentiation, oxygen consumption rates and relative metabolite abundance were determined following 200 µM (therapeutic range) and 2000 µM (supra-therapeutic range) metformin treatment using Seahorse and mass-spectrometry approaches. While no differences in oxygen consumption rates or relative metabolite abundance were detected between vehicle and 200 µM metformin-treated cells, 2000 µM metformin impaired oxidative metabolism and increased the abundance of lactate and TCA cycle intermediates, α-ketoglutarate, succinate, and malate. Examining differentiation, treatment with 2000 µM, but not 200 µM metformin, impaired HCG production and expression of multiple trophoblast differentiation markers. Overall, this work suggests that supra-therapeutic concentrations of metformin impair trophoblast metabolism and differentiation whereas metformin concentrations in the therapeutic range do not strongly impact these processes.

16.
Placenta ; 137: 70-77, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087951

RESUMEN

INTRODUCTION: Trophoblast mitochondria play important roles in placental energy metabolism, physiology and pathophysiology. Hyperandrogenism has been associated with mitochondrial abnormalities in pregnancy disorders such as pre-eclampsia, gestational diabetes, and intrauterine growth restriction, but the direct impacts of androgen exposure on placental mitochondrial function are unknown. Given the inherent limitations of studying the human placenta during pregnancy, trophoblast cell lines are routinely used to model placental biology in vitro. The aim of this study was to characterize mitochondrial respiratory function in four commonly used trophoblast cell lines to provide a basis for selecting one well-suited to investigating the impact of androgens on trophoblast mitochondrial function. METHODS: Androgen receptor expression, mitochondrial respiration (JO2) and reactive oxygen species (ROS) release rates were evaluated in three human trophoblast cell lines (ACH-3P, BeWo and Swan-71) and one immortalized ovine trophoblast line (iOTR) under basal and substrate-stimulated conditions using high-resolution fluorespirometry. RESULTS: ACH-3P cells exhibited the greatest mitochondrial respiratory capacity and coupling efficiency of the four trophoblast lines tested, along with robust expression of androgen receptor protein that was found to co-localize with mitochondria by immunoblot and immunofluorescence. Acute testosterone administration (10 nM) tended to decrease ACH-3P mitochondrial JO2 and increase ROS release, while chronic (7 days) testosterone exposure increased expression of mitochondrial proteins, JO2, and ROS release. DISCUSSION: These studies establish ACH-3P as a suitable cell line for investigating trophoblast mitochondrial function, and provide foundational evidence supporting links between hyperandrogenism and placental mitochondrial ROS production with potential relevance to several common pregnancy disorders.


Asunto(s)
Hiperandrogenismo , Trofoblastos , Embarazo , Femenino , Animales , Ovinos , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Androgénicos/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Hiperandrogenismo/metabolismo , Mitocondrias/metabolismo
17.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555567

RESUMEN

CD24 is a mucin-like immunosuppressing glycoprotein whose levels increase during pregnancy and decrease in the syncytio- and cytotrophoblasts in early and preterm preeclampsia. We used two modified cell lines that mimic in vitro features of preeclampsia to identify if this phenomenon could be reproduced. Our model was the immortalized placental-derived BeWo and JEG-3 cell lines that overexpress the STOX1 A/B transcription factor gene that was discovered in familial forms of preeclampsia. BeWo and JEG-3 cells stably transduced with the two major isoforms of STOX1-A/B or by an empty vector (control), were propagated, harvested, and analyzed. CD24 mRNA expression was determined by quantitative real-time polymerase nuclear chain reaction (qRT-PCR). CD24 protein levels were determined by Western blots. In STOX1-A/B overexpressing in BeWo cells, CD24 mRNA was downregulated by 91 and 85%, respectively, compared to the control, and by 30% and 74%, respectively in JEG-3 cells. A 67% and 82% decrease in CD24 protein level was determined by immunoblot in BeWo overexpressing STOX1-A/B, respectively, while the reduction in JEG-3 cells was between 47 and 62%. The immortalized BeWo and JEG-3 cell lines overexpressing STOX1-A/B had reduced CD24. Although both cell lines were affected, BeWo appears to be more susceptible to downregulation by STOX-1 than JEG-3, potentially because of their different cell origin and properties. These results strengthen the in vivo results of reduced CD24 levels found in early and preterm preeclampsia. Accordingly, it implies the importance of the reduced immune tolerance in preeclampsia, which was already demonstrated in vivo in the STOX1-A/B model of preeclampsia, and is now implied in the in vitro STOX-1 model, a subject that warrants further investigations.


Asunto(s)
Preeclampsia , Trofoblastos , Humanos , Recién Nacido , Embarazo , Femenino , Trofoblastos/metabolismo , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Línea Celular Tumoral , ARN Mensajero/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Proteínas Portadoras/metabolismo
18.
Molecules ; 27(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36364205

RESUMEN

The placenta is an important organ that maintains a healthy pregnancy by transporting nutrients to the fetus and removing waste from the fetus. It also acts as a barrier to protect the fetus from hazardous materials. Recent studies have indicated that nanoparticles (NPs) can cross the placental barrier and pose a health risk to the developing fetus. The high production and widespread application of copper oxide (CuO) NPs may lead to higher exposure to humans, raising concerns of health hazards, especially in vulnerable life stages, e.g., pregnancy. Oxidative stress plays a crucial role in the pathogenesis of adverse pregnancy outcomes. Due to its strong antioxidant activity, dietary curcumin can act as a therapeutic agent for adverse pregnancy. There is limited knowledge on the hazardous effects of CuO NPs during pregnancy and their mitigation by curcumin. This study aimed to investigate the preventive effect of curcumin against CuO NP-induced toxicity in human placental (BeWo) cells. CuO NPs were synthesized by a facile hydrothermal process and characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence techniques. We observed that curcumin did not induce toxicity in BeWo cells (1-100 µg/mL for 24 h), whereas CuO NPs decreased the cell viability dose-dependently (5-200 µg/mL for 24 h). Interestingly, CuO NP-induced cytotoxicity was effectively mitigated by curcumin co-exposure. The apoptosis data also exhibited that CuO NPs modulate the expression of several genes (p53, bax, bcl-2, casp3, and casp9), the activity of enzymes (caspase-3 and -9), and mitochondrial membrane potential loss, which was successfully reverted by co-treatment with curcumin. The mechanistic study suggested that CuO-induced reactive oxygen species generation, lipid peroxidation, and higher levels of hydrogen peroxide were significantly alleviated by curcumin co-exposure. Moreover, glutathione depletion and the lower activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were effectively mitigated by curcumin. We believe this is the first report exhibiting that CuO-induced toxicity in BeWo cells can be effectively alleviated by curcumin. The pharmacological potential of dietary curcumin in NP-induced toxicity during pregnancy warrants further investigation.


Asunto(s)
Curcumina , Nanopartículas del Metal , Nanopartículas , Embarazo , Humanos , Femenino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Curcumina/farmacología , Curcumina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Placenta/metabolismo , Cobre/farmacología , Estrés Oxidativo , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad
19.
Ecotoxicol Environ Saf ; 245: 114090, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162350

RESUMEN

Air pollution includes polycyclic aromatic hydrocarbons (PAHs), which have been correlated to endocrine disruptor pathways during early pregnancy. PAHs have been found in the placenta and cord blood, which may affect the hormones involved in placental development. We studied the effects of some airborne PAHs on beta human chorionic gonadotropin (ß-hCG) and progesterone production by using a syncytial BeWo cell line as a placental model. PAH congeners were spiked in silicon rubber membrane (SRMs) and were then introduced into the cell medium by the passive dosing method to reach a freely dissolved concentration for BeWo cell exposure. Ultrahigh-performance liquid chromatography coupled with a diode array detector was used to analyze the PAHs, and electrochemiluminescence was used to test the hormone levels. Our results showed that passive dosing can deliver low levels of PAH congeners in the cell medium, which allowed us to calculate the individual release constants at equilibrium and to estimate their effects. Benzo[a]pyrene was released quickly from the SRMs to the cell medium, which can be attributed to its lipophilic properties. The PAHs were shown to decrease the ß-hCG level in the short term and progesterone level in the long term, so they may serve as a pathway for endocrine disorder in trophoblastic cells. This approximation may explain observations of impaired endometrium receptivity and placental dysfunction, which enhance adverse pregnancy outcomes such as embryonic mortality and intrauterine growth restriction.


Asunto(s)
Disruptores Endocrinos , Hidrocarburos Policíclicos Aromáticos , Benzo(a)pireno/análisis , Línea Celular , Gonadotropina Coriónica/análisis , Gonadotropina Coriónica/metabolismo , Gonadotropina Coriónica/farmacología , Disruptores Endocrinos/análisis , Femenino , Humanos , Técnicas In Vitro , Placenta/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Embarazo , Progesterona/metabolismo , Goma , Silicio/farmacología
20.
Xenobiotica ; 52(4): 405-412, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35642749

RESUMEN

Previous studies have indicated that the expression levels of several transporters are altered during placental trophoblast differentiation. However, changes in the transport activities of therapeutic agents during differentiation must be comprehensively characterised. Antiepileptic drugs, including gabapentin (GBP), lamotrigine (LTG), topiramate, and levetiracetam, are increasingly prescribed during pregnancy. The objective of this study was to elucidate differences in the uptake of antiepileptic drugs during the differentiation process.Human placental choriocarcinoma BeWo cells were used as trophoblast models. For differentiation into syncytiotrophoblast-like cells, cells were treated with forskolin.The uptake of GBP and LTG was lower in differentiated BeWo cells than in undifferentiated cells. In particular, the maximum uptake rate of GBP transport was decreased in differentiated BeWo cells. Furthermore, GBP transport was trans-stimulated by the amino acids His and Met. We investigated the profiles of amino acids in undifferentiated and differentiated BeWo cells. Supplementation with His and Met, which demonstrated trans-stimulatory effects on GBP uptake, restored GBP uptake in differentiated cells. The findings of this study suggest that drug transport in BeWo cells can be altered before and after differentiation, and that the altered GBP uptake could be mediated by the intracellular amino acid status.


Asunto(s)
Anticonvulsivantes , Placenta , Aminas/metabolismo , Aminoácidos/metabolismo , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacología , Colforsina/metabolismo , Colforsina/farmacología , Femenino , Gabapentina/metabolismo , Gabapentina/farmacología , Humanos , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...