Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731629

RESUMEN

This work presents the design, synthesis and biological activity of novel N-substituted benzimidazole carboxamides bearing either a variable number of methoxy and/or hydroxy groups. The targeted carboxamides were designed to investigate the influence of the number of methoxy and/or hydroxy groups, the type of substituent placed on the N atom of the benzimidazole core and the type of substituent placed on the benzimidazole core on biological activity. The most promising derivatives with pronounced antiproliferative activity proved to be N-methyl-substituted derivatives with hydroxyl and methoxy groups at the phenyl ring and cyano groups on the benzimidazole nuclei with selective activity against the MCF-7 cell line (IC50 = 3.1 µM). In addition, the cyano-substituted derivatives 10 and 11 showed strong antiproliferative activity against the tested cells (IC50 = 1.2-5.3 µM). Several tested compounds showed significantly improved antioxidative activity in all three methods compared to standard BHT. In addition, the antioxidative activity of 9, 10, 32 and 36 in the cells generally confirmed their antioxidant ability demonstrated in vitro. However, their antiproliferative activity was not related to their ability to inhibit oxidative stress nor to their ability to induce it. Compound 8 with two hydroxy and one methoxy group on the phenyl ring showed the strongest antibacterial activity against the Gram-positive strain E. faecalis (MIC = 8 µM).


Asunto(s)
Antineoplásicos , Antioxidantes , Bencimidazoles , Proliferación Celular , Diseño de Fármacos , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Células MCF-7 , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos
2.
ACS Infect Dis ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787329

RESUMEN

The prevalence of Helicobacter pylori infection has been increasing rapidly due to the genetic heterogeneity and antibacterial resistance shown by the bacteria, affecting over 50% of the world population and over 80% of the Indian population, in particular. In this regard, novel drug targets are currently being explored, one of which is the crucial metabolic enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) involved in the de novo nucleotide biosynthesis pathway, in order to combat the infection and devise efficient therapeutic strategies. The present study reports the development of methylpyrazole-substituted benzimidazoles as small molecule inhibitors of H. pylori IMPDH with a nanomolar range of enzyme inhibition. A set of 19 small molecules have been designed, synthesized, and further evaluated for their inhibitory potential against H. pylori IMPDH using in silico, in vitro, biochemical, and biophysical techniques. Compound 7j was found to inhibit H. pylori IMPDH with an IC50 value of 0.095 ± 0.023 µM, which is close to 1.5-fold increase in the inhibitory activity, in comparison to the previously reported benzimidazole-based hit C91. Moreover, kinetic characterization has provided significant insights into the uncompetitive inhibition shown by these small molecules on H. pylori IMPDH, thus providing details about the enzyme inhibition mechanism. In conclusion, methylpyrazole-based small molecules indicate a promising path to develop cheap and bioavailable drugs to efficiently treat H. pylori infection in the coming years, in comparison to the currently available therapy.

3.
Bioorg Chem ; 147: 107326, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653153

RESUMEN

Continuing our research into the anticancer properties of acrylonitriles, we present a study involving the design, synthesis, computational analysis, and biological assessment of novel acrylonitriles derived from methoxy, hydroxy, and N-substituted benzazole. Our aim was to examine how varying the number of methoxy and hydroxy groups, as well as the N-substituents on the benzimidazole core, influences their biological activity. The newly synthesized acrylonitriles exhibited strong and selective antiproliferative effects against the Capan-1 pancreatic adenocarcinoma cell line, with IC50 values ranging from 1.2 to 5.3 µM. Consequently, these compounds were further evaluated in three other pancreatic adenocarcinoma cell lines, while their impact on normal PBMC cells was also investigated to determine selectivity. Among these compounds, the monohydroxy-substituted benzimidazole derivative 27 emerged with the most profound and broad-spectrum anticancer antiproliferative activity being emerged as a promising lead candidate. Moreover, a majority of the acrylonitriles in this series exhibited significant antioxidative activity, surpassing that of the reference molecule BHT, as demonstrated by the FRAP assay (ranging from 3200 to 5235 mmolFe2+/mmolC). Computational analysis highlighted the prevalence of electron ionization in conferring antioxidant properties, with computed ionization energies correlating well with observed activities.


Asunto(s)
Acrilonitrilo , Antineoplásicos , Antioxidantes , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Pancreáticas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Humanos , Acrilonitrilo/química , Acrilonitrilo/farmacología , Acrilonitrilo/análogos & derivados , Acrilonitrilo/síntesis química , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Relación Estructura-Actividad , Estructura Molecular , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Línea Celular Tumoral , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química
4.
Vet Parasitol ; 327: 110140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330532

RESUMEN

We evaluated the effect of 4 anthelmintic treatments on the viability of Trichinella spiralis encysted muscle larvae (ML) 55 days post infection (PI) in experimentally infected pigs. Muscle larvae were isolated from pig muscle by artificial digestion after oral treatment of pigs with Levamisole (8 mg/kg, daily for 5 days) and Mebendazole (50 mg/kg, daily for 5 days); Doramectin (0.3 mg/kg, single IM injection), and Moxidectin (0.5 mg/kg, single pour on). Isolated larvae from treated pigs were orally inoculated into mice to assess viability of ML from each treatment. Only Mebendazole treatment of pigs significantly reduced ML viability in mice. The effect of timing of the effective Mebendazole treatment on ML from a longer term infection was then examined in a second experiment. Analysis revealed that Mebendazole treatment of pigs with 250 mg/kg over 3 days (83 mg/kg/day) or 5 days (50 mg/kg/day) reduced numbers of ML recovered from pig tissues compared to untreated, infected controls, and rendered ML non-infective to mice; Mebendazole treatment of pigs with 250 mg/kg in a single dose was not effective in reducing ML numbers recovered from pigs or in impacting ML infectivity to mice. An examination of the lowest effective dose of Mebendazole on encysted ML was determined in a third experiment. Mebendazole of pigs with 5, 50, or 100 mg/kg over 3 days demonstrated that 5 or 50 mg/kg over 3 days insufficient to reduce infectivity in recovered ML, while 100 mg/kg (and 83 g from experiment 2) over 3 days significantly reduces infectivity of ML. This procedure provides a means to evaluate the efficacy of various anthelmintic treatments on the viability of Trichinella spiralis ML in pig tissues, and identified Mebendazole, at 83-100 mg/kg administered over a 3-5 day period as an anthelmintic which renders encysted Trichinella spiralis ML from pig tissues non-infective. As risk from Trichinella significantly impacts acceptance of pork from pasture-raised pigs, these data provide a method, especially for producers of these high-risk pigs, to eliminate the potential of Trichinella transmission from infected pork.


Asunto(s)
Antihelmínticos , Enfermedades de los Roedores , Trichinella spiralis , Trichinella , Triquinelosis , Porcinos , Ratones , Animales , Mebendazol/farmacología , Mebendazol/uso terapéutico , Triquinelosis/tratamiento farmacológico , Triquinelosis/veterinaria , Triquinelosis/diagnóstico , Larva , Músculos , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Enfermedades de los Roedores/tratamiento farmacológico
5.
Mol Cell Biochem ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411896

RESUMEN

Gliomas are the most prevalent type of primary brain tumor, with poor prognosis reported in patients with high-grade glioma. Kinesin family member 4 A (KIF4A) stimulates the proliferation, migration, and invasion of tumor cells. However, its function in gliomas has not been clearly established. Therefore, this study aimed to investigate the effects of KIF4A on the epithelial-mesenchymal transition and invasion of glioma cells. We searched The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases to identify KIF4A-related signaling pathways and downstream genes. We further validated them using western blotting, transwell migration and invasion, wound-healing scratch, and dual-luciferase reporter assays in U251 and U87 human glioblastoma cells. Our analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas data showed elevated KIF4A expression in patients with gliomas and was associated with clinical grade. Here, KIF4A overexpression promoted the migration, invasion, and proliferation of glioma cells, whereas KIF4A knockdown showed contrasting results. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) analyses demonstrated that KIF4A positively controls TGF-ß/SMAD signaling in glioma cells. Additionally, genetic correlation analysis revealed that KIF4A transcriptionally controls benzimidazoles-1 expression in glioma cells. KIF4A promotes the epithelial-mesenchymal transition by regulating the TGF-ß/SMAD signaling pathway via benzimidazoles-1 in glioma cells.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38372051

RESUMEN

INTRODUCTION: Globally, Ascaris lumbricoides is the commonest helminthic infection that affects people in underdeveloped countries and returning immigrants in industrialized nations. This article aims to provide latest updates on the epidemiology, clinical manifestations, and pharmacotherapy of ascariasis. AREAS COVERED: A PubMed search was conducted using Clinical Queries and the key terms 'human ascariasis' OR 'Ascaris lumbricoides.' Ascaris lumbricoides is highly endemic in tropical and subtropic regions and among returning immigrants in industrialized nations. Predisposing factors include poor sanitation and poverty. The prevalence is greatest in young children. Most infected patients are asymptomatic. Patients with A. lumbricoides infection should be treated with anti-helminthic drugs to prevent complications from migration of the worm. Mebendazole and albendazole are indicated for children and nonpregnant women. Pregnant individuals should be treated with pyrantel pamoate. EXPERT OPINION: Cure rates with anthelmintic treatment are high. No emerging pharmacotherapy can replace these existing drugs of good efficacy, safety profile and low cost for public health. It is opinioned that advances in the management of ascariasis include diagnostic accuracy at affordable costs, Emodepside is highly effective in single doses against ascarids in mammals and in human trials. The drug could be registered for human use in multiple neglected tropical diseases.

7.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396966

RESUMEN

Newly designed pentacyclic benzimidazole derivatives featuring amino or amido side chains were synthesized to assess their in vitro antiproliferative activity. Additionally, we investigated their direct interaction with nucleic acids, aiming to uncover potential mechanisms of biological action. These compounds were prepared using conventional organic synthesis methodologies alongside photochemical and microwave-assisted reactions. Upon synthesis, the newly derived compounds underwent in vitro testing for their antiproliferative effects on various human cancer cell lines. Notably, derivatives 6 and 9 exhibited significant antiproliferative activity within the submicromolar concentration range. The biological activity was strongly influenced by the N atom's position on the quinoline moiety and the position and nature of the side chain on the pentacyclic skeleton. Findings from fluorescence, circular dichroism spectroscopy, and thermal melting assays pointed toward a mixed binding mode-comprising intercalation and the binding of aggregated compounds along the polynucleotide backbone-of these pentacyclic benzimidazoles with DNA and RNA.


Asunto(s)
Antineoplásicos , Humanos , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Bencimidazoles/química , Proliferación Celular , Estructura Molecular
8.
Int J Biol Macromol ; 255: 128259, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984572

RESUMEN

In several types of cancers, the expression of carbonic anhydrase-IX (CA-IX) enzyme is elevated than its normal level which ultimately plays a key role in the tumor growth of epithelial cells in breast and lung cancer by acidifying tumor microenvironment, therefore, inhibition of this target is important in antitumor therapy. We have synthesized bis-benzimidazole derivatives (1-25) by using 3,3'-diaminobenzidine and various aromatic aldehydes and characterized by various spectroscopic methods (UV/Visible, 1HNMR, 13CNMR, and mass spectrometry). Their inhibitory potential for human CA-IX (hCA-IX) was evaluated in-vitro, where several synthesized derivatives showed potent inhibition of hCA-IX (IC50 values in range of 5.23 ± 1.05 to 40.10 ± 1.78 µM) and compounds 3-5, 7-8, 13-16, 21 and 23 showed superior activity than the standard drug "acetazolamide" (IC50 = 18.24 ± 1.43 µM). Furthermore, all these compounds showed no toxicity on human fibroblast cell lines (BJ cell lines). Moreover, molecular docking was carried out to predict their binding modes in the active site of CA-IX and revealed a significant role of imidazole ring of synthesized entities in their effective binding with the specific residues of CA-IX. The obtained results paved the way for further in vivo and other pharmacological studies for the optimization of these molecules as possible anti-cancer agents.


Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Neoplasias , Humanos , Anhidrasas Carbónicas/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/química , Estructura Molecular , Microambiente Tumoral
9.
Oncol Rep ; 51(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38131223

RESUMEN

Patients with end­stage metastatic disease have limited treatment options and those diagnosed with triple negative breast cancer (Her2, Estrogen receptor, Progesterone receptor) have a poor prognosis. Using a triple negative mammary tumor model selected for brain metastasis (4T1Br4) in the mouse, treatment options that may increase survival when therapeutics are applied at post­metastasis were assessed. Anti­parasitic benzimidazoles (BZs) destabilize microtubules, inhibit metabolic pathways, reduce cell proliferation, and induce apoptosis in tumor cells. Co­administration of two BZs was selected, oxfendazole (OFZ) and parbendazole (PBZ), shown to overcome resistance development in anthelmintic effects by imposing metabolic delay to assess if multiple BZ approach is also suitable to enhance anticancer effects. It has been previously reported that treatment of mammary tumor­bearing mice at an early stage with chitin microparticles (CMPs) decreased tumor growth and metastases by enhancing both innate M1 macrophage and TH1 adaptive immune response. Oral administration of CMPs was previously revealed to affect the gut in intestinal inflammation. A combination BZ (OFZ/PBZ) and CMP treatment was tested to target tumor development and metastasis and effects were compared in response to monotherapies of the same compounds or to untreated mice. The results demonstrated increased survival, decreased tumor cell proliferation, decreased metastasis in lungs and brain, increased levels of fecal SCFAs butyric, acetic, propionic and valeric acids with increased butyric and propionic acid levels in brain biopsies in combination treated compared with untreated mice. At the primary tumor, SCFA receptor FFAR2 expression was increased in combination treatment compared with untreated mice, suggestive of a non­invasive cancer phenotype. The superior cytotoxic effects of OFZ/PBZ were confirmed as opposed to single treatment with OFZ or PBZ using 3D spheroids generated from a human breast cancer cell line, MDA­MB­468. These data are compelling for treatment option possibility even at late stages of metastasized breast cancer.


Asunto(s)
Antihelmínticos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Antihelmínticos/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral
10.
Front Biosci (Landmark Ed) ; 28(10): 268, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37919087

RESUMEN

BACKGROUND: Increasing or restoring Bone Morphogenetic Protein- (BMP-) signaling through administration of recombinant BMPs (rBMPs) has demonstrated therapeutic efficacy for treating bone fractures or to enhance repair following spinal surgeries. However, direct use of rBMPs has come up against significant obstacles like high cost and incidence of adverse effects. Recently, we reported our findings on the novel indolyl-benzimidazoles, SY-LB-35 and SY-LB-57, that fully activated BMP receptor signaling demonstrating activity profiles that mirrored rBMPs. Here, we explored the potential of these compounds to substitute for rBMPs in processes like wound healing and osteogenesis. METHODS: Cell-based assays including cell viability, short- and long-term phosphorylation, protein expression, wound healing and bone differentiation assays were carried out in the pluripotent myoblast C2C12 cell line with select assays performed in multiple cell lines. Several assays included conditions in the presence of a selective inhibitor of type I BMP receptor, Activin-like kinase 2 (ALK2), or inhibitors of BMP-stimulated downstream signaling. All assays were repeated at least 3 times with replicates per condition where indicated. Statistical tests were carried out using Student's two-tailed, t-test. RESULTS: Sustained activation of non-canonical BMP signaling pathways was observed after 24-hour exposure to SY-LB-35 and SY-LB-57. Moreover, this treatment increased the expression of targets of BMP-mediated transcription such as the Id1 transcription factor. SY-LB-35 and SY-LB-57 promoted substantial increases in cell viability in three distinct cell types and increased the rate of wound closure in scrape-wounded C2C12 cell cultures. Cell viability and wound closure induced by SY-LB compounds required ALK2-, PI3K- and p38-dependent pathways. In contrast, responses to SY-LB compounds were not affected by ERK inhibition. Expression of bone differentiation markers beginning at 4 hours and evidence of calcium deposition detected after 21 days in C2C12 cell cultures exposed to SY-LB-35 and SY-LB-57 demonstrated the osteogenic potential of these compounds. CONCLUSIONS: The functional similarities between these novel compounds and rBMPs indicates that SY-LB-35 or SY-LB-57, acting as potent activators of BMP receptor signaling and inducers of osteogenic processes, could potentially replace rBMPs for treating BMP-related pathologies such as bone fracture repair or other wound healing processes.


Asunto(s)
Proteínas Morfogenéticas Óseas , Osteogénesis , Humanos , Osteogénesis/fisiología , Diferenciación Celular , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Receptores de Proteínas Morfogenéticas Óseas , Bencimidazoles/farmacología , Cicatrización de Heridas
11.
Molecules ; 28(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37764316

RESUMEN

A series of cyclometalated complexes of ruthenium (II) with four different substituents in the aryl fragment of benzimidazole was synthesized in order to study the effect of substituent donation on the electronic structure of the substances. The resulting complexes were studied using X-ray diffraction, NMR spectroscopy, MALDI mass spectrometry, electron absorption spectroscopy, luminescence spectroscopy, and cyclic voltammetry as well as DFT/TDDFT was also used to interpret the results. All the complexes have intense absorption in the range of up to 700 nm, the triplet nature of the excited state was confirmed by measurement of luminescence decay. With an increase in substituent donation, a red shift of the absorption and emission bands occurs, and the lifetime of the excited state and the redox potential of the complex decrease. The combination of these properties shows that the complexes are excellent dyes and can be used as photosensitizers.

12.
Arch Pharm (Weinheim) ; 356(11): e2300269, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37602810

RESUMEN

Novel benzimidazole thiourea derivatives were designed and synthesized based on sorafenib as a lead compound. The benzimidazole moiety was traded by the pyridine ring to enhance the hydrophobic interaction and retain hydrogen bonding in the hinge region, while lipophilic moieties with different bulkiness were employed in the deep hydrophobic pocket for better hydrophobic interactions. Thiourea as a urea bioisostere was also utilized. Substantial activity was demonstrated against a leukemia subpanel in an in vitro antitumor screening at the NCI. In the single-dose assay, compounds 7i, 7j, and 7l had a GI%) higher than sorafenib against most leukemia cell lines (GI% = 86.2%-137.1%), while in the five-dose assay, compound 7l outperformed sorafenib against the HL-60(TB) and SR leukemia cell lines in terms of GI50 , TGI, and LC50 . Compound 7l also caused cycle arrest at the G0-G1 and S phases in the HL-60(TB) leukemia cell line and induced apoptosis via elevating the Bax/Bcl-2 ratio and increasing caspases 3, 7, and 9 by 5.1-, 3.2-, and 5.2-fold, respectively. Compounds 7i, 7j, and 7l also inhibited the vascular endothelial growth factor receptor-2 (VEGFR-2), B-Raf(V600E) , and platelet-derived growth factor receptor beta (PDGFR-ß) enzymes with an IC50 range of 0.063-0.44 µM. COMPARE analysis and a molecular docking study were also performed to predict the possible mechanism of action and binding mode, respectively.


Asunto(s)
Antineoplásicos , Leucemia , Humanos , Sorafenib/farmacología , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Factor A de Crecimiento Endotelial Vascular/farmacología , Inhibidores de Proteínas Quinasas/química , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Tiourea/farmacología , Bencimidazoles/química , Proliferación Celular , Estructura Molecular , Diseño de Fármacos
13.
Future Med Chem ; 15(14): 1251-1272, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37551679

RESUMEN

Aim: The aim was synthesis of novel benzazoles bearing amidino and 2-hydroxyphenyl substituents to explore their biological activity. Methods: Condensation of 5-substituted salicylaldehydes and intermediates gave new benzazoles by previously published and developed procedures, which were tested for antibacterial and antiproliferative activity in vitro. Results: The best antibacterial activity showed benzimidazole with 2-imidazolinyl group 27 and benzothiazole with an unsubstituted amidine 48 (minimum inhibitory concentration 8 µg/ml). Benzothiazole 53 proved most potent at inhibiting proliferation of all cancer cells (IC50: 1.2-2.0 µM). Conclusion: Most active compounds have been recognized as lead compounds for additional optimization to improve their biological activity. The type of amidine moiety markedly influenced the biological activity. Benzothiazoles showed improved antiproliferative activity in comparison to benzimidazoles.

14.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446093

RESUMEN

The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30-38 µM).


Asunto(s)
Productos Biológicos , Cannabinoides , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Productos Biológicos/farmacología , Cannabinoides/farmacología , Cannabinoides/química , Imidazoles , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1 , Relación Estructura-Actividad , Mamíferos
15.
J Fungi (Basel) ; 9(7)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37504741

RESUMEN

Chromoblastomycosis (CBM) is a neglected human implantation mycosis caused by several dematiaceous fungal species. Currently available therapy is usually associated with physical methods, especially surgery, and with high refractoriness. Therefore, drug discovery for CBM is essential. Drug repositioning is a strategy used to facilitate the discovery of new treatments for several diseases. The aim of this study was to discover substances with antifungal activity against CBM agents from a collection of drugs previously approved for use in human diseases. A screening was performed with the NIH Clinical Collection against Fonsecaea pedrosoi. Ten substances, with clinical applicability in CBM, inhibited fungal growth by at least 60%. The minimum inhibitory concentration (MIC) of these substances was determined against other CBM agents, and the benzimidazoles albendazole, mebendazole and thiabendazole presented the lowest MIC values. The selectivity index, based on MIC and cytotoxicity of these substances, revealed albendazole to be more selective. To investigate a possible synergism of this benzimidazole with itraconazole and terbinafine, the chequerboard method was used. All interactions were classified as indifferent. Our current results suggest that benzimidazoles have repositioning potential against CBM agents. Albendazole seems to be the most promising, since it presented the highest selectivity against all dematiaceous fungi tested.

16.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37259338

RESUMEN

The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.

17.
Angew Chem Int Ed Engl ; 62(49): e202306176, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37269130

RESUMEN

The cannabinoid 2 receptor (CB2 R) has high therapeutic potential for multiple pathogenic processes, such as neuroinflammation. Pathway-selective ligands are needed to overcome the lack of clinical success and to elucidate correlations between pathways and their respective therapeutic effects. Herein, we report the design and synthesis of a photoswitchable scaffold based on the privileged structure of benzimidazole and its application as a functionally selective CB2 R "efficacy-switch". Benzimidazole azo-arenes offer huge potential for the broad extension of photopharmacology to a wide range of optically addressable biological targets. We used this scaffold to develop compound 10 d, a "trans-on" agonist, which serves as a molecular probe to study the ß-arrestin2 (ßarr2) pathway at CB2 R. ßΑrr2 bias was observed in CB2 R internalization and ßarr2 recruitment, while no activation occurred when looking at Gα16 or mini-Gαi . Overall, compound 10 d is the first light-dependent functionally selective agonist to investigate the complex mechanisms of CB2 R-ßarr2 dependent endocytosis.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Arrestina beta 2/metabolismo , Cannabinoides/farmacología , Bencimidazoles/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-37348434

RESUMEN

Haemonchus contortus is the most pathogenic nematode in small ruminants and anthelmintic resistance (AR) hampers its efficient control. Early detection of AR status is required to reduce selection for AR and cannot be achieved using phenotypic tests. For benzimidazoles (BZs), the detection of AR-associated alleles characterised by single nucleotide polymorphisms (SNPs) in the isotype 1 ß-tubulin gene allows early AR detection in strongyles. The F200Y, F167Y, E198A and E198L polymorphisms have been described in BZ-resistant populations with a clear variation in frequencies between regions. A novel digital PCR (dPCR) enables the detection of all of the above-described polymorphisms in H. contortus. Assays were validated using synthetic DNA fragments containing these SNPs. Then, larvae obtained and pooled at farm level from 26 Austrian and 10 Italian sheep farms were analysed. For all assays a detection limit of 15 copies/µl of resistance alleles and a high level of accuracy were demonstrated, allowing to detect allele frequencies of 1% in most samples. In Austrian samples, elevated frequencies of F200Y resistance alleles were detected on all farms. Polymorphisms in codon 167 and codon 198 were identified in H. contortus from Austria for the first time. In Italian samples, the frequency of resistance alleles was still comparatively low, but F200Y resistance alleles were traceable. In conclusion we developed for the first time dPCR assays that target all SNPs of relevance associated with BZ-resistance in H. contortus. Future research on AR development could benefit from an early onset of SNP-based surveillance that would include the developed assays for all SNPs of relevance. Improved surveillance in the long term will include other important, though less pathogenic, nematode genera in the analyses.


Asunto(s)
Antihelmínticos , Hemoncosis , Haemonchus , Animales , Ovinos , Haemonchus/genética , Polimorfismo de Nucleótido Simple , Color , Hemoncosis/tratamiento farmacológico , Hemoncosis/veterinaria , Hemoncosis/epidemiología , Antihelmínticos/farmacología , Bencimidazoles/farmacología , Reacción en Cadena de la Polimerasa , Tubulina (Proteína)/genética , Codón , Resistencia a Medicamentos/genética
19.
Molecules ; 28(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175129

RESUMEN

Herein, we present the design and synthesis of novel N-substituted benzimidazole-derived Schiff bases, and the evaluation of their antiviral, antibacterial, and antiproliferative activity. The impact on the biological activity of substituents placed at the N atom of the benzimidazole nuclei and the type of substituents attached at the phenyl ring were examined. All of the synthesized Schiff bases were evaluated in vitro for their antiviral activity against different viruses, antibacterial activity against a panel of bacterial strains, and antiproliferative activity on several human cancer cell lines, thus enabling the study of the structure-activity relationships. Some mild antiviral effects were noted, although at higher concentrations in comparison with the included reference drugs. Additionally, some derivatives showed a moderate antibacterial activity, with precursor 23 being broadly active against most of the tested bacterial strains. Lastly, Schiff base 40, a 4-N,N-diethylamino-2-hydroxy-substituted derivative bearing a phenyl ring at the N atom on the benzimidazole nuclei, displayed a strong antiproliferative activity against several cancer cell lines (IC50 1.1-4.4 µM). The strongest antitumoral effect was observed towards acute myeloid leukemia (HL-60).


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Bases de Schiff/farmacología , Proliferación Celular , Relación Estructura-Actividad , Bencimidazoles/farmacología , Antivirales/farmacología
20.
Bioorg Chem ; 137: 106588, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37167705

RESUMEN

H+, K+-ATPase, as the most critical enzyme in gastric acid secretion, has long been an attractive target for the treatment of acid-related diseases. In this study, a series of benzimidazole derivatives were designed and synthesized through conformational restriction and skeleton hopping strategies by using vonoprazan as the lead compound. Among them, compounds A12 (IC50 = 9.32 µM) and A18 (IC50 = 5.83 µM) showed better inhibition at the enzyme level. In addition, gastric acid secretion inhibition was assessed in vivo, and the results showed that A12 and A18 significantly inhibited basal gastric acid secretion, 2-deoxy-d-glucose (2DG) stimulated gastric acid secretion and histamine-stimulated gastric acid secretion. In further in vitro metabolic experiments, A12 and A18 demonstrated excellent stability and low toxicity. Pharmacokinetic studies showed that the p.o. and i.v. half-lives of A18 were 3.21 h and 8.67 ± 1.15 h, respectively. In summary, A18 might be a novel and effective potassium-competitive acid blocker, and this study provides strong support for it use in the treatment of acid-related diseases.


Asunto(s)
Ácido Gástrico , Inhibidores de la Bomba de Protones , Inhibidores de la Bomba de Protones/farmacología , Ácido Gástrico/metabolismo , Potasio , Histamina/metabolismo , Bencimidazoles/farmacología , Bencimidazoles/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...