Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.079
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39129294

RESUMEN

A family of peptides known as bioactive peptides has unique physiological properties and may be used to improve human health and prevent illness. Because bioactive peptides impact the immunological, endocrine, neurological, and cardiovascular systems, they have drawn a lot of interest from researchers. According to recent studies, bioactive peptides have a lot to offer in the treatment of inflammation, neuronal regeneration, localized ischemia, and the blood-brain barrier. It investigates various peptide moieties, including antioxidative properties, immune response modulation, and increased blood-brain barrier permeability. It also looks at how well they work as therapeutic candidates and finds promising peptide-based strategies for better outcomes. Furthermore, it underscores the need for further studies to support their clinical utility and suggests that results from such investigations will enhance our understanding of the pathophysiology of these conditions. In order to understand recent advances in BPs and to plan future research, academic researchers and industrial partners will find this review article to be a helpful resource.

2.
Food Chem ; 460(Pt 2): 140708, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39096803

RESUMEN

The detailed characterization of the structural features of peptides targeting cholesterol esterase (CEase) or pancreatic lipase (PPL) will benefit the management of hyperlipidemia and obesity. This study employed the Glide SP (standard precision)-peptide method to predict the binding modes of 202 dipeptides and 203 tripeptides to these targets, correlating residue composition and position with binding energy. Strong preferences for Trp, Phe, and Tyr were observed at all positions of potential inhibitory peptides, whereas negatively charged residues Glu and Asp were disfavored. Notably, Arg and aromatic rings significantly influenced the peptide conformation at the active site. Tripeptide IWR demonstrated the high efficacy, with IC50 values of 0.214 mg/mL for CEase and 0.230 mg/mL for PPL. Five novel IWR scaffold-tetrapeptides exhibited promising inhibitory activity. Non-covalent interactions and energy contributions dominated the formation of stable complexes. Our results provide insights for the development of new sequences or peptide-like molecules with enhanced inhibitory activity.

3.
J Sci Food Agric ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39139024

RESUMEN

BACKGROUND: Protein-derived peptide fractions can play a key role in the physiological and metabolic regulation and modulation of the body, which suggests that they could be used as functional ingredients to improve health and to reduce the risk of disease. This work aimed to evaluate the in vitro antithrombotic and anticariogenic bioactivity of hydrolysates and protein fractions obtained from cowpea (Vigna unguiculata) by biocatalysis. RESULTS: Cowpea protein concentrate was hydrolyzed by sequential action with two enzyme systems, Pepsin-Pancreatin or Alcalase-Flavourzyme. There was extensive enzymatic hydrolysis, with degrees of hydrolysis of 34.94% and 81.43% for Pepsin-Pancreatin and Alcalase-Flavourzyme, respectively. The degree of hydrolysis for the control treatments, without the addition of the enzymes Pepsin-Pancreatin and Alcalase-Flavourzyme was 1.1% and 1.2%, respectively. The hydrolysates were subjected to fractionation by ultrafiltration, with five cut-off points according to molecular weight (<1, 1-3, 3-5, 5-10 and >10 kDa). The Alcalase-Flavourzyme hydrolysate led to 100% inhibition of platelet aggregation, while the Pepsin-Pancreatin hydrolysate showed 77.41% inhibition, but this was approximately 100% in the ultrafiltered fractions. The highest anticariogenic activity was obtained with the Pepsin-Pancreatin system, with 61.55% and 56.07% for calcium and phosphorus demineralization, respectively. CONCLUSION: Hydrolysates and their peptide fractions from Vigna unguiculata exhibited inhibition of platelet aggregation and protection of tooth enamel and have the potential for use in the development of functional products with beneficial health effects. © 2024 Society of Chemical Industry.

4.
Food Sci Biotechnol ; 33(11): 2461-2475, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39144188

RESUMEN

Healthy and sustainable diets have seen a surge in popularity in recent years, driven by a desire to consume foods that not only help health but also have a favorable influence on the environment, such as plant-based proteins. This has created controversy because plant-based proteins may not always contain all the amino acids required by the organism. However, protein extraction methods have been developed due to technological advancements to boost their nutritional worth. Furthermore, certain chemicals, such as bioactive peptides, have been identified and linked to favorable health effects. As a result, the current analysis focuses on the primary plant-based protein sources, their chemical composition, and the molecular mechanism activated by the amino acid types of present. It also discusses plant protein extraction techniques, bioactive substances derived from these sources, product development using plant protein, and the therapeutic benefits of these plant-based proteins in clinical research.

5.
Front Nutr ; 11: 1416643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149544

RESUMEN

Background: Collagen hydrolysates (CH) in functional foods and supplements are dietary sources of amino acids (AAs) and di-and tripeptides linked to various health benefits. This study aimed to investigate the single-dose bioavailability of skin- and hide-derived CH from fish, porcine and bovine origin with different molecular weights (bovine 2,000 and 5,000 Da). Methods: A randomized, double-blind crossover clinical study was performed with healthy volunteers assessing the plasma concentration of free and peptide-bound hydroxyproline (Hyp) as well as selected peptides reported to be abundantly present in collagen. Results: The pharmacokinetic endpoints demonstrated comparable uptake of free Hyp from all CH. A higher amount of total compared to free Hyp indicated the uptake of substantial amounts of Hyp-containing di- or tripeptides. Conclusion: Independently of source and molecular weight, all CH yielded relevant plasma concentrations of the investigated metabolites. Larger studies are needed to estimate an ideal level of selected circulating metabolites needed to trigger distinct physiological reactions in target tissues.

6.
J Agric Food Chem ; 72(33): 18445-18454, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39110605

RESUMEN

The present study delved into the chemical composition, antioxidant, and anti-inflammatory properties of three dry edible beans: Black (BL), Great Northern (GN), and Pinto (PN). The beans were soaked, cooked, and subjected to in vitro gastrointestinal (GI) digestion. BL bean exhibited significantly higher gastric (42%) and intestinal (8%) digestion rates. Comparative assessment of soluble GI-digested fractions (<3 kDa) revealed that the GN bean exhibited the highest abundance of dipeptides (P < 0.05). The BL bean fraction displayed a 4-fold increase in tripeptides (P < 0.05). Both BL and PN bean fractions are high in essential free amino acids, flavonols, and derivatives of hydroxybenzoic acid when compared to the GN bean. All the beans exhibited the ability to mitigate TNF-α-induced pro-inflammatory signaling; however, the BL bean fraction was the most effective at lowering AAPH-induced oxidative stress in HT-29 cells, followed by the GN bean (P < 0.05). In contrast, a low antioxidant effect was observed with PN beans.


Asunto(s)
Antiinflamatorios , Antioxidantes , Culinaria , Digestión , Tracto Gastrointestinal , Phaseolus , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Digestión/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Phaseolus/química , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Células HT29 , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Modelos Biológicos , Semillas/química
7.
Pest Manag Sci ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193860

RESUMEN

BACKGROUND: The grey garden slug (Deroceras reticulatum) is considered the most damaging slug pest in global agriculture. Control methods primarily rely on chemical pesticides, which pose environmental risks and potential hazards to human health. There is a need for sustainable management alternatives such as biologically-based slug control options. However, the efficacy of nonchemical measures for controlling pest slug populations remains limited, particularly in the context of variable outdoor conditions. Neuropeptides and their corresponding receptors have been proposed as promising biological targets for the development of new pest management strategies. RESULTS: A total of 23 bioactive peptides belonging to the PRX family, previously identified from the grey garden slug, D. reticulatum, were injected into or fed to this species. The detrimental effects of these peptides, including a reduction in body weight and an inhibition of feeding activity, were evaluated in feeding choice tests with D. reticulatum. Furthermore, the bioactive peptide formulated with a lipid particle demonstrated a feeding deterrent effect. One of the myomodulin (MM) peptides, APPLPRY, demonstrated a significant reduction in feeding activity, resulting in a reduction in slug weight or mortality in just 30 min. CONCLUSION: The results represent the first evidence of a bioactive peptide having detrimental effects on D. reticulatum including causing feeding deterrent for this slug pest. The in vivo results provide insights into the potential development of active ingredients for managing slugs in the field. © 2024 Society of Chemical Industry.

8.
Int J Biol Macromol ; 278(Pt 1): 134503, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111503

RESUMEN

Thermolysin (TLN) is a microbial highly-priced thermostable metallo-endoprotease with complementary substrate specificity to those of proteases widely used in science and industry for protein digestion and milk-clotting. This study is the first to immobilize TLN on aminated superparamagnetic nanoparticles (Fe3O4@silica-NH2) aiming for higher stability, recoverability, reusability, and applicability in proteolysis and as a microbial rennet-like milk-clotting enzyme. The nanobiocatalyst developed (Fe3O4@silica-TLN) displays hydrolytic activity on a synthetic TLN substrate and, apparently, was fully recovered from reaction media by magnetic decantation. More importantly, Fe3O4@silica-TLN retains TLN catalytic properties in the presence of calcium ions even after exposure to 60 °C for 48 h, storage at 4 °C for 80 days and room temperature for 42 days, use in proteolyses, and in milk-clotting for up to 11 cycles. Its proteolytic activity on bovine milk casein in 24 h furnished 84 peptides, of which 29 are potentially bioactive. Also, Fe3O4@silica-TLN catalyzed the digestion of bovine serum albumin. In conclusion, Fe3O4@silica-TLN showed to be a new, less autolytic, thermostable, non-toxic, magnetically-separable, and reusable nanobiocatalyst with highly attractive properties for both science (peptide/protein chemistry and structure, proteomic studies, and the search for new bioactive peptides) and food industry (cheese manufacture).

9.
Food Sci Nutr ; 12(8): 5271-5284, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139935

RESUMEN

Cardiovascular diseases (CVDs) affect the quality of life or are fatal in the worst cases, resulting in a significant economic and social burden. Therefore, there is an urgent need to invent functional products or drugs for improving patient health and alleviating and controlling these diseases. Marine bioactive peptides reduce and control CVDs. Many of the predisposing factors triggering CVDs can be alleviated by consuming functional foods containing marine biopeptides. Therefore, improving CVD incidence through the use of effective biopeptide foods from marine sources has attracted increasing interest and attention. This review reports information on bioactive peptides derived from various marine organisms, focusing on the process of the separation, purification, and identification of biological peptides, biological characteristics, and functional food for promoting cardiovascular health. Increasing evidence shows that the bioactivity and safety of marine peptides significantly impact their storage, purification, and processing. It is feasible to develop further strategies involving functional foods to treat CVDs through effective safety testing methods. Future work should focus on producing high-quality marine peptides and applying them in the food and drug industry.

10.
Food Chem ; 460(Pt 2): 140653, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39089038

RESUMEN

Multifunctional peptides derived from various food sources, including ancestral grains, hold significant promise for managing metabolic syndrome. These bioactive peptides exhibit diverse properties that collectively contribute to improving the components of metabolic syndrome. In this study, we investigated the in vitro multifunctionality of six peptides (PW, PM, SW, PPG, PW, and IW) identified through in silico analysis and chemically synthesized. These peptides were evaluated for their potential to address metabolic syndrome-related activities such as antidiabetic, antiobesity, antihypertensive, and antioxidative properties. Assessment included their capacity to inhibit key enzymes associated with these activities, as well as their free radical scavenging and cellular antioxidative activities. Principal component analysis was employed to cluster the peptides according to their multifunctionality. Our results revealed that peptides containing tryptophan (SW, PW, and IW) exhibited the most promising multifunctional attributes, with SW showing particularly high potential. This multifunctional peptide represents a promising avenue for addressing metabolic syndrome.

11.
J Agric Food Chem ; 72(32): 17953-17963, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39086319

RESUMEN

In this study, the transepithelial transport of bioactive peptides derived from faba bean flour gastrointestinal digestates was investigated, in vitro, using a Caco-2 and HT29-MTX-E12 coculture monolayer, in comparison to those of pea and soy. The profile of transported peptides was determined by mass spectrometry, and the residual antioxidant activity was assessed. The ORAC value significantly (p < 0.05) decreased after transepithelial transport (24-36% reduction) for all legumes, while the antioxidant activity in ABTS assay significantly (p < 0.05) increased, as shown by the EC50 decrease of 26-44%. Five of the nine faba bean peptides that crossed the intestinal cell monolayer exhibited antioxidant activity. Two of these peptides, TETWNPNHPEL and TETWNPNHPE, were further hydrolyzed by the cells' brush border peptidases to smaller fragments TETWNPNHP and TWNPNHPE. These metabolized peptides were synthesized, and both maintained high antioxidant activity in both ABTS (EC50 of 1.2 ± 0.2 and 0.4 ± 0.1 mM, respectively) and ORAC (2.5 ± 0.1 and 3.4 ± 0.2 mM of Trolox equivalent/mM, respectively) assays. These results demonstrated for the first time the bioaccessibility of faba bean peptides produced after in vitro gastrointestinal digestion and how their bioactive properties can be modulated during transepithelial transport.


Asunto(s)
Antioxidantes , Digestión , Glycine max , Péptidos , Pisum sativum , Vicia faba , Humanos , Células CACO-2 , Antioxidantes/metabolismo , Antioxidantes/química , Péptidos/metabolismo , Péptidos/química , Células HT29 , Vicia faba/metabolismo , Vicia faba/química , Transporte Biológico , Glycine max/química , Glycine max/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Tracto Gastrointestinal/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Disponibilidad Biológica , Modelos Biológicos
12.
Food Chem ; 459: 140331, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38996636

RESUMEN

The article "Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum)" by Ezeorba et al. (Food Chemistry 435 (2024) 137632-137,643, DOI: https://doi.org/10.1016/j.foodchem.2023.137632), offers a comprehensive review of the literature on the bioactive proteins and peptides found in garlic. This study serves as a valuable resource for professionals in the fields of research, nutrition, and healthcare who are interested in the medicinal and nutritional aspects of garlic. This Letter to the Editor aims to address some inaccuracies and omissions found in the above-mentioned article. It corrects the reported lack of biological activity data for certain peptides, clarifies the immunomodulatory effects attributed to garlic's components, and adjusts the reported protein content range for garlic varieties. These refinements aim to enhance the accuracy and utility of the information presented in this article for future research.


Asunto(s)
Ajo , Péptidos , Proteínas de Plantas , Ajo/química , Péptidos/química , Péptidos/farmacología , Proteínas de Plantas/química , Humanos
13.
Int J Biol Macromol ; 276(Pt 1): 133839, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004248

RESUMEN

Functional compounds (FCs) had some functions, which are affected easily by digestion and transmembrane transport leading to low absorption rates, such as lutein, quercetin, xylo-oligosaccharide. Protein from blue foods is a potential bioactive compound, which had higher bioavailability, especially for bioactive peptides (BBPs). The BBPs has great limitations, especially the variability under pepsin digestion. However, the limitation of single FCs and BBPs in bioavailability might can be complemented by mixture of different bioactive compounds. Therefore, this review provides an in-depth study on the function and mechanism of different FCs/BBPs and their mixtures. Specifically, digestion effect of mixtures on function and transmembrane transport mechanisms of different bioactive compounds were exhibited to elaborate interactions between BBPs and FCs in delivery systems (function and bioavailability). Combination of FCs/BBPs could enhance bioactive compounds function by mutual complement of function mechanisms, as well as improving the function after digestion by regulating digestion process. Moreover, transmembrane absorption and transport of FCs/BBPs also could be facilitated by mixtures due to complement of transmembrane mechanism (endocytosis, protein channels, cell bypass way). This manuscript lays a foundation for the development of active ingredient bioavailability in functional food processing.


Asunto(s)
Digestión , Alimentos Funcionales , Humanos , Transporte Biológico , Disponibilidad Biológica , Animales , Modelos Biológicos , Péptidos/metabolismo , Péptidos/química
14.
Food Chem ; 460(Pt 1): 140490, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033637

RESUMEN

Protein hydrolysates derived from aquaculture by-products hold significant promise as key components in the formulation of active films. In our study, we investigated the impact of different protein hydrolysates levels (0.4%, 0.8%, and 1.2%) obtained from the cutting by-product of Serra Spanish mackerel on the mechanical (PHSSM), morphological, optical, thermal, and antioxidant properties, as well as the degradability of biodegradable films. Four treatments were produced, varying the concentrations of PHSSM: C (control, without PHSSM), T4 (with 0.4% PHSSM), T8 (with 0.8% PHSSM), and T12 (with 1.2% PHSSM). These films were based on myofibrillar proteins from fish by-products and pectin extracted from yellow passion fruit. The incorporation of PHSSM led to enhanced barrier properties, resulting in a proportional reduction in water vapor permeability compared to the control film. However, high PHSSM levels (>0.8%) compromised film homogeneity and increased fracture susceptibility. Tensile strength remained unaffected (p > 0.05). PHSSM-enriched films exhibited reduced transparency and lightness, regardless of PHSSM concentration. The addition of PHSSM imparted a darker, reddish-yellow hue to the films, indicative of heightened visible light barrier properties. Moreover, increased PHSSM content (0.8% and 1.2%) appeared to accelerate film degradation in soil. Fourier transform infrared spectroscopy confirmed the presence of pectin-protein complexes in the films, with no discernible differences among the treated samples in the spectra. Incorporating PHSSM also enhanced film crystallinity and thermal resistance. Furthermore, an improvement in the antioxidant activity of the films was observed with PHSSM addition, dependent on concentration. The T8 emerged as the promising candidate for developing active primary packaging suitable for oxidation-sensitive foods.

15.
J Food Sci Technol ; 61(9): 1621-1631, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049908

RESUMEN

Goats are important livestock mainly recognized for their low rearing costs and adaptability to harsh climate making them suitable for small farmers. Goat's milk has been tagged as highly consumed milk in many parts of the world and also carry essential substances as minerals, vitamins, enzymes, proteins, electrolytes and fatty acids which are easily metabolised by the body. The unique health benefits of goat milk make it a remedy for various disease conditions. Additionally, the low allergenicity and high digestibility of goat milk make it a popular dairy product for infants and immunocompromised individuals. This review summarizes the efforts and achievements made in analyzing goat milk's nutritional, therapeutic, and functional properties and its current applications in the food and nutraceuticals sector. Also, the article provides insights into the diverse range of food and cosmetics applications of goat milk-derived components. Besides the long history of the use of goat milk for human nutrition, the scientific literature concerning various bioactive components and their beneficial therapeutic effects with respect to modern science are also reviewed in detail.

16.
Nutrients ; 16(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064766

RESUMEN

Chronic diseases have emerged as a formidable global health concern, with their prevalence steadily rising over the years. Several approaches to addressing these concerns include the use of medications, which are often expensive, contain synthetic chemical substances, and have reported adverse effects. The use of foods, especially proteins, as an alternative approach to addressing chronic health concerns by treating and managing chronic diseases is increasing. This review evaluates the intriguing role of food proteins in mitigating chronic diseases and improving our understanding of the therapeutic potential of different protein types, including those derived from legumes, nuts, and seeds, dairy, fish, and numerous other sources. They have been reported to offer promising avenues for managing chronic diseases, including cardiovascular diseases, diabetes, chronic inflammation, weight management, bone health, glycemic control, muscle preservation, and many other health benefits. Although the exact mechanisms for these actions are still not properly elucidated, it is, however, understood that food proteins exert these health-beneficial effects by their unique nutritional and bioactive profiles, especially their bioactive peptides and amino acids. Practical applications are also discussed, including dietary interventions that are tailored towards incorporating protein-rich foods and the development of functional foods for disease prevention and management. Food proteins are a promising approach to combating chronic diseases that can turn around public health practices.


Asunto(s)
Proteínas en la Dieta , Alimentos Funcionales , Humanos , Enfermedad Crónica , Animales
17.
Food Res Int ; 191: 114696, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059907

RESUMEN

Baltic herring is the main catch in the Baltic Sea; however, its usage could be improved due to the low processing rate. Previously we have shown that whole Baltic herring hydrolysates (BHH) and herring byproducts hydrolysates (BHBH) by commercial enzymes consisted of bioactive peptides and had moderate bioactivity in in vitro dipeptidyl peptidase (DPP)-4 assay. In this study, we identified the hydrolysate peptides by LC-MS/MS and predicted the potential bioactive DPP-4 inhibitory peptides using in silico tools. Based on abundance, peptide length and stability, 86 peptides from BHBH and 80 peptides from BHH were proposed to be novel DPP-4 inhibitory peptides. BHH was fed to a mice intervention of a high-fat, high-fructose diet to validate the bioactivity. The results of the glucose tolerance and insulin tolerance improved. Plasma DPP-4 activities, C-peptide levels, and HOMA-IR scores significantly decreased, while plasma glucagon-like peptide-1 content increased. In conclusion, BHH is an inexpensive and sustainable source of functional antidiabetic ingredients.


Asunto(s)
Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Obesidad , Animales , Dipeptidil Peptidasa 4/metabolismo , Ratones , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Obesidad/metabolismo , Masculino , Péptidos , Dieta Alta en Grasa , Peces , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Modelos Animales de Enfermedad , Espectrometría de Masas en Tándem , Hipoglucemiantes/farmacología , Simulación por Computador , Ratones Endogámicos C57BL , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Resistencia a la Insulina
18.
Crit Rev Food Sci Nutr ; : 1-9, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950579

RESUMEN

Bioactive peptides from brewer's spent grain (BSG) and brewer's spent yeast (BSY), two by-products of the brewing industry, have great potential as functional food ingredients, dietary supplements or nutraceuticals to reduce the risk of numerous pathological conditions. Nevertheless, the oral administration of these peptides poses great challenges since peptides must undergo gastrointestinal digestion, intestinal absorption and hepatic metabolism, which can affect their bioavailability and, therefore, the expected outcomes. This review provides a comprehensive and critical analysis of the potential impact of the oral route on the bioactivity of BSG/BSY peptides as assessed by in vitro assays and identifies research gaps that require novel approaches/methodologies. The data collected indicate that in addition to the significant influence of gastrointestinal digestion, intestinal absorption and hepatic metabolism also have a major impact on the bioactivity of brewing peptides. The major gap identified was the insufficient evidence regarding hepatic metabolism, which points for the need of employing in vitro assays in this research field to provide such clarification. Thus, to reach the market, the impact of the oral route on the bioactivities of BSG/BSY peptides must be properly studied in vitro to allow adequate/effective administration (dosage/frequency) with a beneficial impact on the population health.

19.
Food Res Int ; 191: 114622, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059896

RESUMEN

This study was aimed to evaluate the effect of heat damage on the release of total amino acids (AA), essential AA (EAA), branched-chain AA (BCAA) and bioactive peptides following in vitro static simulated gastrointestinal digestion (SGID) of four commercial whey-protein based sports supplements. The extent of protein glycation and denaturation was evaluated through the determination of the content of furosine and soluble whey proteins. The strongest protein breakdown (41.3 %) and the highest release of AA, EAA and BCAA (36.20, 27.78, and 11.30 g/100 g protein, respectively) was observed in the sports supplement characterised by the lowest (52.5 %) level of soluble whey proteins; whereas the protein glycation had a negligible impact on the studied parameters. The SGID also led to the release of several peptides with various reported bioactivities that may be beneficial to sports activity.


Asunto(s)
Aminoácidos , Suplementos Dietéticos , Digestión , Calor , Proteína de Suero de Leche , Aminoácidos/análisis , Aminoácidos/metabolismo , Tracto Gastrointestinal/metabolismo , Péptidos , Desnaturalización Proteica , Proteolisis , Humanos , Lisina/análogos & derivados
20.
Antioxidants (Basel) ; 13(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39061905

RESUMEN

This study explored the impact of starter-assisted fermentation on apple blossoms to enhance their potential as a source of antioxidant and antifungal molecules. Fructobacillus fructosus PL22 and Wickerhamomyces anomalus GY1 were chosen as starters owing to their origin and promising ability to modify plant secondary metabolites. An initial assessment through microbiological and physicochemical analyses showed superior outcomes for starter-assisted fermentation compared to the spontaneous process. Enzymatic hydrolysis of proteins, primarily controlled by starters, orchestrated the generation of new low-molecular-weight peptides. W. anomalus GY1 also induced modifications in the phenolic profile, generating a diverse array of bioactive metabolites. These metabolic changes, particularly the release of potentially bioactive peptides, were associated with significant antioxidant activity and marked antifungal efficacy against three common mold species. Our results shed light on the potential of microbial starters to valorize agricultural wastes and convert them into a valuable resource for industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA