Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Materials (Basel) ; 17(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124291

RESUMEN

To improve the biocompatibility and bioactivity of biodegradable iron-based materials, nanostructured surfaces formed by metal oxides offer a promising strategy for surface functionalization. To explore this potential, iron oxide nanotubes were synthesized on pure iron (Fe) using an anodic oxidation process (50 V-30 min, using an ethylene glycol solution containing 0.3% NH4F and 3% H2O, at a speed of 100 rpm). A nanotube layer composed mainly of α-Fe2O3 with diameters between 60 and 70 nm was obtained. The effect of the Fe-oxide nanotube layer on cell viability and morphology was evaluated by in vitro studies using a human osteosarcoma cell line (SaOs-2 cells). The results showed that the presence of this layer did not harm the viability or morphology of the cells. Furthermore, cells cultured on anodized surfaces showed higher metabolic activity than those on non-anodized surfaces. This research suggests that growing a layer of Fe oxide nanotubes on pure Fe is a promising method for functionalizing and improving the cytocompatibility of iron substrates. This opens up new opportunities for biomedical applications, including the development of cardiovascular stents or osteosynthesis implants.

2.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125232

RESUMEN

Ischemic events can culminate in acute myocardial infarction, which is generated by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cardiac cell therapy aims to replace injured or necrotic cells with healthy and functional cells. Tissue engineering and cardiovascular regenerative medicine propose therapeutic alternatives using biomaterials that mimic the native extracellular environment and improve cellular and tissue functionality. This investigation evaluates the effect of thermosensitive hydrogels, and murine fetal ventricular cardiomyocytes encapsulated in thermosensitive hydrogels, on the contractile function of cardiomyocyte regeneration during an ischemic event. Chitosan and hydrolyzed collagen thermosensitive hydrogels were developed, and they were physically and chemically characterized. Likewise, their biocompatibility was evaluated through cytotoxicity assays by MTT, LDH, and their hemolytic capacity. The hydrogels, and cells inside the hydrogels, were used as an intervention for primary cardiomyocytes under hypoxic conditions to determine the restoration of the contractile capacity by measuring intracellular calcium levels and the expressions of binding proteins, such as a-actinin and connexin 43. These results evidence the potential of natural thermosensitive hydrogels to restore the bioelectrical functionality of ischemic cardiomyocytes.

3.
Heliyon ; 10(15): e34772, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144980

RESUMEN

Magnesium alloys have been extensively studied as degradable biomaterials for clinical applications due to their biocompatibility and mechanical properties. However, their poor corrosion resistance can lead to issues such as osteolysis and the release of gaseous hydrogen. This study investigated the influence of the activation time of magnesium surfaces in a sodium hydroxide (NaOH) solution on the concentration of active hydroxyl groups and corrosion resistance. The results indicated that immersion time significantly influences the formation of a corrosion-resistant film and the distribution of surface hydroxyl groups. Specifically, specimens treated for 7.5 h exhibited the highest concentration of hydroxyl groups and the most uniform oxide film distribution. Electrochemical tests demonstrated capacitive behavior and passive surface formation for all evaluated times, with the 7.5-h immersion in NaOH yielding superior corrosion resistance, lower current density, and a more efficient and thicker protective film. SEM and EDS analyses confirmed increased formation of Mg(OH)2 for samples treated for 5 and 7.5 h, while a 10-h treatment resulted in a brittle, porous layer prone to degradation. Statistical analysis using ANOVA and Fisher's LSD test corroborated these findings. The optimal 7.5-h alkali treatment enhanced magnesium's corrosion resistance and surface properties, making it a promising candidate for orthopedic implants. However, further studies are necessary to assess biocompatibility and physiological responses before clinical implementation.

4.
Biomed Mater Eng ; 35(4): 387-399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968040

RESUMEN

BACKGROUND: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability. OBJECTIVE: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering. METHODS: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture. RESULTS: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications. CONCLUSION: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.


Asunto(s)
Aloe , Supervivencia Celular , Gelatina , Mucílago de Planta , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Poliésteres/química , Ingeniería de Tejidos/métodos , Gelatina/química , Andamios del Tejido/química , Supervivencia Celular/efectos de los fármacos , Aloe/química , Mucílago de Planta/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Humanos , Membranas Artificiales , Animales
5.
Biomimetics (Basel) ; 9(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056872

RESUMEN

BACKGROUND: Guided bone regeneration (GBR) has become a necessary practice in implantology. Absorbable membranes have shown advantages over non-absorbable membranes, such as blood support of bone tissue. This study aimed to evaluate five collagen membranes in rat calvaria critical-size defects through a histomorphometric analysis of the inflammatory profile during the initial phase of bone repair. MATERIALS AND METHODS: A total of 72 Albinus Wistar rats were used for the study, divided into six groups, with 12 animals per group, and two experimental periods, 7 and 15 days. The groups were as follows: the CG (clot), BG (Bio-Gide®), JS (Jason®), CS (Collprotect®), GD (GemDerm®), and GDF (GemDerm Flex®). RESULTS: Data showed that the BG group demonstrated an inflammatory profile with an ideal number of inflammatory cells and blood vessels, indicating a statistically significant difference between the JS and CS groups and the BG group in terms of the number of inflammatory cells and a statistically significant difference between the JS and CS groups and the GD group in terms of angiogenesis (p < 0.05). CONCLUSIONS: We conclude that different origins and ways of obtaining them, as well as the thickness of the membrane, can interfere with the biological response of the material.

6.
J Funct Biomater ; 15(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057300

RESUMEN

Zinc is known for its role in enhancing bone metabolism, cell proliferation, and tissue regeneration. Several studies proposed the incorporation of zinc into hydroxyapatite (HA) to produce biomaterials (ZnHA) that stimulate and accelerate bone healing. This systematic review aimed to understand the physicochemical characteristics of zinc-doped HA-based biomaterials and the evidence of their biological effects on osteoblastic cells. A comprehensive literature search was conducted from 2022 to 2024, covering all years of publications, in three databases (Web of Science, PUBMED, Scopus), retrieving 609 entries, with 36 articles included in the analysis according to the selection criteria. The selected studies provided data on the material's physicochemical properties, the methods of zinc incorporation, and the biological effects of ZnHA on bone cells. The production of ZnHA typically involves the wet chemical synthesis of HA and ZnHA precursors, followed by deposition on substrates using processes such as liquid precursor plasma spraying (LPPS). Characterization techniques confirmed the successful incorporation of zinc into the HA lattice. The findings indicated that zinc incorporation into HA at low concentrations is non-cytotoxic and beneficial for bone cells. ZnHA was found to stimulate cell proliferation, adhesion, and the production of osteogenic factors, thereby promoting in vitro mineralization. However, the optimal zinc concentration for the desired effects varied across studies, making it challenging to establish a standardized concentration. ZnHA materials are biocompatible and enhance osteoblast proliferation and differentiation. However, the mechanisms of zinc release and the ideal concentrations for optimal tissue regeneration require further investigation. Standardizing these parameters is essential for the effective clinical application of ZnHA.

7.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063086

RESUMEN

Pyrogens are fever-inducing substances routinely investigated in health products through tests such as the Rabbit Pyrogen Test (RPT), the Limulus Amebocyte Lysate (LAL), and the Monocyte Activation Test (MAT). However, the applications of the MAT for medical devices and biomaterials remain limited. This work aimed to overview the studies evaluating the pyrogenicity of medical devices and biomaterials using the MAT, highlighting its successes and potential challenges. An electronic search was performed by December 2023 in PubMed, Scopus, and Web of Science, identifying 321 records which resulted in ten selected studies. Data were extracted detailing the tested materials, MAT variants, interferences, and comparisons between methods. Methodological quality was assessed using the ToxRTool, and the results were synthesized descriptively. The selected studies investigated various materials, including polymers, metals, and natural compounds, employing the different biological matrices of the MAT. Results showed the MAT's versatility, with successful detection of pyrogens in most materials tested, though variability in sensitivity was noted based on the material and testing conditions. Challenges remain in optimizing protocols for different material properties, such as determining the best methods for direct contact versus eluate testing and addressing the incubation conditions. In conclusion, the MAT demonstrates significant potential as a pyrogen detection method for medical devices and biomaterials. However, continued research is essential to address existing gaps, optimize protocols, and validate the test across a broader range of materials.


Asunto(s)
Materiales Biocompatibles , Equipos y Suministros , Monocitos , Pirógenos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Pirógenos/análisis , Materiales Biocompatibles/química , Humanos , Animales
8.
Rev Cient Odontol (Lima) ; 12(1): e188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015310

RESUMEN

Objective: To describe the existing knowledge about metal-free prosthetic biomaterials according to their physicochemical properties and based on this, define criteria for their placement in both the anterior and posterior sectors. Materials and methods: A digital search was carried out in the databases: PubMed/Medline, Scopus, Web of Science and Google Scholar of the literature published in the English language without time restrictions and included original articles such as case reports, retrospective and prospective studies, narrative, comprehensive, systematic reviews and meta-analysis. Meanwhile, short communications, editorials and articles in a language other than English were excluded. Results: 40 articles were evaluated, published between 2000 and 2023. The main characteristics and physicochemical properties of ceramic biomaterials such as zirconia, feldspathic based ceramics, lithium disilicate and alumina, among others, were analyzed and summarized. In addition, certain criteria were defined based on the available scientific evidence on the use of different ceramic systems both in the anterior sector and in the posterior sector for patients who need some type of prosthetic restoration. Conclusions: Among the different metal-free materials used for the construction of fixed dental prostheses, zirconia has been shown to have better aesthetic, biomechanical and biocompatibility properties, which makes it a candidate material for the rehabilitation of partially edentulous patients.


Objetivo: Describir el conocimiento existente sobre los biomateriales protésicos libres de metal, según sus propiedades fisicoquímicas, y definir, con base en ello, criterios para su colocación tanto en el sector anterior como en el posterior. Materiales y métodos: Se realizó una búsqueda digital en las bases de datos PubMed/Medline, Scopus, Web of Science y Google Scholar de la literatura publicada en idioma inglés, sin restricciones de tiempo. Se incluyó artículos originales como reportes de casos, estudios retrospectivos y prospectivos, revisiones y metanálisis narrativos, exhaustivos y sistemáticos. Por otra parte, se excluyeron comunicaciones breves, editoriales y artículos en idioma distinto al inglés. Resultados: Se evaluaron 40 artículos, publicados entre 2000 y 2023. Se analizaron y resumieron las principales características y propiedades fisicoquímicas de biomateriales cerámicos, como circonia, cerámicas de base feldespática, disilicato de litio y alúmina, entre otros. Además, se definieron ciertos criterios basados en la evidencia científica disponible sobre el uso de diferentes sistemas cerámicos, tanto en el sector anterior como en el posterior, para pacientes que necesitan algún tipo de restauración protésica. Conclusiones: Entre los diferentes materiales libres de metales utilizados para la construcción de prótesis dentales fijas, la circonia ha demostrado tener mejores propiedades estéticas, biomecánicas y de biocompatibilidad, lo que la convierte en un material candidato para la rehabilitación del paciente parcialmente edéntulo.

9.
Regen Ther ; 26: 145-160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872977

RESUMEN

Bone repair via endochondral ossification is a complex process for the critical size reparation of bone defects. Tissue engineering strategies are being developed as alternative treatments to autografts or allografts. Most approaches to bone regeneration involve the use of calcium composites. However, exploring calcium-free alternatives in endochondral bone repair has emerged as a promising way to contribute to bone healing. By analyzing researches from the last ten years, this review identifies the potential benefits of such alternatives compared to traditional calcium-based approaches. Understanding the impact of calcium-free alternatives on endochondral bone repair can have profound implications for orthopedic and regenerative medicine. This review evaluates the efficacy of calcium-free alternatives in endochondral bone repair through in vivo trials. The findings may guide future research to develop innovative strategies to improve endochondral bone repair without relying on calcium. Exploring alternative approaches may lead to the discovery of novel therapies that improve bone healing outcomes.

10.
Chem Biodivers ; : e202400645, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923658

RESUMEN

Antimicrobial films were prepared with chitosan containing the methanolic extract of M. tenuiflora leaves (FECT20%, FECT30%, and FECT40%), and their antimicrobial activities were evaluated by agar diffusion. The films were characterized by IR spectroscopy, scanning electron microscopy (SEM) and TG/DTG curves. TG/DTG curves showed thermal stability of chitosan-extract films up to 166 ºC. Micrographs of chitosan-extract films revealed an increase in porosity with the addition of extract. The FECT40% film showed inhibition zone diameters (IZ) against Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and B. cereus, ranging from 1.0 ± 0.02 to 0.72 ± 0.09 cm. Only FECT30% and FECT40% inhibited the P. aeruginosa with IZs of 0.68 ± 0.02 and 0.77 ± 0.06 cm, respectively. In turn, the extract showed inhibition against B. subtilis and B. cereus, with IZs values of 0.92 ± 0.2 cm and 0.72 ± 0.05 cm, respectively. Additionally, the crude extract presented antioxidant potential with inhibition percentages of 32.74% ± 0.90 for ABTS and 27.04% ± 1.36 for DPPH. The antimicrobial and antioxidant activities of the crude extract, as well as the antimicrobial property of chitosan-extract films, suggests the potential of these biopolymers for the development of wound healing bandages and new food packaging alternatives.

11.
J Fungi (Basel) ; 10(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921397

RESUMEN

Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the utilization of K. phaffii as a platform to produce several products of economic interest such as biopharmaceuticals, renewable chemicals, fuels, biomaterials, and food/feed products. Finally, we present synthetic biology approaches currently used for strain engineering, aiming at the production of new bioproducts.

12.
Front Bioeng Biotechnol ; 12: 1410863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903186

RESUMEN

Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.

13.
Front Med (Lausanne) ; 11: 1330482, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774396

RESUMEN

Introduction: Given the ensuing increase in bone and periodontal diseases and defects, de novo bone repair and/or regeneration strategies are constantly undergoing-development alongside advances in orthopedic, oro-dental and cranio-maxillo-facial technologies and improvements in bio-/nano-materials. Indeed, there is a remarkably growing need for new oro-dental functional biomaterials that can help recreate soft and hard tissues and restore function and aesthetics of teeth/ dentition and surrounding tissues. In bone tissue engineering, HydroxyApatite minerals (HAp), the most stable CaP/Calcium Phosphate bioceramic and a widely-used material as a bone graft substitute, have been extensively studied for regenerative medicine and dentistry applications, including clinical use. Yet, limitations and challenges owing principally to its bio-mechanical strength, exist and therefore, research and innovation efforts continue to pursue enhancing its bio-effects, particularly at the nano-scale. Methods: Herein, we report on the physico-chemical properties of a novel nanoHydroxyApatite material obtained from the backbone of Salmon fish (patent-pending); an abundant and promising yet under-explored alternative HAp source. Briefly, our nanoS-HAp obtained via a modified and innovative alkaline hydrolysis-calcination process was characterized by X-ray diffraction, electron microscopy, spectroscopy, and a cell viability assay. Results and Discussion: When compared to control HAp (synthetic, human, bovine or porcine), our nanoS-HAp demonstrated attractive characteristics, a promising biomaterial candidate for use in bone tissue engineering, and beyond.

14.
J Mech Behav Biomed Mater ; 156: 106569, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776741

RESUMEN

This study aimed to produces and characterize bovine hydroxyapatite (HA) bioceramic with 3Y-TZP addition and analyze different sintering curves. HA was extracted from bovine bones and nanoparticulated. HA discs (0, 1, 5 and 10 wt% 3Y-TZP) were subjected to uniaxial and isostatic pressing. Dilatometry analysis was performed and the groups were sintered using 3 different firing curves (conventional, 1300 °C; 2-step, 1292 °C; 2-step, 1420 °C). The samples were analyzed by X-ray diffraction (XRD), biaxial flexural strength (BFS), Vickers microhardness (VH) and Field emission scanning electron microscopy (FE-SEM). The dilatometry results signaled the need for sintering optimization in groups added with 3Y-TZP. XRD demonstrated the characteristic crystallographic peaks of HA in the pure groups and with 1% 3Y-TZP, and decomposition of HA into ß-TCP and formation of calcium zirconate in the groups with 5 and 10% 3Y-TZP. Considering each composition, the groups of pure HA (131.3 ± 13.5 MPa; 401 ± 12.7 GPa) sintered by the conventional curve and HA+1%3Y-TZP (145 ± 8.6 MPa; 507 ± 47.9 GPa), HA+5%3Y-TZP (68.1 ± 14.2 MPa; 183 ± 9.8 GPa) and HA+10%3Y-TZP (55.6 ± 5.1 MPa; 96.1 ± 7.64 GPa) sintered by the 2-step curve at 1420 °C, combined the best BFS and VH results. The addition of 1 wt% 3Y-TZP and optimization in the sintering process improved the mechanical and microstructural properties of HA bioceramics and maintenance of its crystalline characteristics. Refinement in material processing is necessary for the future use of this bioceramic in dentistry.


Asunto(s)
Cerámica , Durapatita , Ensayo de Materiales , Itrio , Circonio , Animales , Durapatita/química , Circonio/química , Bovinos , Itrio/química , Cerámica/química , Dureza , Materiales Biocompatibles/química , Fenómenos Mecánicos
15.
Talanta ; 276: 126189, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718645

RESUMEN

A film composed of agarose and graphene (G) and magnetic nanoparticles (G-MNPs) is proposed as a sorbent for the extraction and determination of medroxyprogesterone (MED), levonorgestrel (LEV), norethisterone (NOR) and progesterone (PRO) in natural water samples. Both the preparation of the film and the extraction procedure were optimized. The optimal extraction parameters were as follows: isopropyl alcohol as activation solvent, sample pH value of 3.0, extraction time of 30 min, 1.00 mL of acetonitrile as eluent, elution time of 5 min and sample volume of 100.00 mL. HPLC with photodiode array detector was used for the separation and determination. The method presented a linear range between 2.50 and 75.0 µg L-1 for all analytes, and the LODs were between 1.40 and 1.80 µg L-1. The method was applied to natural water samples, obtaining satisfactory recovery values (75-111 %). In conclusion, for the immobilization of the G-MNPs, agarose was used, which is a non-toxic, renewable and biodegradable material. The G-MNPs-agarose film was reused up to 70 times, without losing its extraction capacity significantly and presenting excellent sorbent properties, which allow the extraction and preconcentration of the progestogens under study.


Asunto(s)
Progestinas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Progestinas/aislamiento & purificación , Progestinas/análisis , Progestinas/química , Adsorción , Nanopartículas de Magnetita/química , Extracción en Fase Sólida/métodos , Sefarosa/química , Cromatografía Líquida de Alta Presión
16.
Cells ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667303

RESUMEN

Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.


Asunto(s)
Músculo Esquelético , Mioblastos , Ingeniería de Tejidos , Andamios del Tejido , Animales , Bovinos , Andamios del Tejido/química , Músculo Esquelético/citología , Ingeniería de Tejidos/métodos , Mioblastos/citología , Materiales Biocompatibles/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Células Cultivadas , Proliferación Celular , Matriz Extracelular/metabolismo
17.
Materials (Basel) ; 17(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612181

RESUMEN

The use of titanium as a biomaterial for the treatment of dental implants has been successful and has become the most viable and common option. However, in the last three decades, new alternatives have emerged, such as polymers that could replace metallic materials. The aim of this research work is to demonstrate the structural effects caused by the fatigue phenomenon and the comparison with polymeric materials that may be biomechanically viable by reducing the stress shielding effect at the bone-implant interface. A numerical simulation was performed using the finite element method. Variables such as Young's modulus, Poisson's coefficient, density, yield strength, ultimate strength, and the S-N curve were included. Prior to the simulation, a representative digital model of both a dental implant and the bone was developed. A maximum load of 550 N was applied, and the analysis was considered linear, homogeneous, and isotropic. The results obtained allowed us to observe the mechanical behavior of the dental implant by means of displacements and von Mises forces. They also show the critical areas where the implant tends to fail due to fatigue. Finally, this type of non-destructive analysis proves to be versatile, avoids experimentation on people and/or animals, and reduces costs, and the iteration is unlimited in evaluating various structural parameters (geometry, materials, properties, etc.).

18.
J Biomed Mater Res A ; 112(9): 1518-1531, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38488327

RESUMEN

Estrogen deficiency, long-term immobilization, and/or aging are commonly related to bone mass loss, thus increasing the risk of fractures. One option for bone replacement in injuries caused by either traumas or pathologies is the use of orthopedic cement based on polymethylmethacrylate (PMMA). Nevertheless, its reduced bioactivity may induce long-term detachment from the host tissue, resulting in the failure of the implant. In view of this problem, we developed an alternative PMMA-based porous cement (pPMMA) that favors cell invasion and improves osteointegration with better biocompatibility. The cement composition was changed by adding bioactive strontium-nanoparticles that mimic the structure of bone apatite. The nanoparticles were characterized regarding their physical-chemical properties, and their effects on osteoblasts and osteoclast cultures were assessed. Initial in vivo tests were also performed using 16 New Zealand rabbits as animal models, in which the pPMMA-cement containing the strontium nanoparticles were implanted. We showed that the apatite nanoparticles in which 90% of Ca2+ ions were substituted by Sr2+ (NanoSr 90%) upregulated TNAP activity and increased matrix mineralization. Moreover, at the molecular level, NanoSr 90% upregulated the mRNA expression levels of, Sp7, and OCN. Runx2 was increased at both mRNA and protein levels. In parallel, in vivo tests revealed that pPMMA-cement containing NanoSr 90%, upregulated two markers of bone maturation, OCN and BMP2, as well as the formation of apatite minerals after implantation in the femur of rabbits. The overall data support that strontium nanoparticles hold the potential to up-regulate mineralization in osteoblasts when associated with synthetic biomaterials.


Asunto(s)
Osteoblastos , Estroncio , Animales , Estroncio/farmacología , Estroncio/química , Conejos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Nanopartículas/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Cementos para Huesos/farmacología , Cementos para Huesos/química , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ratones
19.
Carbohydr Polym ; 334: 122017, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553216

RESUMEN

Over the last decade, the convergence of advanced materials and innovative applications has fostered notable scientific progress within the biomedical and pharmaceutical fields. Porphyrins and their derivatives, distinguished by an extended conjugated π-electron system, have a relevant role in propelling these advancements, especially in drug delivery systems, photodynamic therapy, wound healing, and (bio)sensing. However, despite their promise, the practical clinical application of these macrocycles is hindered by their inherent challenges of low solubility and instability under physiological conditions. To address this limitation, researchers have exploited the synergistic association of porphyrins and chlorins with polysaccharides by engineering conjugated systems and composite/hybrid materials. This review compiles the principal advances in this growing research field, elucidating fundamental principles and critically examining the applications of such materials within biomedical and pharmaceutical contexts. Additionally, the review addresses the eventual challenges and outlines future perspectives for this poignant research field. It is expected that this review will serve as a comprehensive guide for students and researchers dedicated to exploring state-of-the-art materials for contemporary medicine and pharmaceutical applications.


Asunto(s)
Polisacáridos , Porfirinas , Humanos , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles
20.
Front Mol Biosci ; 11: 1356081, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455767
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA