Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17622, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085337

RESUMEN

The black fungus Exophiala causes a wide range of infections from superficial to subcutaneous, but also invasive fungal infections in immunocompromised patients as well as healthy individuals. In addition, Exophiala, is a common colonizer of the air ways of patients with cystic fibrosis. However, the source of infection and mode of transmission is still unclear. The aim of this study was to investigate the presence of Exophiala in samples collected from Swedish indoor environments. We found that the Exophiala species were commonly found in dishwashers and that Exophiala dermatitidis was the most common Exophiala species, being identified in 70% (26 out of the 37) of samples. Almost all E. dermatitidis isolates had the ability to grow at 42 °C (P = 0.0002) and were catalase positive. Voriconazole and posaconazole exhibited the lowest MICs, while caspofungin and anidulafungin lack the antifungal activities in vitro. Future studies are needed to illuminate the transmission mode of the fungi.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Exophiala , Pruebas de Sensibilidad Microbiana , Exophiala/efectos de los fármacos , Exophiala/aislamiento & purificación , Antifúngicos/farmacología , Humanos , Feohifomicosis/microbiología , Feohifomicosis/tratamiento farmacológico , Composición Familiar , Voriconazol/farmacología , Suecia , Triazoles
2.
IUBMB Life ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011777

RESUMEN

Cryomyces antarcticus, a melanized cryptoendolithic fungus endemic to Antarctica, can tolerate environmental conditions as severe as those in space. Particularly, its ability to withstand ionizing radiation has been attributed to the presence of thick and highly melanized cell walls, which-according to a previous investigation-may contain both 1,8-dihydroxynaphthalene (DHN) and L-3,4 dihydroxyphenylalanine (L-DOPA) melanin. The genes putatively involved in the synthesis of DHN melanin were identified in the genome of C. antarcticus. Most important is capks1 encoding a non-reducing polyketide synthase (PKS) and being the ortholog of the functionally characterized kppks1 from the rock-inhabiting fungus Knufia petricola. The co-expression of CaPKS1 or KpPKS1 with a 4'-phosphopantetheinyl transferase in Saccharomyces cerevisiae resulted in the formation of a yellowish pigment, suggesting that CaPKS1 is the enzyme providing the precursor for DHN melanin. To dissect the composition and function of the melanin layer in the outer cell wall of C. antarcticus, non-melanized mutants were generated by CRISPR/Cas9-mediated genome editing. Notwithstanding its slow growth (up to months), three independent non-melanized Δcapks1 mutants were obtained. The mutants exhibited growth similar to the wild type and a light pinkish pigmentation, which is presumably due to carotenoids. Interestingly, visible light had an adverse effect on growth of both melanized wild-type and non-melanized Δcapks1 strains. Further evidence that light can pass the melanized cell walls derives from a mutant expressing a H2B-GFP fusion protein, which can be detected by fluorescence microscopy. In conclusion, the study reports on the first genetic manipulation of C. antarcticus, resulting in non-melanized mutants and demonstrating that the melanin is rather of the DHN type. These mutants will allow to elucidate the relevance of melanization for surviving extreme conditions found in the natural habitat as well as in space.

3.
Front Fungal Biol ; 5: 1390724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812984

RESUMEN

Introducion: Fungal melanin is an underexplored natural biomaterial of great biotechnological interest in different areas. This study investigated the physical, chemical, electrochemical, and metal-binding properties of melanin extracted from the metallotolerant black fungus Exophiala mesophila strain IRTA-M2-F10. Materials and methods: Specific inhibitory studies with tricyclazole and biochemical profiling of whole cells by synchrotron radiation-based Fourier-transform infrared spectral microscopy (SR-FTIRM) were performed. An optimized extraction protocol was implemented, and purified fungal melanin was characterized using an array of spectrophotometric techniques (UV-Vis, FTIR, and EPR) and by cyclic voltammetry (CV) experiments. The metal-binding capacity of melanin extracts was also assessed by using Cr(VI) as a model heavy metal. Results: Inhibitory studies indicated that 1,8-dihydroxynaphthalene may be the main precursor molecule of E. mesophila melanin (DHN-melanin). The biochemical characterization of fungal melanin extracts were benchmarked against those from two melanins comprising the precursor molecule L-3,4-dihydroxiphenylalanine (DOPA-melanin): extracts from the ink of the cephalopod Sepia officinalis and DOPA-melanin synthesized in the laboratory. The CV results of melanin extracts incubated with and without cell suspensions of the electroconductive bacterium Geobacter sulfurreducens were indicative of novel semiquinone/hydroquinone redox transformations specific for each melanin type. These interactions may play an important role in cation exchange for the adsorption of metals and in microbial interspecies electron transfer processes. Discussion: The obtained results provided further evidence for the DHN-nature of E. mesophila melanin. The FTIR profiling of melanin extracts exposed to Cr(VI), compared to unexposed melanin, resulted in useful information on the distinct surface-binding properties of fungal melanin. The parameters of the Langmuir and Freundlicht isotherms for the adsorption of Cr(VI) were determined and compared to bibliographic data. Altogether, the inherent properties of fungal melanin suggest its promising potential as a biomaterial for environmental applications.

4.
Sci Rep ; 14(1): 12249, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806503

RESUMEN

Members of the family Trichomeriaceae, belonging to the Chaetothyriales order and the Ascomycota phylum, are known for their capability to inhabit hostile environments characterized by extreme temperatures, oligotrophic conditions, drought, or presence of toxic compounds. The genus Knufia encompasses many polyextremophilic species. In this report, the genomic and morphological features of the strain FJI-L2-BK-P2 presented, which was isolated from the Mars 2020 mission spacecraft assembly facility located at the Jet Propulsion Laboratory in Pasadena, California. The identification is based on sequence alignment for marker genes, multi-locus sequence analysis, and whole genome sequence phylogeny. The morphological features were studied using a diverse range of microscopic techniques (bright field, phase contrast, differential interference contrast and scanning electron microscopy). The phylogenetic marker genes of the strain FJI-L2-BK-P2 exhibited highest similarities with type strain of Knufia obscura (CBS 148926T) that was isolated from the gas tank of a car in Italy. To validate the species identity, whole genomes of both strains (FJI-L2-BK-P2 and CBS 148926T) were sequenced, annotated, and strain FJI-L2-BK-P2 was confirmed as K. obscura. The morphological analysis and description of the genomic characteristics of K. obscura FJI-L2-BK-P2 may contribute to refining the taxonomy of Knufia species. Key morphological features are reported in this K. obscura strain, resembling microsclerotia and chlamydospore-like propagules. These features known to be characteristic features in black fungi which could potentially facilitate their adaptation to harsh environments.


Asunto(s)
Ascomicetos , Marte , Filogenia , Nave Espacial , Ascomicetos/genética , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Genoma Fúngico/genética , Genómica/métodos
5.
Artif Cells Nanomed Biotechnol ; 52(1): 131-144, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38423087

RESUMEN

Most fungal bone and joint infections (arthritis) are caused by Mucormycosis (Mucor indicus). These infections may be difficult to treat and may lead to chronic bone disorders and disabilities, thus the use of new antifungal materials in bone disorders is vital, particularly in immunocompromised individuals, such as those who have contracted coronavirus disease 2019 (COVID-19). Herein, we reported for the first time the preparation of nitrogen-doped carbon quantum dots (N/CQDs) and a nitrogen-doped mesoporous carbon (N/MC) using a quick micro-wave preparation and hydrothermal approach. The structure and morphology were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and surface area analyser. Minimum inhibitory concentration (MIC), disc diffusion tests, minimum fungicidal concentration (MFC) and antifungal inhibitory percentages were measured to investigate the antifungal activity of N/CQDs and N/MC nanostructures. In addition to the in vivo antifungal activity in rats as determined by wound induction and infection, pathogen count and histological studies were also performed. According to in vitro and in vivo testing, both N/CQDs with small size and N/MC with porous structure had a significant antifungal impact on a variety of bone-infecting bacteria, including Mucor infection. In conclusion, the present investigation demonstrates that functional N/CQDs and N/MC are effective antifungal agents against a range of microbial pathogenic bone disorders in immunocompromised individuals, with stronger and superior fungicidal activity for N/CQDs than N/MC in vitro and in vivo studies.


Asunto(s)
Mucormicosis , Puntos Cuánticos , Ratas , Animales , Puntos Cuánticos/química , Antifúngicos/farmacología , Carbono/farmacología , Carbono/química , Nitrógeno/química
6.
J Fungi (Basel) ; 10(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392790

RESUMEN

The survival of pathogenic fungi in the host after invasion depends on their ability to obtain nutrients, which include the transition metal zinc. This essential micronutrient is required to maintain the structure and function of various proteins and, therefore, plays a critical role in various biological processes. The host's nutritional immunity limits the availability of zinc to pathogenic fungi mainly by the action of calprotectin, a component of neutrophil extracellular traps. Here we investigated the adaptive responses of Fonsecaea pedrosoi to zinc-limiting conditions. This black fungus is the main etiological agent of chromoblastomycosis, a chronic neglected tropical disease that affects subcutaneous tissues. Following exposure to a zinc-limited environment, F. pedrosoi induces a high-affinity zinc uptake machinery, composed of zinc transporters and the zincophore Pra1. A proteomic approach was used to define proteins regulated by zinc deprivation. Cell wall remodeling, changes in neutral lipids homeostasis, and activation of the antioxidant system were the main strategies for survival in the hostile environment. Furthermore, the downregulation of enzymes required for sulfate assimilation was evident. Together, the adaptive responses allow fungal growth and development and reveals molecules that may be related to fungal persistence in the host.

7.
Sci Total Environ ; 912: 169350, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38103606

RESUMEN

The prevention and control of biological patinas on outdoor stone monuments represent a demanding challenge for the conservation of cultural heritage also due to some microorganisms, particularly resistant to treatments, such as black meristematic fungi, an eco-physiological group well known for its tolerance to extreme conditions. Even if several methods and eco-friendly products have been proposed as new alternatives, traditional biocides are still far from being completely replaced. Recolonization is a natural process that occurs sooner or later after cleaning. The time that elapses until its occurrence can vary considerably depending on environmental conditions and the used products; unfortunately, the papers describing the effect of treatments over time are rare. This work aims to shed light on the recolonization process of marble surfaces in the ancient monumental cemetery of Bonaria (Cagliari) after nine years from treatments, evaluating the long-term efficiency of two different cleaning methods, namely dimethyl sulfoxide-based gel (DMSO-based gel) and Biotin T (a didecyldimethylammonium chloride-based product-). In this context, the microflora present before treatments and in the following years was assessed by culture-based methods and identified by molecular techniques, with attention on black meristematic fungi, which were used as reference for the most resistant lithobiontic organisms. Different environmental parameters, such as temperature, exposition, dominant winds, and rainfall, were considered, and infrared thermography, portable light microscopy, and image analysis were used. This research evidenced the influence of water availability and lightning in recolonization processes, the transition from the pioneer fungal community versus more resistant black fungal species after Biotin T treatment, and the long-lasting efficiency of the DMSO-based gel. These findings prove that this low-impact method deserves more attention in the conservation of outdoor marble monuments, emphasizing the importance of long-term studies.


Asunto(s)
Biotina , Carbonato de Calcio , Estudios de Seguimiento , Dimetilsulfóxido , Hongos
8.
Fungal Biol ; 127(12): 1512-1523, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097325

RESUMEN

The survival of living organisms depends on iron, one of the most abundant metals in the Earth's crust. Nevertheless, this micronutrient is poorly available in our aerobic atmosphere as well as inside the mammalian host. This problem is circumvented by the expression of high affinity iron uptake machineries, including the production of siderophores, in pathogenic fungi. Here we demonstrated that F. pedrosoi, the causative agent of the neglected tropical disease chromoblastomycosis, presents gene clusters for siderophore production. In addition, ten putative siderophore transporters were identified. Those genes are upregulated under iron starvation, a condition that induces the secretion of hydroxamates, as revealed by chrome azurol S assays. RP-HPLC and mass spectrometry analysis allowed the identification of ferricrocin as an intra- and extracellular siderophore. F. pedrosoi can grow in different iron sources, including the bacterial ferrioxamine B and the host proteins ferritin, hemoglobin and holotransferrin. Of note, addition of hemoglobin, lactoferrin and holotransferrin to the growth medium of macrophages infected with F. pedrosoi enhanced significantly fungal survival. The ability to produce siderophores in iron limited conditions added to the versatility to utilize different sources of iron are strategies that certainly may contribute to fungal survival inside the host.


Asunto(s)
Hierro , Sideróforos , Animales , Hierro/metabolismo , Sideróforos/metabolismo , Hemoglobinas , Mamíferos/metabolismo
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123250, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625274

RESUMEN

Fungal pigments such as melanin and carotenoids are distinctive markers of animal and plant pathogenic fungi as well as their environmental relatives. These complex pigments play important roles in pathogenicity and stress tolerance while also being useful as biomarkers. Accordingly, it is important to be able to identify in situ the pigments in black fungi, a group of clinical and environmental importance. In this study, wild-type and genetically modified strains of Knufia petricola A95 and wild fungal cells attached to ancient rock were investigated for their spectroscopic and microscopic Raman features and morphological appearance. Knockout mutants of melanin synthesis genes pks1 (polyketide synthase), sdh1 (scytalone dehydratase), and both pks1 and the carotenoid synthesis gene phd1 (phytoene desaturase) were studied We applied two different Raman microscopes using two lasers, with 633 nm and 488 nm wavelengths. We analyzed and compared Raman spectra between the measured reference substances and the mutant and wild-type strains. In the wild strain WT:A95, the peaks close to melanin peals were found at 1353 cm-1 and 1611 cm-1. There are no characteristic melanin peaks at 1580-1600 cm-1 and around 1350 cm-1 at the spectrum of the Δpks1/Δphd1 mutant and the Δsdh1 mutant. The Δpks1 mutant spectrum has the peaks at the beta-carotene v2 C-C in-plane stretch at 1155 cm-1 and v3 C-CH3 deformation at 1005 cm-1. The peaks of carotenoids and melanin were found in all mutants and the wild strain, except the Δpks1/Δphd1 mutant. Raman spectra allow for discrimination between the various pigments. Hence, interactions between natural fungal melanin, as well as other protective pigments, and complex environmental matrices can be characterized on a range of spatial and temporal scales.


Asunto(s)
Ascomicetos , Melaninas , Animales , Ascomicetos/genética , Carotenoides
10.
J Fungi (Basel) ; 9(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37504717

RESUMEN

Iron is a micronutrient required by almost all living organisms. Despite being essential, the availability of this metal is low in aerobic environments. Additionally, mammalian hosts evolved strategies to restrict iron from invading microorganisms. In this scenario, the survival of pathogenic fungi depends on high-affinity iron uptake mechanisms. Here, we show that the production of siderophores and the reductive iron acquisition system (RIA) are employed by Cladophialophora carrionii under iron restriction. This black fungus is one of the causative agents of chromoblastomycosis, a neglected subcutaneous tropical disease. Siderophore biosynthesis genes are arranged in clusters and, interestingly, two RIA systems are present in the genome. Orthologs of putative siderophore transporters were identified as well. Iron starvation regulates the expression of genes related to both siderophore production and RIA systems, as well as of two transcription factors that regulate iron homeostasis in fungi. A chrome azurol S assay demonstrated the secretion of hydroxamate-type siderophores, which were further identified via RP-HPLC and mass spectrometry as ferricrocin. An analysis of cell extracts also revealed ferricrocin as an intracellular siderophore. The presence of active high-affinity iron acquisition systems may surely contribute to fungal survival during infection.

11.
J Fungi (Basel) ; 9(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37367601

RESUMEN

Meristematic black fungi are a highly damaging group of microorganisms responsible for the deterioration of outdoor exposed monuments. Their resilience to various stresses poses significant challenges for removal efforts. This study focuses on the community of meristematic fungi inhabiting the external white marble of the Cathedral of Santa Maria del Fiore, where they contribute to its darkening. Twenty-four strains were isolated from two differently exposed sites of the Cathedral, and their characterization was conducted. Phylogenetic analysis using ITS and LSU rDNA regions revealed a wide diversity of rock-inhabiting fungal strains within the sampled areas. Eight strains, belonging to different genera, were also tested for thermal preferences, salt tolerance, and acid production to investigate their tolerance to environmental stressors and their interaction with stone. All tested strains were able to grow in the range of 5-30 °C, in the presence 5% NaCl, and seven out of eight strains were positive for the production of acid. Their sensitivities to essential oils of thyme and oregano and to the commercial biocide Biotin T were also tested. The essential oils were found to be the most effective against black fungi growth, indicating the possibility of developing a treatment with a low environmental impact.

12.
J Fungi (Basel) ; 9(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36836341

RESUMEN

Dematiaceous fungi are pigmented molds with a high content of melanin in their cell walls that can cause fatal infections in immunocompromised hosts. Direct microscopy is the main method for the rapid diagnosis of dematiaceous fungi in clinical specimens. However, it is often difficult to distinguish their hyphae from non-dematiaceous hyphae and yeast pseudohyphae. Our aim was to develop a fluorescence staining method that targets melanin for the detection of dematiaceous molds in clinical specimens. Glass slide smears of clinical samples and sterile bronchoalveolar lavage spiked with dematiaceous and non-dematiaceous fungi were treated with hydrogen peroxide, and digital images were recorded using direct microscopy with different fluorescent filters. The images of fungi were compared for their fluorescence intensity using the NIS-Elements software. The fluorescent signal between dematiaceous and non-dematiaceous fungi demonstrated a markedly increased mean intensity for dematiaceous molds following hydrogen peroxide treatment (7510.3 ± 10,427.6 vs. 0.3 ± 3.1, respectively, p < 0.0001). No fluorescent signal was detected in the absence of hydrogen peroxide. "Staining" fungal clinical specimens with hydrogen peroxide, followed by fluorescence microscopy examination, can differentiate between dematiaceous and non-dematiaceous fungi. This finding can be used for the detection of dematiaceous molds in clinical specimens and enables the early and appropriate treatment of infections.

13.
Mycoses ; 66(6): 488-496, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36740746

RESUMEN

BACKGROUND: The skin is the first line of defence against communities of resident viruses, bacteria and fungi. The composition of the microbiome might change with factors related to the environment and host. The microbiome is dominated by bacteria. Dermatophytes and yeasts are the predominant fungi that are also involved in opportunistic infections of skin, hair and nails. Among environmental fungi, Chaetothyriales (black yeasts and relatives) are enriched by hydrocarbon pollution in domesticated habitats and comprise numerous species that cause mild-to-severe disease. METHODS: We investigated the presence of black fungi in the skin microbiome by conducting an analysis in the publicly available metagenomic SRA database (NCBI). We focused on the causative agents of chromoblastomycosis and phaeohyphomycosis and used barcodes and padlock probe sequences as diagnostic tools. RESULTS: A total of 132,159,577 MB was analysed and yielded 18,360 reads that matched with 24 species of black fungi. Exophiala was the most prevalent genus, and Cyphellophora europaea was the most abundant species. CONCLUSION: This study reveals the abundant presence of Chaetothyriales on the skin without necessarily being associated with infection. Most of the detected causal agents are known from mild skin diseases, while also species were revealed that had been reported from CARD9-deficient patients.


Asunto(s)
Exophiala , Microbiota , Humanos , Saccharomyces cerevisiae , Metagenómica , Piel/microbiología , Exophiala/genética , Microbiota/genética , Hongos/genética
14.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36201346

RESUMEN

Six strains of black meristematic fungi were isolated from Antarctic soils, gasoline car tanks and from the marine alga Flabellia petiolata. These fungi were characterized by morphological, physiological and phylogenetic analyses. According to the maximum-likelihood analysis reconstructed with ITS and LSU sequences, these strains belonged to the genus Knufia. Knufia obscura sp. nov. (holotype CBS 148926) and Knufia victoriae sp. nov. (holotype CBS 149015) are proposed as two novel species and descriptions of their morphological, physiological and phylogenetic features are presented. Based on the maximum-likelihood analyses, K. obscura was closely related to Knufia hypolithi (99 % bootstrap support), while K. victoriae clustered in the clade of Knufia cryptophialidica and Knufia perfecta (93 % bootstrap support). Knufia victoriae, recorded in Antarctic soil samples, had a psychrophilic behaviour, with optimal growth between 10 and 15 °C and no growth recorded at 20 °C. Knufia obscura, from a gasoline car tank and algae, displayed optimal growth between 20 and 25 °C and was more tolerant to salinity than K. victoriae.


Asunto(s)
Ácidos Grasos , Gasolina , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ambientes Extremos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo
15.
Foods ; 11(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35454736

RESUMEN

Filamentous fungi have a crucial impact on the food safety and technological quality of malting barley. Commonly used techniques for the detection of seed-borne fungi are based on cultivation and identification by morphological criteria. In contrast, this study established a quantitative real-time polymerase chain reaction (PCR) assay based on SYBR green technology for the detection and quantification of black fungal species (Alternaria spp., Epicoccum nigrum, Cladosporium cladosporioides, Penicillium verrucosum and Aspergillus niger) on brewing barley and compares it with the traditional cultivation technique and visual assessment. To screen the fungal spectrum over different barley varieties and harvest years, naturally infected samples of malting barley and corresponding malts (Hordeum vulgare L.) were analyzed over four consecutive years (2018-2021), grown under different climatic conditions in Germany. Alternaria and Cladosporium spp. DNA were present in all examined barley samples, even without visible contamination. In contrast, detection via culture-based methods does not reliably cover all species. Molecular analysis showed that there was less fungal biomass after malting, by 58.57% in the case of A. alternata, by 28.27% for Cladosporium spp. and by 12.79% for Epicoccum nigrum. Correlation analysis showed no causal relationship between fungal DNA and the number of black kernels. The qPCR provides a highly sensitive and time-saving screening method for detecting latent fungal infections in brewing grains to identify batches that are potentially highly contaminated with toxigenic fungi.

16.
IMA Fungus ; 13(1): 4, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256015

RESUMEN

Some members of Chaetothyriales, an order containing potential agents of opportunistic infections in humans, have a natural habitat in nests of tropical arboreal ants. In these black fungi, two types of ant symbiosis are known, i.e. occurrence in domatia inside living plants, or as components of carton constructions made of ant-chewed plant tissue. In order to explain differences between strains from these types of association, we sequenced and annotated genomes of two newly described carton species, Incumbomyces lentus and Incumbomyces delicatus, and compared these with genomes of four domatia species and related Chaetothyriales. General genomic characteristics, CYP genes, carbohydrate-active enzymes (CAZymes), secondary metabolism, and sex-related genes were included in the study.

17.
Indian J Med Microbiol ; 40(1): 172-174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34020845

RESUMEN

A 45-year-old healthy woodcutter presented with a cystic swelling on the sole of the left great toe. Other than barefoot walking, there was no history of trauma or significant illness in the past. Fine needle aspirate showed yeast and hyphae on microscopy and culture grew black mould which was identified as Phaeoacremonium krajdenii species and genus confirmed by internal transcribed spacer sequencing. Aspiration of the lesion resulted in cure. Phaeoacremonium is a genus of fungi which are rare human pathogens, and herein we report a rare case of phaeohyphomycosis due to Phaeoacremonium krajdenii from the state of Odisha, India.


Asunto(s)
Ascomicetos , Feohifomicosis , Ascomicetos/genética , Humanos , India , Persona de Mediana Edad , Feohifomicosis/diagnóstico , Feohifomicosis/tratamiento farmacológico , Feohifomicosis/microbiología
18.
Fungal Biol ; 125(8): 609-620, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34281654

RESUMEN

Subterranean Cultural Heritage sites are frequently subject to biological colonization due to the high levels of humidity, even in conditions of low irradiance and oligotrophy. Here microorganisms form complex communities that may be dangerous through mineral precipitation, through the softening of materials or causing frequent surface discolorations. A reduction of contamination's sources along with the control of microclimatic conditions and biocide treatments (overall performed with benzalkonium chloride) are necessary to reduce microbial growths. Dark discolorations have been recorded in the painted Etruscan tombs of Tarquinia, two of which have been analyzed to collect taxonomical, physiological, and ecological information. Eighteen dark-pigmented fungi were isolated among a wider culturable fraction: nine from blackening areas and nine from door sealings, a possible route of contamination. Isolates belonged to three major groups: Chaetothyriales, Capnodiales (Family Cladosporiaceae), and Acremonium-like fungi. Exophiala angulospora and Cyphellophora olivacea, a novelty for hypogea, were identified, while others need further investigations as possible new taxa. The metabolic skills of the detected species showed their potential dangerousness for the materials. Their tolerance to benzalkonium chloride-based products suggested a certain favouring effect through the decreasing competitiveness of less resistant species. The type of covering of the dromos may influence the risk of outer contamination. Fungal occurrence can be favoured by root penetration.


Asunto(s)
Biodiversidad , Farmacorresistencia Fúngica , Microbiología Ambiental , Hongos , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Compuestos de Benzalconio/farmacología , Exophiala/efectos de los fármacos , Exophiala/fisiología , Hongos/efectos de los fármacos , Hongos/aislamiento & purificación , Italia
20.
Front Genet ; 12: 638708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815472

RESUMEN

Black fungi are a group of melanotic microfungi characterized by remarkable polyextremotolerance. Due to a broad ecological plasticity and adaptations at the cellular level, it is predicted that they may survive in a variety of extreme environments, including harsh niches on Earth and Mars, and in outer space. However, the molecular mechanisms aiding survival, especially in space, are yet to be fully elucidated. Based on these premises, the rock-inhabiting black fungus Knufia chersonesos (Wt) and its non-melanized mutant (Mut) were exposed to simulated microgravity-one of the prevalent features characterizing space conditions-by growing the cultures in high-aspect-ratio vessels (HARVs). Qualitative and quantitative proteomic analyses were performed on the mycelia and supernatant of culture medium (secretome) to assess alterations in cell physiology in response to low-shear simulated microgravity (LSSMG) and to ultimately evaluate the role of cell-wall melanization in stress survival. Differential expression was observed for proteins involved in carbohydrate and lipid metabolic processes, transport, and ribosome biogenesis and translation via ribosomal translational machinery. However, no evidence of significant activation of stress components or starvation response was detected, except for the scytalone dehydratase, enzyme involved in the synthesis of dihydroxynaphthalene (DNH) melanin, which was found to be upregulated in the secretome of the wild type and downregulated in the mutant. Differences in protein modulation were observed between K. chersonesos Wt and Mut, with several proteins being downregulated under LSSMG in the Mut when compared to the Wt. Lastly, no major morphological alterations were observed following exposure to LSSMG. Similarly, the strains' survivability was not negatively affected. This study is the first to characterize the response to simulated microgravity in black fungi, which might have implications on future astrobiological missions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA