Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.584
Filtrar
1.
J Environ Sci (China) ; 146: 81-90, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969464

RESUMEN

Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water, which are often enriched with arsenic (As). However, the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear. Based on the simulated ecosystem experiment, the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated. Microcystis aeruginosa showed high tolerance to As(V). The accumulation of As in different tissues of silver carp was different, as follows: intestine > liver > gill > skin > muscle. After silver carp ingested As-rich Microcystis aeruginosa, As accumulation in the intestine, liver, gill, and skin of silver carp was enhanced under the action of digestion and skin contact. Compared with the system without algal, As accumulation in the intestine, liver, gill, and skin of silver carp increased by 1.1, 3.3, 3.3, and 9.6 times, respectively, after incubation for 30 days in the system with Microcystis aeruginosa, while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg. This work revealed the transfer and fate of As during algal control by silver carp, elucidated the accumulation mechanism of As in water-algae-silver carp system, enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water, and provided a scientific basis for assessing and predicting As migration and enrichment in water-algae-silver carp system.


Asunto(s)
Arsénico , Carpas , Eutrofización , Microcystis , Contaminantes Químicos del Agua , Microcystis/metabolismo , Animales , Carpas/metabolismo , Arsénico/metabolismo , Arsénico/análisis , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
2.
Curr Biol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38986615

RESUMEN

The catastrophic loss of aquatic life in the Central European Oder River in 2022, caused by a toxic bloom of the haptophyte microalga Prymnesium parvum (in a wide sense, s.l.), underscores the need to improve our understanding of the genomic basis of the toxin. Previous morphological, phylogenetic, and genomic studies have revealed cryptic diversity within P. parvum s.l. and uncovered three clade-specific (types A, B, and C) prymnesin toxins. Here, we used state-of-the-art long-read sequencing and assembled the first haplotype-resolved diploid genome of a P. parvum type B from the strain responsible for the Oder disaster. Comparative analyses with type A genomes uncovered a genome-size expansion driven by repetitive elements in type B. We also found conserved synteny but divergent evolution in several polyketide synthase (PKS) genes, which are known to underlie toxin production in combination with environmental cues. We identified an approximately 20-kbp deletion in the largest PKS gene of type B that we link to differences in the chemical structure of types A and B prymnesins. Flow cytometry and electron microscopy analyses confirmed diploidy in the Oder River strain and revealed differences to closely related strains in both ploidy and morphology. Our results provide unprecedented resolution of strain diversity in P. parvum s.l. and a better understanding of the genomic basis of toxin variability in haptophytes. The reference-quality genome will enable us to better understand changes in microbial diversity in the face of increasing environmental pressures and provides a basis for strain-level monitoring of invasive Prymnesium in the future.

3.
Mar Pollut Bull ; 206: 116700, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002214

RESUMEN

Phycosphere bacteria can regulate the dynamics of different algal blooms that impact marine ecosystems. Phaeocystis globosa can alternate between solitary free-living cells and colonies and the latter morphotype is dominate during blooms. The mechanisms underlying the formation of these blooms have received much attention. High throughput sequencing results showed that the bacterial community composition differed significantly between colony and solitary strains in bacterial composition and function. It was found that the genera SM1A02 and Haliea were detected only among the colony strains and contribute to ammonium accumulation in colonies, and the genus Sulfitobacter was abundant among the colony strains that were excellent at producing DMS. In addition, the bacterial communities of the two colony strains exhibited stronger abilities for carbon and sulfur metabolism, energy metabolism, vitamin B synthesis, and signal transduction, providing inorganic and organic nutrients and facilitating tight communication with the host algae, thereby promoting growth and bloom development.

4.
Sci Total Environ ; : 174726, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002574

RESUMEN

Fast environmental changes and high coastal human pressures and impacts threaten the Mediterranean Sea. Over the last decade, recurrent blooms of the harmful dinoflagellate Ostreopsis cf. ovata have been recorded in many Mediterranean beaches. These microalgae produce toxins that affect marine organisms and human health. Understanding the environmental conditions that influence the appearance and magnitude of O. cf. ovata blooms, as well as how climate change will modify its future distribution and dynamics, is crucial for predicting and managing their effects. This study investigates whether the spatio-temporal distribution of this microalga and the frequency of its blooms could be altered in future climate change scenarios in the Mediterranean Western basin. For the first time, an ecological habitat model (EHM) is forced by physico-chemical climate change simulations at high-resolution, under the strong greenhouse gas emission trajectory (RCP8.5). It allows to characterize how O. cf. ovata may respond to projected conditions and how its distribution could shift over a wide spatial scale, in this plausible future. Before being applied to the EHM, future climate simulations are further refined by using a statistical adaptation method (Cumulative Distribution Function transform) to improve the predictions robustness. Temperature (optimum 23-26 °C), high salinity (>38 psu) and high inorganic nutrient concentrations (nitrate >0.25 mmol N·m-3 and phosphate >0.035 mmol P·m-3) drive O. cf. ovata abundances. High spatial disparities in future abundances are observed. Namely, O. cf. ovata abundances could increase on the Mediterranean coasts of France, Spain and the Adriatic Sea while a decrease is expected in the Tyrrhenian Sea. The bloom period could be extended, starting earlier and continuing later in the year. From a methodological point of view, this study highlights best practices of EHMs in the context of climate change to identify sensitive areas for current and future harmful algal blooms.

5.
Harmful Algae ; 137: 102654, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003020

RESUMEN

Microbial blooms have been reported in the First Generation Magnox Storage Pond at the Sellafield Nuclear Facility. The pond is kept alkaline with NaOH to minimise fuel rod corrosion, however alkali-tolerant microbial blooms dominated by the cyanobacterium Pseudanabaena catenata are able to thrive in this hostile environment. This study assessed the impact of alternative alkali-dosing regimens (KOH versus NaOH treatment) on biomass accumulation, using a P. catenata dominated mixed culture, which is representative of the pond environment. Optical density was reduced by 40-67 % with KOH treatment over the 3-month chemostat experiment. Microbial community analysis and proteomics demonstrated that the KOH-dependent inhibition of cell growth was mostly specific to P. catenata. The addition of KOH to nuclear storage ponds may therefore help control growth of this pioneer photosynthetic organism due to its sensitivity to potassium, while maintaining the high pH needed to inhibit the corrosion of stored nuclear fuel.


Asunto(s)
Cianobacterias , Estanques , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Cianobacterias/fisiología , Estanques/microbiología , Compuestos de Potasio/farmacología , Hidróxidos/farmacología , Potasio/metabolismo , Potasio/análisis , Biomasa
6.
Harmful Algae ; 137: 102681, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003025

RESUMEN

In May-June 2019, the microalga Chrysochromulina leadbeateri caused a massive fish-killing event in several fjords in Northern Norway, resulting in the largest direct impact ever on aquaculture in northern Europe due to toxic algae. Motivated by the fact that no algal toxins have previously been described from C. leadbeateri, we set out to investigate the chemical nature and toxicity of secondary metabolites in extracts of two strains (UIO 393, UIO 394) isolated from the 2019 bloom, as well as one older strain (UIO 035) isolated during a bloom in Northern Norway in 1991. Initial LC-DAD-MS/MS-based molecular networking analysis of the crude MeOH extracts of the cultivated strains showed that their profiles of small organic molecules, including a large number of known lipids, were very similar, suggesting that the same class of toxin(s) were likely the causative agents of the two harmful algal bloom (HAB) events. Next, bioassay-guided fractionation using the RTgill-W1 cell line and metabolomics analysis pointed to a major compound affording [M + H]+ ions at m/z 1399.8333 as a possible toxin, corresponding to a compound with the formula C67H127ClO27. Moreover, our study unveiled a series of minor analogues exhibiting distinct patterns of chlorination and sulfation, together defining a new family of compounds, which we propose to name leadbeaterins. Remarkably, these suspected toxins were detected in situ in samples collected during the 2019 bloom close to Tromsø, thereby consistent with a role in fish kills. The elemental compositions of the putative C. leadbeateri ichthyotoxins strongly indicate them to be long linear polyhydroxylated polyketides, structurally similar to sterolysins reported from a number of dinoflagellates.


Asunto(s)
Floraciones de Algas Nocivas , Toxinas Marinas , Noruega , Toxinas Marinas/toxicidad , Toxinas Marinas/química , Toxinas Marinas/análisis , Estuarios , Animales , Espectrometría de Masas en Tándem , Haptophyta/química
7.
Harmful Algae ; 137: 102678, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003029

RESUMEN

Raphidiopsis blooms are notorious for cyanotoxin formation and strong invasiveness, threatening the stability of aquatic ecosystems and human health. The protozoa Paramecium can potentially serve as an organism for controlling Raphidiopsis blooms owing to its grazing effect. However, the grazing ability of Paramecium is largely determined by the size of the prey, and the population of Raphidiopsis consists of filaments of varying lengths and sizes. The selective grazing behavior of Paramecium toward short-length or small-sized filaments in the Raphidiopsis population, as opposed to long filaments, remains unclear. Therefore, in this study, we co-cultured the predator Paramecium sp. with different initial abundances and the prey Raphidiopsis raciborskii to explore this knowledge gap. Our results suggested that: (1) the population of R. raciborskii declined under the selective grazing effect of Paramecium sp. on short filaments, whereas R. raciborskii with long filaments survived; (2) the growth of Paramecium sp. feeding on the same abundance of R. raciborskii was reduced at higher initial abundances, whereas its carrying capacity exhibited an opposite trend; (3) under ingestion by Paramecium sp., the morphology of R. raciborskii developed in the direction of becoming larger, and higher initial abundances of Paramecium sp. intensified this process; (4) increasing initial abundance of Paramecium sp. aggravated the decline of R. raciborskii photosynthetic activity. Therefore, the grazing effect of Paramecium sp. on R. raciborskii mainly affects filaments of short length or small size. Collectively, these results clarify the inter-species interaction between the protozoa Paramecium and filamentous cyanobacteria Raphidiopsis, including population dynamics and morphological and physiological changes in the predator and prey. Such insights into the interactions between Paramecium and R. raciborskii may have implications for the biological control of blooms caused by filamentous cyanobacteria.


Asunto(s)
Paramecium , Paramecium/fisiología , Cianobacterias/fisiología , Cadena Alimentaria , Conducta Predatoria/fisiología
8.
Cells ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38994931

RESUMEN

James German's work to establish the natural history and cancer risk associated with Bloom syndrome (BS) has had a strong influence on the generation of scientists and clinicians working to understand other RECQ deficiencies and heritable cancer predisposition syndromes. I summarize work by us and others below, inspired by James German's precedents with BS, to understand and compare BS with the other heritable RECQ deficiency syndromes with a focus on Werner syndrome (WS). What we know, unanswered questions and new opportunities are discussed, as are potential ways to treat or modify WS-associated disease mechanisms and pathways.


Asunto(s)
Síndrome de Bloom , RecQ Helicasas , Síndrome de Werner , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/deficiencia , Síndrome de Bloom/genética , Síndrome de Werner/genética , Historia del Siglo XX
9.
Sci Rep ; 14(1): 16298, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009635

RESUMEN

Harmful algae blooms are a rare phenomenon in rivers but seem to increase with climate change and river regulation. To understand the controlling factors of cyanobacteria blooms that occurred between 2017 and 2020 over long stretches (> 250 km) of the regulated Moselle River in Western Europe, we measured physico-chemical and biological variables and compared those with a long-term dataset (1997-2016). Cyanobacteria (Microcystis) dominated the phytoplankton community in the late summers of 2017-2020 (cyano-period) with up to 110 µg Chlorophyll-a/L, but had not been observed in the river in the previous 20 years. From June to September, the average discharge in the Moselle was reduced to 69-76% and water temperature was 0.9-1.8 °C higher compared to the reference period. Nitrogen (N), phosphorus (P) and silica (Si) declined since 1997, albeit total nutrient concentrations remained above limiting conditions in the study period. Cyanobacterial blooms correlated best with low discharge, high water temperature and low nitrate. We conclude that the recent cyanobacteria blooms have been caused by dry and warm weather resulting in low flow conditions and warm water temperature in the regulated Moselle. Under current climate projections, the Moselle may serve as an example for the future of regulated temperate rivers.


Asunto(s)
Cambio Climático , Cianobacterias , Ríos , Ríos/microbiología , Cianobacterias/crecimiento & desarrollo , Temperatura , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Fósforo/análisis , Nitrógeno/análisis , Clorofila A/análisis , Clorofila/análisis , Floraciones de Algas Nocivas , Plancton/crecimiento & desarrollo , Eutrofización , Monitoreo del Ambiente/métodos
10.
Sci Rep ; 14(1): 16445, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014022

RESUMEN

Climate change elevates the threat of compound heat and drought events, with their ecological and socioeconomic impacts exacerbated by human ecosystem alterations such as eutrophication, salinization, and river engineering. Here, we study how multiple stressors produced an environmental disaster in a large European river, the Oder River, where a toxic bloom of the brackish-water planktonic haptophyte Prymnesium parvum (the "golden algae") killed approximately 1000 metric tons of fish and most mussels and snails. We uncovered the complexity of this event using hydroclimatic data, remote sensing, cell counts, hydrochemical and toxin analyses, and genetics. After incubation in impounded upstream channels with drastically elevated concentrations of salts and nutrients, only a critical combination of chronic salt and nutrient pollution, acute high water temperatures, and low river discharge during a heatwave enabled the riverine mass proliferation of B-type P. parvum along a 500 km river section. The dramatic losses of large filter feeders and the spreading of vegetative cells and resting stages make the system more susceptible to new harmful algal blooms. Our findings show that global warming, water use intensification, and chronic ecosystem pollution could increase likelihood and severity of such compound ecoclimatic events, necessitating consideration in future impact models.


Asunto(s)
Cambio Climático , Ecosistema , Ríos , Humanos , Haptophyta/efectos de los fármacos , Animales , Europa (Continente) , Eutrofización , Floraciones de Algas Nocivas , Calentamiento Global
11.
Antonie Van Leeuwenhoek ; 117(1): 99, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985203

RESUMEN

A novel Gram-negative, white-pigmented, and auxin-producing strain, 20NA77.5T, was isolated from fresh water during cyanobacterial bloom period. Pairwise comparison of the 16S rRNA gene sequences showed that strain 20NA77.5T belonged to the genus Undibacterium and exhibited the highest sequence similarity to the type strains of Undibacterium danionis (98.00%), Undibacterium baiyunense (97.93%), Undibacterium macrobrachii (97.92%), and Undibacterium fentianense (97.71%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 20NA77.5T and its related type strains were below 79.93 and 23.80%, respectively. The predominant fatty acids (> 10% of the total fatty acids) were C16:0 and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The genomic DNA G + C content of strain 20NA77.5T was found to be 48.61%. Based on the phylogenetic distinctness, chemotaxonomic features, and phenotypic features, strain 20NA77.5T is considered to represent a novel species of the genus Undibacterium, for which the name Undibacterium cyanobacteriorum sp. nov is proposed. The type strain is 20NA77.5T (= KCTC 8005T = LMG 33136T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , Cianobacterias , ADN Bacteriano , Ácidos Grasos , Agua Dulce , Ácidos Indolacéticos , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Agua Dulce/microbiología , Ácidos Indolacéticos/metabolismo , Ácidos Grasos/análisis , Cianobacterias/genética , Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN , Microbiología del Agua
12.
Microbiol Spectr ; : e0085624, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980016

RESUMEN

Escherichia coli is excreted in high numbers from the intestinal tract of humans, other mammals, and birds. Traditionally, it had been thought that E. coli could grow only within human or animal hosts and would perish in the environment. Therefore, the presence of E. coli in water has become universally accepted as a key water quality indicator of fecal pollution. However, recent research challenges the assumption that the presence of E. coli in water is always an indicator of fecal contamination, with some types of E. coli having evolved to survive and grow in aquatic environments. These strains can form blooms in water storages, resulting in high E. coli counts even without fecal contamination. Although these bloom-forming strains lack virulence genes and pose little threat to public health, their presence in treated water triggers the same response as fecal-derived E. coli. Yet, little is known about the effectiveness of treatment processes in removing or inactivating them. This study evaluated the effectiveness of current treatment processes to remove bloom-forming strains, in comparison to fecal-derived strains, with conventional coagulation-flocculation-sedimentation and filtration investigated. Second, the effectiveness of current disinfection processes-chlorination, chloramination, and ultraviolet (UV) light to disinfect bloom-forming strains in comparison to fecal-derived strains-was assessed. These experiments showed that the responses of bloom isolates were not significantly different from those of fecal E. coli strains. Therefore, commonly used water treatment and disinfection processes are effective to remove bloom-forming E. coli strains from water.IMPORTANCEThe presence of Escherichia coli in water has long been used globally as a key indicator of fecal pollution and for quantifying water safety. Traditionally, it was believed that E. coli could only thrive within hosts and would perish outside, making its presence in water indicative of fecal contamination. However, recent research has unveiled strains of E. coli capable of surviving and proliferating in aquatic environments, forming blooms even in the absence of fecal contamination. While these bloom-forming strains lack the genes to be pathogenic, their detection in source or drinking water triggers the same response as fecal-derived E. coli. Yet, little is known about the efficacy of treatment processes in removing them. This study evaluated the effectiveness of conventional treatment and disinfection processes in removing bloom-forming strains compared to fecal-derived strains. Results indicate that these commonly used processes are equally effective against both types of E. coli, reassuring that bloom-forming E. coli strains can be eliminated from water.

13.
J Hazard Mater ; 476: 135145, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38991638

RESUMEN

Increasing frequency and intensity of cyanobacterial blooms in water sources is a growing global issue. Algicides are usually implemented in summer or autumn when blooms break out, however, the blooms will form again when algicide's concentration declines to a certain extent. Preventing the recovery and growth of cyanobacteria in early spring may be conducive to abatement of the blooms in summer or autumn. In this study solid sodium percarbonate (SPC) was used as an algicide to suppress recovery and growth of Pseudanabaena sp., a common odour-producing cyanobacterium, in early spring (12 °C). Results showed that 3.0 and 6.0 mg/L SPC were able to kill most of the algal cells after 12 h treatment at 12 °C, and the residual cells gradually died during the re-cultivation period at 25 °C. As a control, although SPC also caused most of algal cells to lyse at 25 °C, regrowth of cells was found during the period of re-cultivation at 25 °C. Transcriptomic analysis revealed that the dysregulated genes were strongly associated with translation and photosynthesis after SPC treatment. All differentially expressed unigenes related to translation and photosynthesis were down-regulated after SPC oxidation at 12 °C, whereas key genes associated with translation and photosynthesis were upregulated after SPC treatment at 25 °C.

14.
Sci Total Environ ; : 174690, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992351

RESUMEN

Harmful algal blooms (HABs) or higher levels of de facto water reuse (DFR) can increase the levels of certain contaminants at drinking water intakes. Therefore, the goal of this study was to use multi-class supervised machine learning (SML) classification with data collected from six online instruments measuring fourteen total water quality parameters to detect cyanobacteria (corresponding to approximately 950 cells/mL, 2900 cells/mL, and 8600 cells/mL) or DFR (0.5, 1 and 2 % for wastewater effluent) events in the raw water entering an intake. Among 56 screened models from the caret package in R, four (mda, LogitBoost, bagFDAGCV, and xgbTree) were selected for optimization. mda had the greatest testing set accuracy, 98.09 %, after optimization with 7 false alerts. Some of the most important water parameters for the different models were phycocyanin-like fluorescence, UVA254, and pH. SML could detect algae blending events (estimated <9000 cells/mL) due in part to the phycocyanin-like fluorescence sensor. UVA254 helped identify higher concentrations of DFR. These results show that multi-class SML classification could be used at drinking water intakes in conjunction with online instrumentation to detect and differentiate HABs and DFR events. This could be used to create alert systems for the water utilities at the intake, rather than the finished water, so any adjustment to the treatment process could be implemented.

15.
Strahlenther Onkol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995367

RESUMEN

INTRODUCTION: Bloom syndrome (BS) is a rare autosomal recessive disorder caused by a loss-of-function mutation in the BLM gene encoding an RecQ helicase involved in DNA repair and maintenance of chromosomal stability. In patients with BS, significant sensitivity to both DNA-damaging chemotherapy (CT) and ionizing radiation complicates the management of neoplasms by exacerbating comorbidities and predisposing to toxicities and poor outcomes. CASE REPORT: A 30-year-old female patient diagnosed with BS who presented with early-stage triple-negative breast cancer was treated with four cycles of doxorubicin (60 mg/m2) and cyclophosphamide (600 mg/m2) followed by weekly paclitaxel (80 mg/m2) for 12 weeks as the chemotherapy protocol and a total of 5000 cGy curative radiotherapy (RT). Due to pancytopenia 8 months after completion of therapy, bone marrow biopsy and aspiration were performed, and a diagnosis of myelodysplastic syndrome with excess blasts 2 (MDS-EB2) was made. Two courses of the azacitidine (75 mg/m2) protocol were administered every 28 days in the hematology clinic. Two weeks after CT the patient was transferred from the emergency department to the hematology clinic with the diagnosis of pancytopenia and febrile neutropenia. She died at the age of 33 due to sepsis that developed during follow-up. CONCLUSION: Due to the rarity of BS, there is no prospective trial in patients with cancer and no evidence base upon which to design treatment programs. For these reasons, it is strongly recommended that patients receive multidisciplinary care, with precise assessment and discussion of the indication and an adequate dose of DNA-damaging agents such as chemotherapy and ionizing radiation.

16.
Sci Total Environ ; 947: 174345, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960174

RESUMEN

Seaweed cultivation can inhibit the occurrence of red tides. However, how seaweed aquaculture interactions with harmful algal blooms will be affected by the increasing occurrence and intensity of marine heatwaves (MHWs) is unknown. In this study, we run both monoculture and coculture systems to investigate the effects of a simulated heatwave on the competition of the economically important macroalga Gracilariopsis lemaneiformis against the harmful bloom diatom Skeletonema costatum. Coculture with G. lemaneiformis led to a growth decrease in S. costatum. Growth and photosynthetic activity (Fv/Fm) of G. lemaneiformis was greatly reduced by the heatwave treatment, and did not recover even after one week. Growth and photosynthetic activity of S. costatum was also reduced by the heatwave in coculture, but returned to normal during the recovery period. S. costatum also responded to the stressful environment by forming aggregates. Metabolomic analysis suggests that the negative effects on S. costatum were related to an allelochemical release from G. lemaneiformis. These findings show that MHWs may enhance the competitive advantages of S. costatum against G. lemaneiformis, leading to more severe harmful algal blooms in future extreme weather scenarios.

17.
Teach Learn Med ; : 1-10, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989801

RESUMEN

Medical devices are manmade objects existing at the interface between numerous disciplines. They range from as simple as medical gloves to as complex as artificial limbs. This versatility of medical devices and their inherent interdisciplinary nature means that academic courses on them are attended by cohorts of students from varieties of academic backgrounds, who bring with them similarly broad spectra of interests. To satisfy the learning expectations of each and every student in such diverse classes is a daunting task for the instructor. After many years of teaching medical devices at undergraduate and graduate levels at three different universities in the states of Illinois and California, I have come up with an instructional method that solves this challenge by engaging students in the co-creation of the curriculum via selection of their own medical devices of interest and presentation to the class for collective analysis. The threefold presentations are designed so that they reflect an ascent along the hierarchy of a learning taxonomy extending from foundational concepts to critical assessment of knowledge to creative displays of it. In such a way, the students are acquainted with the ability of critical and creative thinking at the expense of rote memorization or inculcation and are prepared to enter the field of medical devices as innovation-centered individuals. The specifics of this new method of instruction are reported here, with the hope that they will be useful to fellow instructors in any interdisciplinary course that benefits from a balance between the rigorous coverage of the instructional material pertaining to engineering and medicine and the flexible selection of topics that comply with students' individual interests.

18.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998979

RESUMEN

To reduce unwanted fat bloom in the manufacturing and storage of chocolates, detailed knowledge of the chemical composition and molecular mobility of the oils and fats contained is required. Although the formation of fat bloom on chocolate products has been studied for many decades with regard to its prevention and reduction, questions on the molecular level still remain to be answered. Chocolate products with nut-based fillings are especially prone to undesirable fat bloom. The chemical composition of fat bloom is thought to be dominated by the triacylglycerides of the chocolate matrix, which migrate to the chocolate's surface and recrystallize there. Migration of oils from the fillings into the chocolate as driving force for fat bloom formation is an additional factor in the discussion. In this work, the migration was studied and confirmed by MRI, while the chemical composition of the fat bloom was measured by NMR spectroscopy and HPLC-MS, revealing the most important triacylglycerides in the fat bloom. The combination of HPLC-MS with NMR spectroscopy at 800 MHz allows for detailed chemical structure determination. A rapid routine was developed combining the two modalities, which was then applied to investigate the aging, the impact of chocolate composition, and the influence of hazelnut fillings processing parameters, such as the degree of roasting and grinding of the nuts or the mixing time, on fat bloom formation.


Asunto(s)
Chocolate , Espectroscopía de Resonancia Magnética , Chocolate/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Triglicéridos/análisis , Triglicéridos/química , Cacao/química , Análisis de los Alimentos/métodos , Corylus/química , Cromatografía Líquida con Espectrometría de Masas
19.
Heliyon ; 10(11): e31869, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867962

RESUMEN

Alignment studies can offer valuable insights to educators about the effectiveness of the course objectives, assessments, and teaching. In this particular study, the aim was to determine the extent to which teacher-made tests aligned with the learning objectives of natural science subjects. The study included a total of 180 learning objectives (46 from Biology, 71 from Chemistry, and 63 from Physics) and 88 test items (30 from Biology, 30 from Chemistry, and 28 from Physics). Bloom's revised taxonomy was used to identify, organize, and code the objectives and test items. Porter's alignment index was used to analyze the data, allowing for determining the degree of alignment between tests and learning objectives. The results showed that the overall alignment between teacher-made tests with course objectives was 45 % for Biology, 46 % for Chemistry, and 62 % for Physics. The study also found that a dependable degree of alignment was not yet established between learning objectives and tests. Therefore, it was suggested that teachers should use assessment procedures and blueprints that consider higher-order cognitive levels and expected learning objectives. Further investigations are also required to determine whether students are meeting the expected learning objectives and moving to the next grade level.

20.
Front Microbiol ; 15: 1407888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887716

RESUMEN

Unicellular eukaryotic plankton communities (protists) are the major basis of the marine food web. The spring bloom is especially important, because of its high biomass. However, it is poorly described how the protist community composition in Arctic surface waters develops from winter to spring. We show that mixotrophic and parasitic organisms are prominent in the dark winter period. The transition period toward the spring bloom event was characterized by a high relative abundance of mixotrophic dinoflagellates, while centric diatoms and the haptophyte Phaeocystis pouchetii dominated the successive phototrophic spring bloom event during the study. The data shows a continuous community shift from winter to spring, and not just a dormant spring community waiting for the right environmental conditions. The spring bloom initiation commenced while sea ice was still scattering and absorbing the sunlight, inhibiting its penetration into the water column. The initial increase in fluorescence was detected relatively deep in the water column at ~55 m depth at the halocline, at which the photosynthetic cells accumulated, while a thick layer of snow and sea ice was still obstructing sunlight penetration of the surface water. This suggests that water column stratification and a complex interplay of abiotic factors eventually promote the spring bloom initiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...