Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Reprod ; 110(3): 615-631, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38079523

RESUMEN

Male infertility is a global health problem that disturbs numerous couples worldwide. Basonuclin 1 (BNC1) is a transcription factor mainly expressed in proliferative keratinocytes and germ cells. A frameshift mutation of BNC1 was identified in a large Chinese primary ovarian insufficiency pedigree. The expression of BNC1 was significantly decreased in the testis biopsies of infertile patients with nonobstructive azoospermia. Previous studies have revealed that mice with BNC1 deficiency are generally subfertile and undergo gradual spermatogenic failure. We observed that apoptosis of spermatogonia is tightly related to spermatogenic failure in mice with a Bnc1 truncation mutation. Such impairment is related to mitochondrial dysfunction causing lower mitochondrial membrane potential and higher reactive oxygen species. We showed that downregulation of CREB/SIRT1/FOXO3 signaling participates in the above impairment. Administration of nicotinamide riboside or metformin reversed mitochondrial dysfunction and inhibited apoptosis in Bnc1-knockdown spermatogonia by stimulating CREB/SIRT1/FOXO3 signaling. Dietary supplementation with nicotinamide riboside or metformin in mutated mice increased SIRT1 signaling, improved the architecture of spermatogenic tubules, inhibited apoptosis of the testis, and improved the fertility of mice with a Bnc1 truncation mutation. Our data establish that oral nicotinamide riboside or metformin can be useful for the treatment of spermatogenic failure induced by Bnc1 mutation.


Asunto(s)
Metformina , Enfermedades Mitocondriales , Niacinamida , Compuestos de Piridinio , Animales , Humanos , Masculino , Ratones , Apoptosis , Proteínas de Unión al ADN/metabolismo , Proteína Forkhead Box O3 , Metformina/farmacología , Metformina/uso terapéutico , Niacinamida/análogos & derivados , Sirtuina 1/metabolismo , Espermatogonias/metabolismo , Factores de Transcripción
2.
Cancer Sci ; 114(11): 4314-4328, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37705202

RESUMEN

EsophageaL squamous cell carcinoma (ESCC) is one of the most common and lethal tumors, however, its underlying molecular mechanisms are not completely understood and new therapeutic targets are needed. Here, we found that the transcription factor basonuclin 1 (BNC1) was significantly upregulated and closely related to the differentiation and metastasis of ESCC. Furthermore, BNC1, LINC01305, and G-protein pathway suppressor 1 (GPS1) had significant oncogenic roles in ESCC. In addition, in vivo experiments showed that knockdown of BNC1 indeed significantly inhibited the proliferation and metastasis of ESCC. We also revealed the molecular mechanism by which LINC01305 recruits BNC1 to the promoter of GPS1, and then GPS1 could mediate the JNK signaling pathway to promote the proliferation and metastases of ESCC. Taken together, we discovered the novel molecular mechanism by which LINC01305/BNC1 upregulates GPS1 expression to promote the development of ESCC, providing a new therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Proliferación Celular/genética , Proteínas de Unión al GTP/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular
3.
Foods ; 11(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36010535

RESUMEN

As an effective tool for genetically modified organism (GMO) quantification in complex matrices, digital PCR (dPCR) has been widely used for the quantification of genetically modified (GM) canola events; however, little is known about the quantification of GM canola events using endogenous reference gene (ERG) characteristics by dPCR. To calculate and quantify the content of GM canola using endogenous reference gene (ERG) characteristics, the suitability of several ERGs of canola, such as cruciferin A (CruA), acetyl-CoA carboxylase (BnAcc), phosphoenolpyruvate carboxylase (PEP), cruciferin storage (BnC1), oleoyl hydrolase (Fat(A)), and high-mobility-group protein I/Y (HMG-I/Y), was investigated by droplet dPCR. BnAcc and BnC1 were more specific and stable in copy number in the genome of Brassica napus L. than the other genes. By performing intra-laboratory validation of the suitability of ERG characteristics for the quantification of GM canola events, the ddPCR methods for BnAcc and BnC1 were comprehensively demonstrated in dPCR assays. The methods could provide technical support for GM labeling regulations.

4.
Theor Appl Genet ; 134(9): 3051-3067, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34120211

RESUMEN

KEY MESSAGE: The mutations BnA1.CER4 and BnC1.CER4 produce disordered wax crystals types and alter the composition of epidermal wax, causing increased cuticular permeability and sclerotium resistance. The aerial surfaces of land plants are coated with a cuticle, comprised of cutin and wax, which is a hydrophobic barrier for preventing uncontrolled water loss and environmental damage. However, the mechanisms by which cuticle components are formed are still unknown in Brassica napus L. and were therefore assessed here. BnA1.CER4 and BnC1.CER4, encoding fatty acyl-coenzyme A reductases localizing to the endoplasmic reticulum and highly expressed in leaves, were identified and functionally characterized. Expression of BnA1.CER4 and BnC1.CER4 cDNA in yeast (Saccharomyces cerevisiae) induced the accumulation of primary alcohols with chain lengths of 26 carbons. The mutant line Nilla glossy2 exhibited reduced wax crystal types, and wax composition analysis showed that the levels of branched primary alcohols were decreased, whereas those of the other branched components were increased. Further analysis showed that the mutant had reduced water retention but enhanced resistance to Sclerotinia sclerotiorum. Collectively, our study reports that BnA1.CER4 and BnC1.CER4 are fatty acyl-coenzyme A reductase genes in B. napus with a preference for branched substrates that participate in the biosynthesis of anteiso-primary alcohols.


Asunto(s)
Alcoholes/metabolismo , Ascomicetos/fisiología , Brassica napus/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Alcoholes/química , Brassica napus/crecimiento & desarrollo , Brassica napus/microbiología , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Ceras/química , Ceras/metabolismo
5.
Reprod Sci ; 28(3): 785-793, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33211273

RESUMEN

BNC1 is a transcription factor that is crucial for spermatogenesis and male fertility, although the underlying mechanism remains unclear. To study BNC1's specific role in spermatogenesis, we characterized a previously developed mouse model carrying a truncating mutation in Bnc1 (termed Bnc1+/tr for heterozygotes and Bnc1tr/tr for homozygotes) and found that the mutation decreased BNC1 protein levels and resulted in germ cell loss by apoptosis. Given that loss of functional Bnc1 is known to result in decreased expression of the spermatogenesis genes Ybx2 and Papolb, we aimed to explore whether and how BNC1 promotes transcription of Ybx2 and Papolb to mediate its role in spermatogenesis. We confirmed significant reduction in YBX2 and PAPOLB protein levels in testis tissue from Bnc1+/tr and Bnc1tr/tr males compared with wild-type mice (Bnc1+/+). Consistently, knockdown of Bnc1 led to downregulation of Ybx2 and Papolb in CRL-2196 cells in vitro. To investigate if BNC1 directly induces Ybx2 and Papolb gene expression, chromatin immunoprecipitation using mouse testicular tissue and luciferase reporter assays in HEK293 cells were used to identify functional binding of BNC1 to the Ybx2 and Papolb promoters at defined BNC1 binding sites. Taken together, this study reveals a mechanism for BNC1's role in spermatogenesis by directly binding to BNC1 binding elements in the promoter regions of both Ybx2 and Papolb and inducing transcription of these important spermatogenesis genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Apoptosis , Sitios de Unión , Proliferación Celular , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Polinucleotido Adenililtransferasa/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética
6.
Biol Reprod ; 102(4): 950-962, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31836902

RESUMEN

Germline stem and progenitor cells can be extracted from the adult mouse testis and maintained long-term in vitro. Yet, the optimal culture conditions for preserving stem cell activity are unknown. Recently, multiple members of the Eph receptor family were detected in murine spermatogonia, but their roles remain obscure. One such gene, Ephb2, is crucial for maintenance of somatic stem cells and was previously found enriched at the level of mRNA in murine spermatogonia. We detected Ephb2 mRNA and protein in primary adult spermatogonial cultures and hypothesized that Ephb2 plays a role in maintenance of stem cells in vitro. We employed CRISPR-Cas9 targeting and generated stable mutant SSC lines with complete loss of Ephb2. The characteristics of Ephb2-KO cells were interrogated using phenotypic and functional assays. Ephb2-KO SSCs exhibited reduced proliferation compared to wild-type cells, while apoptosis was unaffected. Therefore, we examined whether Ephb2 loss correlates with activity of canonical pathways involved in stem cell self-renewal and proliferation. Ephb2-KO cells had reduced ERK MAPK signaling. Using a lentiviral transgene, Ephb2 expression was rescued in Ephb2-KO cells, which partially restored signaling and proliferation. Transplantation analysis revealed that Ephb2-KO SSCs cultures formed significantly fewer colonies than WT, indicating a role for Ephb2 in preserving stem cell activity of cultured cells. Transcriptome analysis of wild-type and Ephb2-KO SSCs identified Dppa4 and Bnc1 as differentially expressed, Ephb2-dependent genes that are potentially involved in stem cell function. These data uncover for the first time a crucial role for Ephb2 signaling in cultured SSCs.


Asunto(s)
Células Madre Adultas/metabolismo , Proliferación Celular/fisiología , Receptor EphB2/metabolismo , Espermatogonias/metabolismo , Células Madre Adultas/citología , Animales , Sistemas CRISPR-Cas , Línea Celular , Células Cultivadas , Masculino , Ratones , Ratones Noqueados , Receptor EphB2/genética , Transducción de Señal/fisiología , Espermatogénesis/fisiología , Espermatogonias/citología
7.
J Mol Cell Biol ; 12(1): 71-83, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31065688

RESUMEN

Basonuclin (BNC1) is expressed primarily in proliferative keratinocytes and gametogenic cells. However, its roles in spermatogenesis and testicular aging were not clear. Previously we discovered a heterozygous BNC1 truncation mutation in a premature ovarian insufficiency pedigree. In this study, we found that male mice carrying the truncation mutation exhibited progressively fertility loss and testicular premature aging. Genome-wide expression profiling and direct binding studies (by chromatin immunoprecipitation sequencing) with BNC1 in mouse testis identified several spermatogenesis-specific gene promoters targeted by BNC1 including kelch-like family member 10 (Klhl10), testis expressed 14 (Tex14), and spermatogenesis and centriole associated 1 (Spatc1). Moreover, biochemical analysis showed that BNC1 was associated with TATA-box binding protein-associated factor 7 like (TAF7L), a germ cell-specific paralogue of the transcription factor IID subunit TAF7, both in vitro and in testis, suggesting that BNC1 might directly cooperate with TAF7L to regulate spermatogenesis. The truncation mutation disabled nuclear translocation of the BNC1/TAF7L complex, thus, disturbing expression of related genes and leading to testicular premature aging. Similarly, expressions of BNC1, TAF7L, Y-box-binding protein 2 (YBX2), outer dense fiber of sperm tails 1 (ODF1), and glyceraldehyde-3-phosphate dehydrogenase, spermatogenic (GAPDHS) were significantly decreased in the testis of men with non-obstructive azoospermia. The present study adds to the understanding of the physiology of male reproductive aging and the mechanism of spermatogenic failure in infertile men.


Asunto(s)
Envejecimiento Prematuro/metabolismo , Azoospermia/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Espermatogénesis/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Testículo/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Envejecimiento Prematuro/genética , Animales , Azoospermia/genética , Azoospermia/patología , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Transducción de Señal/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Factores de Transcripción/genética , Transfección
8.
Development ; 146(24)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31767620

RESUMEN

The murine developing epicardium heterogeneously expresses the transcription factors TCF21 and WT1. Here, we show that this cell heterogeneity is conserved in human epicardium, regulated by BNC1 and associated with cell fate and function. Single cell RNA sequencing of epicardium derived from human pluripotent stem cells (hPSC-epi) revealed that distinct epicardial subpopulations are defined by high levels of expression for the transcription factors BNC1 or TCF21. WT1+ cells are included in the BNC1+ population, which was confirmed in human foetal hearts. THY1 emerged as a membrane marker of the TCF21 population. We show that THY1+ cells can differentiate into cardiac fibroblasts (CFs) and smooth muscle cells (SMCs), whereas THY1- cells were predominantly restricted to SMCs. Knocking down BNC1 during the establishment of the epicardial populations resulted in a homogeneous, predominantly TCF21high population. Network inference methods using transcriptomic data from the different cell lineages derived from the hPSC-epi delivered a core transcriptional network organised around WT1, TCF21 and BNC1. This study unveils a list of epicardial regulators and is a step towards engineering subpopulations of epicardial cells with selective biological activities.


Asunto(s)
Linaje de la Célula/genética , Proteínas de Unión al ADN/fisiología , Pericardio/citología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/fisiología , Diferenciación Celular/genética , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología , Pericardio/metabolismo , Células Madre Pluripotentes/citología , Embarazo , Cultivo Primario de Células , Células Madre Totipotentes/citología , Células Madre Totipotentes/fisiología
9.
Clin Epigenetics ; 11(1): 59, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953539

RESUMEN

BACKGROUND: Despite improvements in cancer management, most pancreatic cancers are still diagnosed at an advanced stage. We have recently identified promoter DNA methylation of the genes ADAMTS1 and BNC1 as potential blood biomarkers of pancreas cancer. In this study, we validate this biomarker panel in peripheral cell-free tumor DNA of patients with pancreatic cancer. RESULTS: Sensitivity and specificity for each gene are as follows: ADAMTS1 87.2% and 95.8% (AUC = 0.91; 95% CI 0.71-0.86) and BNC1 64.1% and 93.7% (AUC = 0.79; 95% CI 0.63-0.78). When using methylation of either gene as a combination panel, sensitivity increases to 97.3% and specificity to 91.6% (AUC = 0.95; 95% CI 0.77-0.90). Adding pre-operative CA 19-9 values to the combined two-gene methylation panel did not improve sensitivity. Methylation of ADAMTS1 was found to be positive in 87.5% (7/8) of stage I, 77.8% (7/9) of stage IIA, and 90% (18/20) of stage IIB disease. Similarly, BNC1 was positive in 62.5% (5/8) of stage I patients, 55.6% (5/9) of stage IIA, and 65% (13/20) of patients with stage IIB disease. The two-gene panel (ADAMTS1 and/or BNC1) was positive in 100% (8/8) of stage I, 88.9% (8/9) of stage IIA, and 100% (20/20) of stage IIB disease. The sensitivity and specificity of the two-gene panel for localized pancreatic cancer (stages I and II), where the cancer is eligible for surgical resection with curative potential, was 94.8% and 91.6% respectively. Additionally, the two-gene panel exhibited an AUC of 0.95 (95% CI 0.90-0.98) compared to 57.1% for CA 19-9 alone. CONCLUSION: The methylation status of ADAMTS1 and BNC1 in cfDNA shows promise for detecting pancreatic cancer during the early stages when curative resection of the tumor is still possible. This minimally invasive blood-based biomarker panel could be used as a promising tool for diagnosis and screening in a select subset of high-risk populations.


Asunto(s)
Proteína ADAMTS1/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Neoplasias Pancreáticas/diagnóstico , Factores de Transcripción/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Detección Precoz del Cáncer , Epigénesis Genética , Femenino , Humanos , Masculino , Estadificación de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Regiones Promotoras Genéticas , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA