Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.998
Filtrar
1.
J Vet Med Sci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825482

RESUMEN

Non-neoplastic bone marrow disorders are main causes of non-regenerative anemia in dogs. Despite the high incidence of the diseases, their molecular pathophysiology has not been elucidated. We previously reported that Miniature Dachshund (MD) was a predisposed breed to be diagnosed with non-neoplastic bone marrow disorders in Japan, and immunosuppressive treatment-resistant MDs showed higher number of platelets and morphological abnormalities in peripheral blood cells. These data implied that treatment-resistant MDs might possess distinct pathophysiological features from treatment-responsive MDs. Therefore, we conducted transcriptomic analysis of bone marrow specimens to investigate the pathophysiology of treatment-resistant MDs. Transcriptomic analysis comparing treatment-resistant MDs and healthy control dogs identified 179 differentially expressed genes (DEGs). Pathway analysis using these DEGs showed that "Wnt signaling pathway" was a significantly enriched pathway. We further examined the expression levels of DEGs associated with Wnt signaling pathway and confirmed the upregulation of AXIN2 and CCND2 and the downregulation of SFRP2 in treatment-resistant MDs compared with treatment-responsive MDs and healthy control dogs. This alteration implied the activation of Wnt signaling pathway in treatment-resistant MDs. The activation of Wnt signaling pathway has been reported in human patients with myelodysplastic syndrome (MDS), which is characterized by dysplastic features of blood cells. Therefore, the results of this study implied that treatment-resistant MDs have distinct molecular pathological features from treatment-responsive MDs and the pathophysiology of treatment-resistant MDs might be similar to that of human MDS patients.

2.
Bone ; : 117141, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823568

RESUMEN

BACKGROUND: A score to predict the association between unexplained osteoporosis and an underlying systemic Mastocytosis (SM) is lacking. OBJECTIVE: This study aimed at identifying criteria able to predict the diagnosis of SM without skin involvement and provide an indication for bone marrow (BM) assessment. METHODS: We included 139 adult patients with unexplained osteoporosis and suspected SM. After BM evaluation, 63 patients (45.3 %) were diagnosed with SM, while the remaining 76 patients (54.7 %) negative for clonal mast cell (MC) disorders, constituted our control group. Univariate and multivariate analysis identified three independent predictive factors: age (<54 years: +1 point, >64 years: -1 point), serum basal tryptase (sBT) levels >19 ng/mL (+2 points) and vertebral fractures (+2 points). RESULTS: These variables were used to build the OSTEO-score, able to predict the diagnosis of SM before BM assessment with a sensitivity of 73.5 % and a specificity of 67.1 %. Patients with a score < 3 had a lower probability of having SM compared to patients with a score ≥ 3 (28.5 % and 71.4 %, respectively, p < 0.0001). When sBT levels were corrected for the presence of hereditary alpha-tryptasemia (HαT) using the BST calculater (https://bst-calculater.niaid.nih.gov/) recently published (Chovanec et al., 2023; Lyons et al., 2022 [1, 2]), the sensitivity of ΗαT-adjusted OSTEO-score increased to 87.8 %, and the specificity reached 76.1 %. Also, the positive predictive value of a score ≥ 3 increased to 85.2 %. CONCLUSIONS: Further studies are needed to validate these results and characterize the role of tryptase genotyping in patients with unexplained osteoporosis in reducing the risk of misdiagnosing patients with SM. Our proposed scoring model allows the identification of patients with the highest probability of having SM, avoiding unnecessary BM studies.

3.
J Lipid Res ; : 100572, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823780

RESUMEN

Contrast-enhanced computed tomography (CECT) offers a non-destructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using CECT, but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae (MCV) and bovine muscle tissue (BMT) strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte grey values post-IL staining were associated with chemical distinctions between BMT and MCV. More specific, a difference in degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of grey value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.

4.
Mol Biol Rep ; 51(1): 719, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824271

RESUMEN

BACKGROUND: Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS: The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS: The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION: lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Osteoporosis Posmenopáusica , ARN Largo no Codificante , Proteína Smad4 , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/patología , Femenino , Diferenciación Celular/genética , Ratas , Proteína Smad4/metabolismo , Proteína Smad4/genética , Humanos , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Células de la Médula Ósea/metabolismo
5.
J Clin Invest ; 134(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828727

RESUMEN

Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.


Asunto(s)
Inhibidores de la Calcineurina , Enfermedad Injerto contra Huésped , Isoantígenos , Células T de Memoria , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/patología , Animales , Ratones , Isoantígenos/inmunología , Inhibidores de la Calcineurina/farmacología , Enfermedad Crónica , Células T de Memoria/inmunología , Tacrolimus/farmacología , Linfocitos T CD4-Positivos/inmunología , Ciclosporina/farmacología , Femenino , Linfocitos T CD8-positivos/inmunología , Subgrupos de Linfocitos T/inmunología
6.
Artículo en Inglés | MEDLINE | ID: mdl-38829435

RESUMEN

Circulating T-lymphocytes are used as "natural biodosimeters" for estimating radiation doses, since the frequency of chromosomal aberrations induced in them is proportional to the accumulated dose. Moreover, stable chromosomal aberrations (translocations) are detected years and decades after exposure. Internal incorporation of radionuclides often leads to non-uniform exposure, which resulted in difficulties in the application of retrospective biodosimetry using T-lymphocytes. Some properties of T-lymphocytes complicate retrospective biodosimetry in this case: (1) the thymic production of T-cells depends significantly on age, the maximum is observed in early childhood; (2) the "lymphocyte-dosimeter" accumulates changes (translocations) while circulating through the body. The objective of this paper is to describe the technical characteristics of the model of age dynamics and T-cell biokinetics and approaches to assessing the dose to circulating lymphocytes under various exposure scenarios. The model allows to quantify the fractions of T-lymphocytes that were formed before and after exposure. The model takes into account the time fractions that circulating lymphocytes spend in various lymphoid organs. Age-related thymic involution was also considered. The model predicts that after internal exposure to 90Sr, the doses to T-lymphocytes can differ significantly from the doses to the bone marrow and other tissues. For uniform external γ-exposure, and for internal exposure due to non-bone -seeking radionuclides (for example, 144Ce), predicted doses to T-lymphocytes are very close to bone marrow doses. The model allows to quantify the correction factors for FISH-based doses to obtain doses to organs and tissues.

7.
Int J Biol Macromol ; : 132828, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38834125

RESUMEN

Intervertebral disc degeneration arises from damage or degeneration of the nucleus pulposus (NP). In this study, we developed a photo-crosslinkable hydrogel incorporating FG4592 to support the growth and differentiation of bone-marrow-derived mesenchymal stem cells (BMSC). Initially, hyaluronic acid was modified with tyramine and combined with collagen to introduce riboflavin as a photo-crosslinker. This hydrogel transitioned from liquid to gel upon exposure to blue light in 3 min. The results showed that the hydrogel was biodegradable and had mechanical properties comparable to those of human NP tissues. Scanning electron microscopy after BMSC seeding in the hydrogel revealed an even distribution, and cells adhered to the collagen fibers in the hydrogel with minimal cell mortality. The effect of FG4592 on BMSC proliferation and differentiation was examined, revealing the capability of FG4592 to promote BMSC proliferation and direct differentiation resembling human NP cells. After cultivating BMSCs in the photo-crosslinked hydrogel, there was an upregulation in the expression of glycosaminoglycans, aggrecan, type II collagen, and keratin 19 proteins. Cross-species analyses of rat and human BMSCs revealed consistent results. For potential clinical applications, BMSC loaded with photo-crosslinked hydrogels can be injected into damaged intervertebral disc to facilitate NP regeneration.

8.
Skeletal Radiol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833168

RESUMEN

OBJECTIVE: This study aimed to quantitatively assess the diagnostic value of bone marrow edema (BME) detection on virtual non-calcium (VNCa) images calculated from dual-energy CT (DECT) in people with diabetes mellitus and suspected Charcot neuro-osteoarthropathy (CN). MATERIALS AND METHODS: People with diabetes mellitus and suspected CN who underwent DECT of the feet (80kVp/Sn150kVp) were included retrospectively. Two blinded observers independently measured CT values on VNCa images using circular regions of interest in five locations in the midfoot (cuneiforms, cuboid and navicular) and the calcaneus of the contralateral or (if one foot was available) the ipsilateral foot. Two clinical groups were formed, one with active CN and one without active CN (no-CN), based on the clinical diagnosis. RESULTS: Thirty-two people with diabetes mellitus and suspected CN were included. Eleven had clinically active CN. The mean CT value in the midfoot was significantly higher in the CN group (-55.6 ± 18.7 HU) compared to the no-CN group (-94.4 ± 23.5 HU; p < 0.001). In the CN group, the difference in CT value between the midfoot and calcaneus was statistically significant (p = 0.003); this was not the case in the no-CN group (p = 0.357). The overall observer agreement was good for the midfoot (ICC = 0.804) and moderate for the calcaneus (ICC = 0.712). Sensitivity was 100.0% and specificity was 71.4% using a cutoff value of -87.6 HU. CONCLUSION: The detection of BME on VNCa images has a potential value in people with diabetes mellitus and suspected active CN.

9.
Pak J Med Sci ; 40(5): 979-984, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827861

RESUMEN

Objectives: To evaluate the outcomes (relapse and mortality rate) and response of the bone marrow in early stages after combination chemotherapy in patients with T-cell Acute Lymphoblastic Leukemia (T-ALL). Methods: A descriptive cross-sectional study was conducted at King Fahad Medical City, from January 2021 to December 2022, to evaluate bone marrow findings at the time of diagnosis and post-chemotherapy in 26 patients diagnosed with T-ALL. The study included all patients diagnosed with T-ALL of any age group during the study period. The patients' bone marrows were examined at 0 days of treatment (diagnosis work-up), followed by examination at day 15 post induction therapy, and day 30 after treatment. Results: In this study, 26 cases of T-lymphoblastic leukemia were analyzed. The mean age at diagnosis was 15.69±14.28 years, and eight cases had central nervous system involvement. The majority of cases (88.5%) were positive for Cytoplasmic-CD3 and CD7. Positive findings by fluorescence in situ hybridization (FISH) were: T cell receptor (TCR) α/δ in 6 (23.1%) of the patients, CDNK2A/CEP9 in five (19.2%), and TRCB in one (3.8%). Examination of the bone marrow on day 15 revealed a decrease in blasts to ≤1% in nine patients, and to ≤1% in 19 patients on day 30 post-therapy. Relapse was recorded in five (19.23%) patients. Three (11.53%) patients did not survive during treatment, of which two were <10 years old. The relapse rate for T-ALL was 19.23%, with an overall survival rate of about 64%. The overall mortality rate was 11.53%. Conclusion: The relapse rate for T-ALL in our study was approximately 19%, but the mortality rate was 11.5%. A substantial decrease in blast percentages was observed, suggesting a favorable initial reaction of the bone marrow to the combined chemotherapy. This suggests that the use of aggressive and more effective chemotherapy has led to better outcomes.

10.
Front Oncol ; 14: 1365897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835389

RESUMEN

Background: Acute hematologic toxicity (HT) is a prevalent adverse tissue reaction observed in cervical cancer patients undergoing chemoradiotherapy (CRT), which may lead to various negative effects such as compromised therapeutic efficacy and prolonged treatment duration. Accurate prediction of HT occurrence prior to CRT remains challenging. Methods: A discovery dataset comprising 478 continuous cervical cancer patients (140 HT patients) and a validation dataset consisting of 205 patients (52 HT patients) were retrospectively enrolled. Both datasets were categorized into the CRT group and radiotherapy (RT)-alone group based on the treatment regimen, i.e., whether chemotherapy was administered within the focused RT duration. Radiomics features were derived by contouring three regions of interest (ROIs)-bone marrow (BM), femoral head (FH), and clinical target volume (CTV)-on the treatment planning CT images before RT. A comprehensive model combining the radiomics features as well as the demographic, clinical, and dosimetric features was constructed to classify patients exhibiting acute HT symptoms in the CRT group, RT group, and combination group. Furthermore, the time-to-event analysis of the discriminative ROI was performed on all patients with acute HT to understand the HT temporal progression. Results: Among three ROIs, BM exhibited the best performance in classifying acute HT, which was verified across all patient groups in both discovery and validation datasets. Among different patient groups in the discovery dataset, acute HT was more precisely predicted in the CRT group [area under the curve (AUC) = 0.779, 95% CI: 0.657-0.874] than that in the RT-alone (AUC = 0.686, 95% CI: 0.529-0.817) or combination group (AUC = 0.748, 95% CI: 0.655-0.827). The predictive results in the validation dataset similarly coincided with those in the discovery dataset: CRT group (AUC = 0.802, 95% CI: 0.669-0.914), RT-alone group (AUC = 0.737, 95% CI: 0.612-0.862), and combination group (AUC = 0.793, 95% CI: 0.713-0.874). In addition, distinct feature sets were adopted for different patient groups. Moreover, the predicted HT risk of BM was also indicative of the HT temporal progression. Conclusions: HT prediction in cervical patients is dependent on both the treatment regimen and ROI selection, and BM is closely related to the occurrence and progression of HT, especially for CRT patients.

11.
Equine Vet J ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699829

RESUMEN

BACKGROUND: Magnetic resonance spectroscopy (MRS) has been used to investigate metabolic changes within human bone. It may be possible to use MRS to investigate bone metabolism and fracture risk in the distal third metacarpal/tarsal bone (MC/MTIII) in racehorses. OBJECTIVES: To determine the feasibility of using MRS as a quantitative imaging technique in equine bone by using the 1H spectra for the MC/MTIII to calculate fat content (FC). STUDY DESIGN: Observational cross-sectional study. METHODS: Limbs from Thoroughbred racehorses were collected from horses that died or were subjected to euthanasia on racecourses. Each limb underwent magnetic resonance imaging (MRI) at 3 T followed by single-voxel MRS at three regions of interest (ROI) within MC/MTIII (lateral condyle, medial condyle, proximal bone marrow [PBM]). Percentage FC was calculated at each ROI. Each limb underwent computed tomography (CT) and bone mineral density (BMD) was calculated for the same ROIs. All MR and CT images were graded for sclerosis. Histology slides were graded for sclerosis and proximal marrow space was calculated. Pearson or Spearman correlations were used to assess the relationship between BMD, FC and marrow space. Kruskal-Wallis tests were used to check for differences between sclerosis groups for BMD or FC. RESULTS: Eighteen limbs from 10 horses were included. A negative correlation was identified for mean BMD and FC for the lateral condyle (correlation coefficient = -0.60, p = 0.01) and PBM (correlation coefficient = -0.5, p = 0.04). There was a significant difference between median BMD for different sclerosis grades in the condyles on both MRI and CT. A significant difference in FC was identified between sclerosis groups in the lateral condyle on MRI and CT. MAIN LIMITATIONS: Small sample size. CONCLUSIONS: 1H Proton MRS is feasible in the equine MC/MTIII. Further work is required to evaluate the use of this technique to predict fracture risk in racehorses.

12.
J Clin Med ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731011

RESUMEN

Background/Objective: Mesenchymal Stromal Cells (MSCs) have been considered a promising treatment for several diseases, such as cardiac injuries. Many studies have analyzed their functional properties; however, few studies have characterized MSCs through successive culture passages. The main objective of this work was to analyze the phenotype and functionality of MSCs isolated from two different sources in five culture passages to determine if the culture passage might influence the efficacy of MSCs as a cell therapy treatment. Methods: Bone Marrow (BM)-MSCs were harvested from the femur of Wistar rats (n = 17) and Adipose Tissue(AT)-MSCs were isolated from inguinal fat (n = 17). MSCs were cultured for five culture passages, and the immunophenotype was analyzed by flow cytometry, the functionality was characterized by adipogenic, osteogenic, and chondrogenic differentiation assays, and cytokine secretion capacity was determined through the quantification of the Vascular Endothelial Growth-Factor, Fibroblast Growth-Factor2, and Transforming Growth-Factorß1 in the cell supernatant. The ultrastructure of MSCs was analyzed by transmission electron microscopy. Results: BM-MSCs exhibited typical phenotypes in culture passages two, four, and five, and their differentiation capacity showed an irregular profile throughout the five culture passages analyzed. AT-MSCs showed a normal phenotype and differentiation capacity in all the culture passages. BM- and AT-MSCs did not modify their secretion ability or ultrastructural morphology. Conclusions: Throughout the culture passages, BM-MSCs, but not AT-MSCs, exhibited changes in their functional and phenotypic characteristic that might affect their efficacy as a cell therapy treatment. Therefore, the culture passage selected should be considered for the application of MSCs as a cell therapy treatment.

13.
Cancers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730640

RESUMEN

The cellularity assessment in bone marrow biopsies (BMBs) for the diagnosis of Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs) is a key diagnostic feature and is usually performed by the human eyes through an optical microscope with consequent inter-observer and intra-observer variability. Thus, the use of an automated tool may reduce variability, improving the uniformity of the evaluation. The aim of this work is to develop an accurate AI-based tool for the automated quantification of cellularity in BMB histology. A total of 55 BMB histological slides, diagnosed as Ph- MPN between January 2018 and June 2023 from the archives of the Pathology Unit of University "Luigi Vanvitelli" in Naples (Italy), were scanned on Ventana DP200 or Epredia P1000 and exported as whole-slide images (WSIs). Fifteen BMBs were randomly selected to obtain a training set of AI-based tools. An expert pathologist and a trained resident performed annotations of hematopoietic tissue and adipose tissue, and annotations were exported as .tiff images and .png labels with two colors (black for hematopoietic tissue and yellow for adipose tissue). Subsequently, we developed a semantic segmentation model for hematopoietic tissue and adipose tissue. The remaining 40 BMBs were used for model verification. The performance of our model was compared with an evaluation of the cellularity of five expert hematopathologists and three trainees; we obtained an optimal concordance between our model and the expert pathologists' evaluation, with poorer concordance for trainees. There were no significant differences in cellularity assessments between two different scanners.

14.
Cell Rep Med ; : 101584, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38776911

RESUMEN

Iberdomide is a potent cereblon E3 ligase modulator (CELMoD agent) with promising efficacy and safety as a monotherapy or in combination with other therapies in patients with relapsed/refractory multiple myeloma (RRMM). Using a custom mass cytometry panel designed for large-scale immunophenotyping of the bone marrow tumor microenvironment (TME), we demonstrate significant increases of effector T and natural killer (NK) cells in a cohort of 93 patients with multiple myeloma (MM) treated with iberdomide, correlating findings to disease characteristics, prior therapy, and a peripheral blood immune phenotype. Notably, changes are dose dependent, associated with objective response, and independent of prior refractoriness to MM therapies. This suggests that iberdomide broadly induces innate and adaptive immune activation in the TME, contributing to its antitumor efficacy. Our approach establishes a strategy to study treatment-induced changes in the TME of patients with MM and, more broadly, patients with cancer and establishes rational combination strategies for iberdomide with immune-enhancing therapies to treat MM.

15.
Gut Microbes ; 16(1): 2350784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727219

RESUMEN

The gut microbiota constitutes a vast ecological system within the human body, forming a mutually interdependent entity with the host. In recent years, advancements in molecular biology technologies have provided a clearer understanding of the role of the gut microbiota. They not only influence the local immune status and metabolic functions of the host's intestinal tract but also impact the functional transformation of hematopoietic stem cells (HSCs) through the gut-blood axis. In this review, we will discuss the role of the gut microbiota in influencing hematopoiesis. We analyze the interactions between HSCs and other cellular components, with a particular emphasis on the direct functional regulation of HSCs by the gut microbiota and their indirect influence through cellular components in the bone marrow microenvironment. Additionally, we propose potential control targets for signaling pathways triggered by the gut microbiota to regulate hematopoietic function, filling crucial knowledge gaps in the development of this research field.


Asunto(s)
Microbioma Gastrointestinal , Hematopoyesis , Células Madre Hematopoyéticas , Hematopoyesis/fisiología , Microbioma Gastrointestinal/fisiología , Humanos , Células Madre Hematopoyéticas/microbiología , Animales , Transducción de Señal , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Tracto Gastrointestinal/microbiología , Médula Ósea/microbiología , Médula Ósea/fisiología
16.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727260

RESUMEN

Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.


Asunto(s)
Tejido Adiposo , Médula Ósea , Humanos , Tejido Adiposo/metabolismo , Médula Ósea/patología , Médula Ósea/metabolismo , Animales
17.
JBMR Plus ; 8(6): ziae052, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764792

RESUMEN

Erythropoietin (EPO), primarily produced by interstitial fibroblasts in the kidney during adulthood, and its receptor are well-known for their crucial role in regulating erythropoiesis. Recent research has unveiled an additional function of circulating EPO in the control of bone mass accrual and homeostasis through its receptor, which is expressed in both osteoblasts and osteoclasts. Notably, cells of the osteoblast lineage can produce and secrete functional EPO upon activation of the hypoxia signaling pathway. However, the physiological relevance of osteoblastic EPO remains to be fully elucidated. This study aimed to investigate the potential role of osteoblastic EPO in regulating bone mass accrual and erythropoiesis in young adult mice. To accomplish this, we employed a mutant mouse model lacking EPO specifically in mesenchymal progenitors and their descendants. Our findings indicate that in vivo loss of EPO in the osteoblast lineage does not significantly affect either bone mass accrual or erythropoiesis in young adult mice. Further investigations are necessary to comprehensively understand the potential contribution of EPO produced and secreted by osteoblast cells during aging, repair, and under pathological conditions.

18.
Mater Today Bio ; 26: 101078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765244

RESUMEN

Electrospun nanofibers have been widely employed in bone tissue engineering for their ability to mimic the micro to nanometer scale network of the native bone extracellular matrix. However, the dense fibrous structure and limited mechanical support of these nanofibers pose challenges for the treatment of critical size bone defects. In this study, we propose a facile approach for creating a three-dimensional scaffold using interconnected electrospun nanofibers containing melatonin (Scaffold@MT). The hypothesis posited that the sponge-like Scaffold@MT could potentially enhance bone regeneration and angiogenesis by modulating mitochondrial energy metabolism. Melatonin-loaded gelatin and poly-lactic-acid nanofibers were fabricated using electrospinning, then fragmented into shorter fibers. The sponge-like Scaffold@MT was created through a process involving homogenization, low-temperature lyophilization, and chemical cross-linking, while maintaining the microstructure of the continuous nanofibers. The incorporation of short nanofibers led to a low release of melatonin and increased Young's modulus of the scaffold. Scaffold@MT demonstrated positive biocompatibility by promoting a 14.2 % increase in cell proliferation. In comparison to the control group, Scaffold@MT significantly enhanced matrix mineralization by 3.2-fold and upregulated the gene expression of osteoblast-specific markers, thereby facilitating osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Significantly, Scaffold@MT led to a marked enhancement in the mitochondrial energy function of BMMSCs, evidenced by elevated adenosine triphosphate (ATP) production, mitochondrial membrane potential, and protein expression of respiratory chain factors. Furthermore, Scaffold@MT promoted the migration of human umbilical vein endothelial cells (HUVECs) and increased tube formation by 1.3 times compared to the control group, accompanied by an increase in vascular endothelial growth factor (VEGFA) expression. The results of in vivo experiments indicate that the implantation of Scaffold@MT significantly improved vascularized bone regeneration in a distal femur defect in rats. Micro-computed tomography analysis conducted 8 weeks post-surgery revealed that Scaffold@MT led to optimal development of new bone microarchitecture. Histological and immunohistochemical analyses demonstrated that Scaffold@MT facilitated bone matrix deposition and new blood vessel formation at the defect site. Overall, the utilization of melatonin-loaded nanofiber sponges exhibits significant promise as a scaffold that promotes bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.

19.
J Pharm Biomed Anal ; 246: 116211, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38759323

RESUMEN

Osteoporosis (OP) is a metabolic bone disease that can lead to major health challenges. The theory of Traditional Chinese medicine believes that kidney-Yin deficiency (KYD) is the main cause of postmenopausal osteoporosis. This study was aimed to investigate the effect of EZW on anti-osteoporosis with KYD, and explore potential mechanisms from the perspective of the kidney, bone and bone marrow through analysis of metabolomics and proteomics. The model of OP with KYD was established by rats treated with bilateral ovariectomy (OVX), and then given intragastric administration of thyroid and reserpine to induce. Micro-CT was applied to determine the microstructures of bone. Serum levels associated with bone turnover markers and kidney-Yin deficiency were detected by enzyme-linked immunosorbent (ELISA) assay. The differential metabolites in the kidney, bone and bone marrow were analyzed by metabolomics. The differentially expressed proteins in these three tissues were detected via proteomics. The findings suggested that EZW could alleviate a variety of metabolites and proteins among the kidney, bone and bone marrow, primarily in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and lipid metabolism, thus leading to improvements of OP with KYD, which provided theoretical basis for clinical treatment of EZW on OP with KYD.

20.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727310

RESUMEN

Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants of GNAS encoding for Gαs and leading to excessive cyclic adenosine monophosphate signaling in bone-marrow stromal cells (BMSCs). The effect of Gαs activation in the BMSC transcriptome and how it influences FD lesion microenvironment are unclear. We analyzed changes induced by Gαs activation in the BMSC transcriptome and secretome. RNAseq analysis of differential gene expression of cultured BMSCs from patients with FD and healthy volunteers, and from an inducible mouse model of FD, was performed, and the transcriptomic profiles of both models were combined to build a robust FD BMSC genetic signature. Pathways related to Gαs activation, cytokine signaling, and extracellular matrix deposition were identified. To assess the modulation of several key secreted factors in FD pathogenesis, cytokines and other factors were measured in culture media. Cytokines were also screened in a collection of plasma samples from patients with FD, and positive correlations of several cytokines to their disease burden score, as well as to one another and bone turnover markers, were found. These data support the pro-inflammatory, pro-osteoclastic behavior of FD BMSCs and point to several cytokines and other secreted factors as possible therapeutic targets and/or circulating biomarkers for FD.


Asunto(s)
Displasia Fibrosa Ósea , Células Madre Mesenquimatosas , Transcriptoma , Humanos , Animales , Células Madre Mesenquimatosas/metabolismo , Transcriptoma/genética , Ratones , Displasia Fibrosa Ósea/genética , Displasia Fibrosa Ósea/metabolismo , Displasia Fibrosa Ósea/patología , Masculino , Femenino , Citocinas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Adulto , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...