Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Brain Lang ; 257: 105459, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241469

RESUMEN

Transcranial direct current stimulation (tDCS) targeting Broca's area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca's tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca's area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.

2.
J Int Med Res ; 52(9): 3000605241265338, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39291423

RESUMEN

Functional MRI (fMRI) is gaining importance in the preoperative assessment of language for presurgical planning. However, inconsistencies with the Wada test might arise. This current case report describes a very rare case of an epileptic patient who exhibited bilateral distribution (right > left) in the inferior frontal gyrus (laterality index [LI] = -0.433) and completely right dominance in the superior temporal gyrus (LI = -1). However, the Wada test revealed a dissociation: his motor speech was located in the left hemisphere, while he could understand vocal instructions with his right hemisphere. A clinical implication is that the LIs obtained by fMRI should be cautiously used to determine Broca's area in atypical patients; for example, even when complete right dominance is found in the temporal cortex in right-handed patients. Theoretically, as the spatially separated functions of motor speech and language comprehension (by the combined results of fMRI and Wada) can be further temporally separated (by the intracarotid amobarbital procedure) in this case report, these findings might provide direct support to Broca's initial conclusions that Broca's area is associated with acquired motor speech impairment, but not language comprehension per se. Moreover, this current finding supports the idea that once produced, motor speech can be independent from language comprehension.


Asunto(s)
Lateralidad Funcional , Lenguaje , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Área de Broca/diagnóstico por imagen , Área de Broca/fisiopatología , Adulto , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Mapeo Encefálico/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia/fisiopatología , Epilepsia/diagnóstico , Habla/fisiología
3.
Proc Natl Acad Sci U S A ; 121(40): e2405117121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39312657

RESUMEN

Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.


Asunto(s)
Neuronas Colinérgicas , Giro Dentado , Células-Madre Neurales , Neurogénesis , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Giro Dentado/metabolismo , Giro Dentado/citología , Neurogénesis/fisiología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Ratones , Proliferación Celular , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Células Madre Adultas/citología , Morfogénesis , Nicho de Células Madre/fisiología , Masculino
4.
J Neuroimaging ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175169

RESUMEN

BACKGROUND AND PURPOSE: This study sought to explore dynamic degree centrality (DC) variability in particular regions of the brain in patients with poststroke Broca aphasia (BA) using a resting-state functional magnetic resonance imaging (rs-fMRI) approach, comparing differences between Uyghur and Chinese BA patients. METHODS: This study investigated two factors, language and BA status, and divided patients into four groups: Uyghur aphasia patients (UA), Uyghur normal control subjects (UN), Chinese aphasia patients (CA), and Chinese normal subjects (CN) who underwent rs-fMRI analysis. Two-way analysis of variance (ANOVA) was used to calculate the comprehensive differences in dynamic DC among these four groups. Correlations between DC and language behavior were assessed with partial correlation analyses. RESULTS: Two-way ANOVA revealed comparable results for the results of pairwise comparisons of dynamic DC variability among the four groups in the right middle frontal gyrus/orbital part (ORBmid.R), right superior frontal gyrus/dorsolateral, and right precuneus (PCUN.R), with results as follows: UA < UN, CA > CN, UA < CA, and UN > CN (p < .05, with the exception of the p-values for UA and UN in superior frontal gyrus/dorsolateral). In contrast, the opposite results were observed for the right calcarine fissure and surrounding cortex (CAL.R, p < .05). CONCLUSION: The observed enhancement of dynamic DC variability in ORBmid.R and PCUN.R among Chinese BA patients and in CAL.R in Uyghur BA patients may be attributable to language network restructuring. Overall, these results suggest that BA patients who use different language families may exhibit differences in the network mechanisms that characterize observed impairments of language function.

5.
Clin Linguist Phon ; : 1-19, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165076

RESUMEN

This study investigated language and executive functions (EF) in people with transcortical motor aphasia (TMA) and Broca's aphasia (BA). Participants included 19 patients with TMA, 19 patients with BA, and 25 healthy controls. Verbal Fluency tests, Stroop tests and Trail-Making tests were administered to all participants, and the Boston Diagnostic Aphasia Examination (BDAE) was administered to participants with aphasia. Results showed that (1) both groups of patients with aphasia had poorer performance on Verbal Fluency tests, Stroop tests and Trail-Making tests than healthy controls; (2) participants with BA had superior performance on Stroop tests and Trail-Making tests, but not on Verbal Fluency tests, than participants with TMA, and (2) the performance on Verbal Fluency tests, Stroop tests and Trail-Making was significantly correlated with the performance on BDAE for participants with TMA, but not for participants with BA. These results suggest that EF deficits are present in both patients with TMA and those with BA. They also show that the relationship between EF deficits and language impairments in people with aphasia might depend on the type of aphasia, aspects of language, and the components of EF measured.

6.
Sci Rep ; 14(1): 14629, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918523

RESUMEN

3D reconstruction of human brain volumes at high resolution is now possible thanks to advancements in tissue clearing methods and fluorescence microscopy techniques. Analyzing the massive data produced with these approaches requires automatic methods able to perform fast and accurate cell counting and localization. Recent advances in deep learning have enabled the development of various tools for cell segmentation. However, accurate quantification of neurons in the human brain presents specific challenges, such as high pixel intensity variability, autofluorescence, non-specific fluorescence and very large size of data. In this paper, we provide a thorough empirical evaluation of three techniques based on deep learning (StarDist, CellPose and BCFind-v2, an updated version of BCFind) using a recently introduced three-dimensional stereological design as a reference for large-scale insights. As a representative problem in human brain analysis, we focus on a 4 -cm 3 portion of the Broca's area. We aim at helping users in selecting appropriate techniques depending on their research objectives. To this end, we compare methods along various dimensions of analysis, including correctness of the predicted density and localization, computational efficiency, and human annotation effort. Our results suggest that deep learning approaches are very effective, have a high throughput providing each cell 3D location, and obtain results comparable to the estimates of the adopted stereological design.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Algoritmos , Neuronas/citología , Microscopía Fluorescente/métodos
7.
J Neurophysiol ; 131(6): 1226-1239, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691531

RESUMEN

Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB → M/TCs and indirect disinhibitory long circuits HDB → interneurons → M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.


Asunto(s)
Interneuronas , Bulbo Olfatorio , Bulbo Olfatorio/fisiología , Bulbo Olfatorio/citología , Animales , Interneuronas/fisiología , Ratones , Neuronas GABAérgicas/fisiología , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Masculino , Ratones Endogámicos C57BL , Potenciales de Acción/fisiología , Inhibición Neural/fisiología , Femenino , Optogenética
8.
J Affect Disord ; 356: 88-96, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588729

RESUMEN

OBJECTIVE: Subthreshold depression is an essential precursor and risk factor for major depressive disorder, and its accurate identification and timely intervention are important for reducing the prevalence of major depressive disorder. Therefore, we used functional near-infrared spectroscopic imaging (fNIRS) to explore the characteristics of the brain neural activity of college students with subthreshold depression in the verbal fluency task. METHODS: A total of 72 subthreshold depressed college students (SDs) and 67 healthy college students (HCs) were recruited, and all subjects were subjected to a verbal fluency task (VFT) while a 53-channel fNIRS device was used to collect the subjects' cerebral blood oxygenation signals. RESULTS: The results of the independent samples t-test showed that the mean oxyhemoglobin in the right dorsolateral prefrontal (ch34, ch42, ch45) and Broca's area (ch51, ch53) of SDs was lower than that of HCs. The peak oxygenated hemoglobin of SDs was lower in the right dorsolateral prefrontal (ch34) and Broca's area (ch51, ch53).The brain functional connectivity strength was lower than that of HCs. Correlation analysis showed that the left DLPFC and Broca's area were significantly negatively correlated with the depression level. CONCLUSION: SDs showed abnormally low, inadequate levels of brain activation and weak frontotemporal brain functional connectivity. The right DLPFC has a higher sensitivity for the differentiation of depressive symptoms and is suitable as a biomarker for the presence of depressive symptoms. Dysfunction in Broca's area can be used both as a marker of depressive symptoms and as a biomarker, indicating the severity of depressive symptoms.


Asunto(s)
Depresión , Oxihemoglobinas , Espectroscopía Infrarroja Corta , Humanos , Oxihemoglobinas/metabolismo , Masculino , Femenino , Adulto Joven , Adulto , Depresión/fisiopatología , Depresión/metabolismo , Área de Broca/fisiopatología , Corteza Prefontal Dorsolateral/fisiopatología , Corteza Prefontal Dorsolateral/metabolismo , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/diagnóstico por imagen
9.
Cortex ; 173: 263-282, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38432177

RESUMEN

Current accounts of behavioral and neurocognitive correlates of plasticity in blindness are just beginning to incorporate the role of speech and verbal production. We assessed Vygotsky/Luria's speech mediation hypothesis, according to which speech activity can become a mediating tool for perception of complex stimuli, specifically, for encoding tactual/haptic spatial patterns which convey pictorial information (haptic pictures). We compared verbalization in congenitally totally blind (CTB) and age-matched sighted but visually impaired (VI) children during a haptic picture naming task which included two repeated, test-retest, identifications. The children were instructed to explore 10 haptic schematic pictures of objects (e.g., cup) and body parts (e.g., face) and provide (without experimenter's feedback) their typical name. Children's explorations and verbalizations were videorecorded and transcribed into audio segments. Using the Computerized Analysis of Language (CLAN) program, we extracted several measurements from the observed verbalizations, including number of utterances and words, utterance/word duration, and exploration time. Using the Word2Vec natural language processing technique we operationalized semantic content from the relative distances between the names provided. Furthermore, we conducted an observational content analysis in which three judges categorized verbalizations according to a rating scale assessing verbalization content. Results consistently indicated across all measures that the CTB children were faster and semantically more precise than their VI counterparts in the first identification test, however, the VI children reached the same level of precision and speed as the CTB children at retest. Overall, the task was harder for the VI group. Consistent with current neuroscience literature, the prominent role of speech in CTB and VI children's data suggests that an underlying cross-modal involvement of integrated brain networks, notably associated with Broca's network, likely also influenced by Braille, could play a key role in compensatory plasticity via the mediational mechanism postulated by Luria.


Asunto(s)
Tecnología Háptica , Habla , Niño , Humanos , Ceguera/psicología , Trastornos de la Visión , Tacto
10.
Sci Rep ; 14(1): 5781, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461197

RESUMEN

Juvenile male zebra finches (Taeniopygia guttata) must be exposed to an adult tutor during a sensitive period to develop normal adult song. The pre-motor nucleus HVC (acronym used as a proper name), plays a critical role in song learning and production (cf. Broca's area in humans). In the human brain, left-side hemispheric dominance in some language regions is positively correlated with proficiency in linguistic skills. However, it is unclear whether this pattern depends upon language learning, develops with normal maturation of the brain, or is the result of pre-existing functional asymmetries. In juvenile zebra finches, even though both left and right HVC contribute to song production, baseline molecular activity in HVC is left-dominant. To test if HVC exhibits hemispheric dominance prior to song learning, we raised juvenile males in isolation from adult song and measured neuronal activity in the left and right HVC upon first exposure to an auditory stimulus. Activity in the HVC was measured using the immediate early gene (IEG) zenk (acronym for zif-268, egr-1, NGFI-a, and krox-24) as a marker for neuronal activity. We found that neuronal activity in the HVC of juvenile male zebra finches is not lateralized when raised in the absence of adult song, while normally-reared juvenile birds are left-dominant. These findings show that there is no pre-existing asymmetry in the HVC prior to song exposure, suggesting that lateralization of the song system depends on learning through early exposure to adult song and subsequent song-imitation practice.


Asunto(s)
Pinzones , Animales , Masculino , Humanos , Pinzones/fisiología , Vocalización Animal/fisiología , Aprendizaje/fisiología , Encéfalo/fisiología , Genes Inmediatos-Precoces
11.
BMC Res Notes ; 17(1): 61, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433213

RESUMEN

OBJECTIVE: The neural correlates of creativity are not well understood. Using an improvised guitar task, we investigated the role of Broca's area during spontaneous creativity, regardless of individual skills, experience, or subjective feelings. RESULTS: Twenty guitarists performed improvised and formulaic blues rock sequences while hemodynamic responses were recorded using functional near-infrared spectroscopy. We identified a new significant response in Broca's area (Brodmann area [BA] 45L) and its right hemisphere homologue during improvised playing but not during formulaic playing. Our results indicate that bilateral BA45 activity is common during creative processes that involve improvisation across all participants, regardless of subjective feelings, skill, age, difficulty, history, or amount of practice. While our previous results demonstrated that the modulation of the neural network according to the subjectively experienced level of creativity relied on the degree of deactivation in BA46L, our current results independently show a common concurrent activity in BA45 in all participants. We suggest that this is related to the sustained execution of improvisation in "motor control," analogous to motor planning in speech control.


Asunto(s)
Área de Broca , Música , Humanos , Emociones , Redes Neurales de la Computación
12.
Cureus ; 16(2): e53793, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38465188

RESUMEN

There is a complex link between tuberculous meningitis (TBM) and aphasia, in which a language impairment is caused by an injury to the cortical language centre. The parts of the brain that function for speech and language production are the Wernicke's, Broca's, and arcuate fasciculus regions. This case report mainly highlights the neurological consequences of TBM, and how it affects language and speech functioning. It outlines a comprehensive physiotherapy rehabilitation program that targets a range of issues for the patient, such as verbal output, weakness, motor deficits, articulation issues in speech, and coordination issues. Various treatment modalities can help correct weakness, improve balance and coordination, increase flexibility and range of motion (ROM), and make speech more fluent. The case report emphasizes the necessity of using an integrated approach that combines speech-language therapy (SLT), melodic intonation therapy (MIT), constraint-induced aphasia therapy (CIAT), medication treatments, and physical therapy to address the multifaceted impacts of TBM-induced aphasia on a patient's quality of life (QOL).

13.
Neuroimage ; 289: 120543, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38369168

RESUMEN

For sentence comprehension, information carried by semantic relations between constituents must be combined with other information to decode the constituent structure of a sentence, due to atypical and noisy situations of language use. Neural correlates of decoding sentence structure by semantic information have remained largely unexplored. In this functional MRI study, we examine the neural basis of semantic-driven syntactic parsing during sentence reading and compare it with that of other types of syntactic parsing driven by word order and case marking. Chinese transitive sentences of various structures were investigated, differing in word order, case making, and agent-patient semantic relations (i.e., same vs. different in animacy). For the non-canonical unmarked sentences without usable case marking, a semantic-driven effect triggered by agent-patient ambiguity was found in the left inferior frontal gyrus opercularis (IFGoper) and left inferior parietal lobule, with the activity not being modulated by naturalness factors of the sentences. The comparison between each type of non-canonical sentences with canonical sentences revealed that the non-canonicity effect engaged the left posterior frontal and temporal regions, in line with previous studies. No extra neural activity was found responsive to case marking within the non-canonical sentences. A word order effect across all types of sentences was also found in the left IFGoper, suggesting a common neural substrate between different types of parsing. The semantic-driven effect was also observed for the non-canonical marked sentences but not for the canonical sentences, suggesting that semantic information is used in decoding sentence structure in addition to case marking. The current findings illustrate the neural correlates of syntactic parsing with semantics, and provide neural evidence of how semantics facilitates syntax together with other information.


Asunto(s)
Comprensión , Semántica , Humanos , Lenguaje , Corteza Prefrontal , Lóbulo Temporal , Imagen por Resonancia Magnética , Mapeo Encefálico
14.
Brain Behav Immun ; 117: 347-355, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38266662

RESUMEN

Human Immunodeficiency Virus-1 (HIV) infection of the brain induces HIV-associated neurocognitive disorders (HAND). The set of molecular events employed by HIV to drive cognitive impairments in people living with HIV are diverse and remain not completely understood. We have shown that the HIV envelope protein gp120 promotes loss of synapses and decreases performance on cognitive tasks through the p75 neurotrophin receptor (p75NTR). This receptor is abundant on cholinergic neurons of the basal forebrain and contributes to cognitive impairment in various neurological disorders. In this study, we examined cholinergic neurons of gp120 transgenic (gp120tg) mice for signs of degeneration. We observed that the number of choline acetyltransferase-expressing cells is decreased in old (12-14-month-old) gp120tg mice when compared to age matched wild type. In the same animals, we observed an increase in the levels of pro-nerve growth factor, a ligand of p75NTR, as well as a disruption of consolidation of extinction of conditioned fear, a behavior regulated by cholinergic neurons of the basal forebrain. Both biochemical and behavioral outcomes of gp120tg mice were rescued by the deletion of the p75NTR gene, strongly supporting the role that this receptor plays in the neurotoxic effects of gp120. These data indicate that future p75NTR-directed pharmacotherapies could provide an adjunct therapy against synaptic simplification caused by HIV.


Asunto(s)
Prosencéfalo Basal , Infecciones por VIH , VIH-1 , Ratones , Animales , Humanos , Lactante , Receptor de Factor de Crecimiento Nervioso/metabolismo , Ratones Transgénicos , VIH-1/metabolismo , Prosencéfalo Basal/metabolismo , Neuronas Colinérgicas/metabolismo , Infecciones por VIH/metabolismo
15.
Brain Sci ; 14(1)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38248273

RESUMEN

Apraxia of speech is a persistent speech motor disorder that affects speech intelligibility. Studies on speech motor disorders with transcranial Direct Current Stimulation (tDCS) have been mostly directed toward examining post-stroke aphasia. Only a few tDCS studies have focused on apraxia of speech or childhood apraxia of speech (CAS), and no study has investigated individuals with CAS and Trisomy 21 (T21, Down syndrome). This N-of-1 randomized trial examined the effects of tDCS combined with a motor learning task in developmental apraxia of speech co-existing with T21 (ReBEC RBR-5435x9). The accuracy of speech sound production of nonsense words (NSWs) during Rapid Syllable Transition Training (ReST) over 10 sessions of anodal tDCS (1.5 mA, 25 cm) over Broca's area with the cathode over the contralateral region was compared to 10 sessions of sham-tDCS and four control sessions in a 20-year-old male individual with T21 presenting moderate-severe childhood apraxia of speech (CAS). The accuracy for NSW production progressively improved (gain of 40%) under tDCS (sham-tDCS and control sessions showed < 20% gain). A decrease in speech severity from moderate-severe to mild-moderate indicated transfer effects in speech production. Speech accuracy under tDCS was correlated with Wernicke's area activation (P3 current source density), which in turn was correlated with the activation of the left supramarginal gyrus and the Sylvian parietal-temporal junction. Repetitive bihemispheric tDCS paired with ReST may have facilitated speech sound acquisition in a young adult with T21 and CAS, possibly through activating brain regions required for phonological working memory.

16.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257423

RESUMEN

The fusion of electroencephalography (EEG) with machine learning is transforming rehabilitation. Our study introduces a neural network model proficient in distinguishing pre- and post-rehabilitation states in patients with Broca's aphasia, based on brain connectivity metrics derived from EEG recordings during verbal and spatial working memory tasks. The Granger causality (GC), phase-locking value (PLV), weighted phase-lag index (wPLI), mutual information (MI), and complex Pearson correlation coefficient (CPCC) across the delta, theta, and low- and high-gamma bands were used (excluding GC, which spanned the entire frequency spectrum). Across eight participants, employing leave-one-out validation for each, we evaluated the intersubject prediction accuracy across all connectivity methods and frequency bands. GC, MI theta, and PLV low-gamma emerged as the top performers, achieving 89.4%, 85.8%, and 82.7% accuracy in classifying verbal working memory task data. Intriguingly, measures designed to eliminate volume conduction exhibited the poorest performance in predicting rehabilitation-induced brain changes. This observation, coupled with variations in model performance across frequency bands, implies that different connectivity measures capture distinct brain processes involved in rehabilitation. The results of this paper contribute to current knowledge by presenting a clear strategy of utilizing limited data to achieve valid and meaningful results of machine learning on post-stroke rehabilitation EEG data, and they show that the differences in classification accuracy likely reflect distinct brain processes underlying rehabilitation after stroke.


Asunto(s)
Afasia , Encéfalo , Humanos , Aprendizaje Automático , Memoria a Corto Plazo , Electroencefalografía
17.
J Neuropsychol ; 18 Suppl 1: 183-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38062895

RESUMEN

Verb generation is among the most frequently used tasks in presurgical mapping. Because this task involves many processes, the overall brain effects are not specific. While it is necessary to identify the whole network involving noun comprehension or semantic retrieval and lexical selection to produce the verb, isolation of those components is also crucial. Here, we present data from four patients undergoing presurgical brain mapping. The study implied a reanalysis of magnetoencephalography data with a recategorization of the used items. It aimed to extract the task component that relies on the inferior frontal gyrus (IFG). The task could be applied with higher specificity when targeting frontal areas. For that, we based item classification on the selection demands imposed by the noun. It is a robust finding that the IFG carries out this selection and that a quantitative index can be calculated for each noun, which depends on the selection effort (Proceedings of the National Academy of Sciences of the United States of America, 1997; 94(26):14792-14797, Proceedings of the National Academy of Sciences of the United States of America, 1998; 95(26):15855-15860). Data showed focality and specificity, with a correlation between this derived index and source activations in the inferior frontal gyrus for all patients. Strikingly, we detected when the right-hemisphere homologue area was involved in the selection process in two patients showing reorganization or language right lateralization. The present data are a step towards a dissection of broad specific tasks frequently used in presurgical protocols.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Semántica , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Mapeo Encefálico/métodos
18.
Eur J Neurosci ; 59(5): 786-795, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37778749

RESUMEN

Mind blanking is a mental state in which attention does not bring any perceptual input into conscious awareness. As this state is still largely unexplored, we suggest that a comprehensive understanding of mind blanking can be achieved through a multifaceted approach combining self-assessment methods, neuroimaging and neuromodulation. In this article, we explain how electroencephalography and transcranial magnetic stimulation could be combined to help determine whether mind blanking is associated with a lack of mental content or a lack of linguistically or conceptually determinable mental content. We also question whether mind blanking occurs spontaneously or intentionally and whether these two forms are instantiated by the same or different neural correlates.


Asunto(s)
Atención , Estado de Conciencia , Atención/fisiología , Estado de Conciencia/fisiología , Estimulación Magnética Transcraneal , Neuroimagen
19.
Neurol Sci ; 45(5): 2261-2270, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37996775

RESUMEN

BACKGROUND: Developmental dyslexia (DD) is a neurodevelopmental disorder that is characterized by difficulties with all aspects of information acquisition in the written word, including slow and inaccurate word recognition. The neural basis behind DD has not been fully elucidated. METHOD: The study included 22 typically developing (TD) children, 16 children with isolated spelling disorder (SpD), and 20 children with DD. The cortical thickness, folding index, and mean curvature of Broca's area, including the triangular part of the left inferior frontal gyrus (IFGtriang) and the opercular part of the left inferior frontal gyrus, were assessed to explore the differences of surface morphology among the TD, SpD, and DD groups. Furthermore, the structural covariance network (SCN) of the triangular part of the left inferior frontal gyrus was analyzed to explore the changes of structural connectivity in the SpD and DD groups. RESULTS: The DD group showed higher curvature and cortical folding of the left IFGtriang than the TD group and SpD group. In addition, compared with the TD group and the SpD group, the structural connectivity between the left IFGtriang and the left middle-frontal gyrus and the right mid-orbital frontal gyrus was increased in the DD group, and the structural connectivity between the left IFGtriang and the right precuneus and anterior cingulate was decreased in the DD group. CONCLUSION: DD had atypical structural connectivity in brain regions related to visual attention, memory and which might impact the information input and integration needed for reading and spelling.


Asunto(s)
Dislexia , Niño , Humanos , Dislexia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Lectura , Mapeo Encefálico , Lóbulo Frontal , Imagen por Resonancia Magnética
20.
Bull Exp Biol Med ; 175(6): 726-729, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978151

RESUMEN

In this article, we studied individual features of the macroscopic structure of Broca's area of the brains in 9 women (18 hemispheres) aged from 20 to 30 years, without any mental or neurological disorders. By using MRI, the structures of the sulci and gyri of the pars triangularis and pars opercularis of Broca's area were studied: the anterior and ascending rami of the lateral sulcus, the radial, diagonal, precentral, inferior frontal, and lateral sulci. We also studied the relationship between the pars triangularis and pars opercularis as well as their relationships with neighboring cortical structures. We measured the volume of the pars triangularis and pars opercularis and the thickness of their cortex. Significant individual variability in the location and relationships between the anterior ramus of the lateral sulcus and the ascending ramus of the lateral sulcus, as well as structural features of the pars triangularis and pars opercularis of Broca's area were demonstrated.


Asunto(s)
Área de Broca , Corteza Cerebral , Humanos , Femenino , Área de Broca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Membrana Celular , Lóbulo Frontal/diagnóstico por imagen , Mapeo Encefálico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA