Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Int J Nanomedicine ; 19: 7831-7850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105099

RESUMEN

Purpose: Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods: Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results: Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion: This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.


Asunto(s)
Bufanólidos , Neoplasias Colorrectales , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Terapia Fototérmica , Animales , Bufanólidos/farmacología , Bufanólidos/química , Bufanólidos/farmacocinética , Humanos , Glucólisis/efectos de los fármacos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Terapia Fototérmica/métodos , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Indoles/química , Indoles/farmacología , Polietilenglicoles/química , Polímeros/química , Ratones Endogámicos BALB C , Línea Celular Tumoral , Ratones Desnudos , Células HCT116 , Nanopartículas de Magnetita/química , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancers (Basel) ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39123466

RESUMEN

Bufalin, a cardiotonic steroid derived from the Chinese toad (Bufo gargarizans), has demonstrated potent anticancer properties across various cancer types, positioning it as a promising therapeutic candidate. However, comprehensive mechanistic studies specific to head and neck cancers have been lacking. Our study aimed to bridge this gap by investigating bufalin's mechanisms of action in head and neck cancer cells. Using several methods, such as Western blotting, immunofluorescence, and flow cytometry, we observed bufalin's dose-dependent reduction in cell viability, disruption of cell membrane integrity, and inhibition of colony formation in both HPV-positive and HPV-negative cell lines. Bufalin induces apoptosis through the modulation of apoptosis-related proteins, mitochondrial function, and reactive oxygen species production. It also arrests the cell cycle at the G2/M phase and attenuates cell migration while affecting epithelial-mesenchymal transition markers and targeting pivotal signaling pathways, including Wnt/ß-catenin, EGFR, and NF-κB. Additionally, bufalin exerted immunomodulatory effects by polarizing macrophages toward the M1 phenotype, bolstering antitumor immune responses. These findings underscore bufalin's potential as a multifaceted therapeutic agent against head and neck cancers, targeting essential pathways involved in proliferation, apoptosis, cell cycle regulation, metastasis, and immune modulation. Further research is warranted to validate these mechanisms and optimize bufalin's clinical application.

3.
Inflammopharmacology ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012431

RESUMEN

Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.

4.
Biochem Biophys Res Commun ; 733: 150440, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39067250

RESUMEN

Cisplatin (DPP) resistance is a severe obstacle to ovarian cancer (OC) treatment. Our research aims to uncover the therapeutic effect and the underlying mechanism of Bufalin against DDP resistance. The cell viability, proliferation capacity, γH2AX expression, and apoptosis ratio were quantified via CCK8 assay, colony formation assay, immunofluorescence, and flow cytometry analysis respectively. Xenografting experiment was performed to detect the tumor growth. Molecular docking was applied to mimic the combination of Bufalin and USP36 protein, and Western blotting was conducted to measure the Bax, Bcl-2, γH2AX, USP36, and c-Myc expression. The c-Myc ubiquitination and half-life were detected via ubiquitination assay and cycloheximide chasing assay. Bufalin treatment notably suppressed the cell viability and colony numbers, and increased the apoptosis ratio and γH2AX level in the DDP treatment group. Bufalin therapy also notably inhibited tumor growth, Bax, Bcl-2, and γH2AX expression in vivo. Moreover, the Bufalin application remarkedly reduced the c-Myc expression and half-life and increased the c-Myc ubiquitination via interaction and subsequent down-regulation of USP36. Knockdown of USP36 reversed the antiproliferative effect and proapoptotic capacity of Bufalin therapy in the DDP treatment group. In conclusion, Bufalin can overcome the DDP resistance in vitro and in vivo via the USP36/c-Myc axis, which innovatively suggests the therapeutic potential of Bufalin against DDP resistance ovarian cancer.

5.
Arch Biochem Biophys ; 759: 110085, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971421

RESUMEN

Cardiac glycosides, derived from plants and animals, have been recognized since ancient times. These substances hinder the function of the sodium-potassium pump within eukaryotic cells. Many reports have shown that these compounds influence the activity of nuclear receptors. Thus, we assessed the effects of various cardiac glycosides at nontoxic concentrations on RORγ and RORγT. RORγT is a crucial protein involved in the differentiation of Th17 lymphocytes. Sixteen analyzed cardiac glycosides exhibited varying toxicities in HepG2 cells, all of which demonstrated agonistic effects on RORγ, as confirmed in the RORγ-HepG2 reporter cell line. The overexpression of both the RORγ and RORγT isoforms intensified the effects of these compounds. Additionally, these glycosides induced the expression of G6PC, a gene regulated by RORγ, in HepG2 cells. Subsequently, the effects of two endogenous cardiac glycosides (marinobufagenin and ouabain) and the three most potent glycosides (bufalin, oleandrin, and telecinobufagenin) were evaluated in Th17 primary lymphocytes. All of these compounds increased the expression of the IL17A, IL17F, IFNG, and CXCL10 genes, but they exhibited varying effects on GZMB and CCL20 expression. Molecular docking analysis revealed the robust binding affinity of cardiac glycosides for the ligand binding domain of the RORγ/RORγT receptors. Thus, we demonstrated that at nontoxic concentrations, cardiac glycosides have agonistic effects on RORγ/RORγT nuclear receptors, augmenting their activity. This potential can be harnessed to modulate the phenotype of IL17-expressing cells (e.g., Th17 or Tc17 lymphocytes) in adoptive therapy for combating various types of cancer.


Asunto(s)
Glicósidos Cardíacos , Simulación del Acoplamiento Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Células Th17 , Humanos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Células Hep G2 , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/química , Células Th17/metabolismo , Células Th17/efectos de los fármacos , Células Th17/inmunología
6.
Int J Nanomedicine ; 19: 2807-2821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525014

RESUMEN

Background: Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods: An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results: The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion: These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.


Asunto(s)
Nanopartículas , Fosfatidiletanolaminas , Profármacos , Profármacos/farmacología , Profármacos/química , Portadores de Fármacos/química , Ácido Linoleico , Polietilenglicoles/química , Nanopartículas/química , Movimiento Celular , Proliferación Celular , Metilcelulosa
7.
Eur Radiol Exp ; 8(1): 43, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467904

RESUMEN

BACKGROUND: Multi-b-value diffusion-weighted imaging (DWI) with different postprocessing models allows for evaluating hepatocellular carcinoma (HCC) proliferation, spatial heterogeneity, and feasibility of treatment strategies. We assessed synergistic effects of bufalin+sorafenib in orthotopic HCC-LM3 xenograft nude mice by using intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), a stretched exponential model (SEM), and a fractional-order calculus (FROC) model. METHODS: Twenty-four orthotopic HCC-LM3 xenograft mice were divided into bufalin+sorafenib, bufalin, sorafenib treatment groups, and a control group. Multi-b-value DWI was performed using a 3-T scanner after 3 weeks' treatment to obtain true diffusion coefficient Dt, pseudo-diffusion coefficient Dp, perfusion fraction f, mean diffusivity (MD), mean kurtosis (MK), distributed diffusion coefficient (DDC), heterogeneity index α, diffusion coefficient D, fractional order parameter ß, and microstructural quantity µ. Necrotic fraction (NF), standard deviation (SD) of hematoxylin-eosin staining, and microvessel density (MVD) of anti-CD31 staining were evaluated. Correlations of DWI parameters with histopathological results were analyzed, and measurements were compared among four groups. RESULTS: In the final 22 mice, f positively correlated with MVD (r = 0.679, p = 0.001). Significantly good correlations of MK (r = 0.677), α (r = -0.696), and ß (r= -0.639) with SD were observed (all p < 0.010). f, MK, MVD, and SD were much lower, while MD, α, ß, and NF were higher in bufalin plus sorafenib group than control group (all p < 0.050). CONCLUSION: Evaluated by IVIM, DKI, SEM, and FROC, bufalin+sorafenib was found to inhibit tumor proliferation and angiogenesis and reduce spatial heterogeneity in HCC-LM3 models. RELEVANCE STATEMENT: Multi-b-value DWI provides potential metrics for evaluating the efficacy of treatment in HCC. KEY POINTS: • Bufalin plus sorafenib combination may increase the effectiveness of HCC therapy. • Multi-b-value DWI depicted HCC proliferation, angiogenesis, and spatial heterogeneity. • Multi-b-value DWI may be a noninvasive method to assess HCC therapeutic efficacy.


Asunto(s)
Bufanólidos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/tratamiento farmacológico , Sorafenib/farmacología , Sorafenib/uso terapéutico , Ratones Desnudos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico
8.
Apoptosis ; 29(5-6): 635-648, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38393643

RESUMEN

Patients with metastatic colorectal cancer often have poor outcomes, primarily due to hepatic metastasis. Colorectal cancer (CRC) cells have the ability to secrete cytokines and other molecules that can remodel the tumor microenvironment, facilitating the spread of cancer to the liver. Kupffer cells (KCs), which are macrophages in the liver, can be polarized to M2 type, thereby promoting the expression of adhesion molecules that aid in tumor metastasis. Our research has shown that huachanshu (with bufalin as the main active monomer) can effectively inhibit CRC metastasis. However, the underlying mechanism still needs to be thoroughly investigated. We have observed that highly metastatic CRC cells have a greater ability to induce M2-type polarization of Kupffer cells, leading to enhanced metastasis. Interestingly, we have found that inhibiting the expression of IL-6, which is highly expressed in the serum, can reverse this phenomenon. Notably, bufalin has been shown to attenuate the M2-type polarization of Kupffer cells induced by highly metastatic Colorectal cancer (mCRC) cells and down-regulate IL-6 expression, ultimately inhibiting tumor metastasis. In this project, our aim is to study how high mCRC cells induce M2-type polarization and how bufalin, via the SRC-3/IL-6 pathway, can inhibit CRC metastasis. This research will provide a theoretical foundation for understanding the anti-CRC effect of bufalin.


Asunto(s)
Bufanólidos , Neoplasias del Colon , Interleucina-6 , Macrófagos del Hígado , Neoplasias Hepáticas , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Bufanólidos/farmacología , Bufanólidos/uso terapéutico , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Animales , Interleucina-6/metabolismo , Interleucina-6/genética , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Línea Celular Tumoral , Ratones , Antineoplásicos/farmacología , Microambiente Tumoral/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Metástasis de la Neoplasia
9.
Toxicon ; 240: 107636, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316294

RESUMEN

Ample evidence indicates that bufalin (BFN), a cardiotonic steroid in Bufo toad toxin, possesses a potent anticancer activity mainly by stimulating apoptosis in cancer cells. Human red blood cells (RBCs) undergo eryptosis which contributes to a plethora of pathological conditions. No reports, however, have examined the potential toxicity of BFN to RBCs. This study aims to characterize the biochemical mechanisms governing the influence of BFN on the physiology and lifespan of RBCs. Isolated RBCs from healthy volunteers were exposed to anticancer concentrations of commercially available BFN from the skin of Bufo gargarizans (10-200 µM) for 24 h at 37 °C. Photometric assays were used to estimate hemolysis and hemolytic markers, and flow cytometry was used to detect eryptotic markers. Phosphatidylserine externalization was captured by fluorescein isothiocyante-labeled annexin V, cellular dimensions by light scatter patterns, and intracellular Ca2+ and reactive oxygen species (ROS) by fluorogenic dyes Fluo4/AM and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. BFN caused Ca2+-independent hemolysis and release of LDH, AST, CK, and K+, and increased annexin V-bound cells, cytosolic Ca2+, cell shrinkage, and ROS levels. BFN also disrupted Na+ and Mg2+ trafficking, and was sensitive to PEG 8000, sucrose, SB203580, and NSC 23766. In whole blood, BFN depleted hemoglobin stores, increased fragmented RBCs, and was selectively toxic to reticulocytes, lymphocytes, and platelets. In conclusion, BFN elicits premature RBC death, subject to regulation by p38 MAPK and Rac1 GTPase, and is detrimental to other peripheral blood cells. Altogether, these novel findings prompt cautious consideration of the toxin in anticancer therapy.


Asunto(s)
Bufanólidos , GTP Fosfohidrolasas , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Especies Reactivas de Oxígeno/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Hemólisis , Anexina A5/metabolismo , Longevidad , Eritrocitos , Calcio/metabolismo , Fosfatidilserinas/metabolismo , Estrés Oxidativo
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 199-209, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38298057

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) accounts for approximately 15% of primary liver cancers, and the incidence rate has been increasing in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to identify signature genes. The aim of this study is to screen the signature genes of ICC and find the potential target for the treatment of ICC. We find that UBA3 is highly expressed in ICC, and knockdown of UBA3 inhibits ICC proliferation, invasion and migration. Mechanistic experiments show that UBA3 promotes ICC proliferation, invasion and migration by affecting ANXA2 through the MAPK signaling pathway. UBA3 is a target of bufalin, and bufalin targeting UBA3 inhibits ICC development and progression through the MAPK signaling pathway. In conclusion, our study shows that bufalin inhibits ICC by targeting UBA3, which has emerged as a new biomarker and potential therapeutic target for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enzimas Activadoras de Ubiquitina , Humanos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Transducción de Señal , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
11.
Phytomedicine ; 126: 155395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340578

RESUMEN

BACKGROUND: The interplay of tumor-associated macrophages (TAMs) and tumor cells plays a key role in the development of hepatocellular carcinoma (HCC) and provides an important target for HCC therapy. The communication between them is still on the investigation. Bufalin, the active component derived from the traditional Chinese medicine (TCM) Chansu, has been evidenced to possess anti-HCC activity by directly suppressing tumor cells, while its immunomodulatory effect on the tumor microenvironment (TME) is unclear. PURPOSE: To explore the mechanism of M2 TAM-governed tumor cell proliferation and the inhibitory effect of bufalin on HCC growth by targeting M2 macrophages. METHODS: Morphology and marker proteins were detected to evaluate macrophage polarization via microscopy and flow cytometry. Cellular proliferation and malignant transformation of HCC cells cultured with macrophage conditioned medium (CM) or bufalin-primed M2-CM, were assessed by cell viability, colony formation and soft agar assays. Regulations of gene transcription and protein expression and release were determined by RT-qPCR, immunoblotting, immunoprecipitation, ELISA and immunofluorescence. Tumorigenicity upon bufalin treatment was verified in orthotopic and diethylnitrosamine-induced HCC mouse model. RESULTS: In this study, we first verified that M2 macrophages secreted Wnt1, which acted as a mediator to trigger ß-catenin activation in HCC cells, leading to cellular proliferation. Bufalin suppressed HCC cell proliferation and malignant transformation by inhibiting Wnt1 release in M2 macrophages, and dose-dependently inhibited HCC progression in mice. Mechanistically, bufalin specially targeted to block Wnt1 transcription, thus inactivating ß-catenin signaling cascade in HCC cells and leading to tumor regression in HCC mouse model. CONCLUSION: These results clearly reveal a novel potential of bufalin to suppress HCC through immunomodulation, and shed light on a new M2 macrophage-based modality of HCC immunotherapy, which additively enhances direct tumor-inhibitory efficacy of bufalin.


Asunto(s)
Bufanólidos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , beta Catenina/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Carcinogénesis , Microambiente Tumoral
12.
Cancer Cell Int ; 24(1): 8, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178183

RESUMEN

Despite advancements in treating metastatic melanoma, many patients exhibit resistance to targeted therapies. Our study focuses on ATP1A1, a sodium pump subunit associated with cancer development. We aimed to assess ATP1A1 prognostic value in melanoma patients and examine the impact of its ligand, bufalin, on melanoma cell lines in vitro and in vivo. High ATP1A1 expression (IHC) correlated with reduced overall survival in melanoma patients. Resistance to BRAF inhibitor was linked to elevated ATP1A1 levels in patient biopsies (IHC, qPCR) and cell lines (Western blot, qPCR). Additionally, high ATP1A1 mRNA expression positively correlated with differentiation/pigmentation markers based on data from The Cancer Genome Atlas (TCGA) databases and Verfaillie proliferative gene signature analysis. Bufalin specifically targeted ATP1A1 in caveolae, (proximity ligation assay) and influenced Src phosphorylation (Western blot), thereby disrupting multiple signaling pathways (phosphokinase array). In vitro, bufalin induced apoptosis in melanoma cell lines by acting on ATP1A1 (siRNA experiments) and, in vivo, significantly impeded melanoma growth using a nude mouse xenograft model with continuous bufalin delivery via an osmotic pump. In conclusion, our study demonstrates that ATP1A1 could serve as a prognostic marker for patient survival and a predictive marker for response to BRAF inhibitor therapy. By targeting ATP1A1, bufalin inhibited cell proliferation, induced apoptosis in vitro, and effectively suppressed tumor development in mice. Thus, our findings strongly support ATP1A1 as a promising therapeutic target, with bufalin as a potential agent to disrupt its tumor-promoting activity.

13.
J Liposome Res ; 34(3): 489-506, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38269490

RESUMEN

Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Bufanólidos , Doxorrubicina , Resistencia a Antineoplásicos , Liposomas , Células Madre Neoplásicas , Trastuzumab , Humanos , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Bufanólidos/farmacología , Bufanólidos/administración & dosificación , Bufanólidos/química , Células Madre Neoplásicas/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Liposomas/química , Femenino , Trastuzumab/farmacología , Trastuzumab/administración & dosificación , Línea Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptor ErbB-2/metabolismo , Supervivencia Celular/efectos de los fármacos
14.
Heliyon ; 10(2): e24395, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38268819

RESUMEN

Background: Bufalin, the main active ingredient of the traditional Chinese medicine huachansu, is used in the clinical treatment of colorectal cancer and has multiple effects, including the inhibition of migratory invasion, reversal of multi-drug resistance, induction of apoptosis and differentiation, and inhibition of angiogenesis. Methods: We collected relevant articles on bufalin from 2003 to 2022 using the Web Science platform, and analysed the information using VOSviewer, CiteSpace, and Microsoft Excel to categorise and summarise the publications over the past 20 years. Results: We collected 371 papers, with a steady increase in the number of articles published globally. China has the highest number of published articles, whereas Japan has the highest number of citations. Currently, there is considerable enthusiasm for investigating the anti-tumour mechanism of bufalin and optimising drug delivery systems for its administration. Conclusion: For the first time, we present a comprehensive overview of papers published worldwide on bufalin over the past two decades and the progress of its application in tumour therapy. We summarised the key authors, institutions, and countries that have contributed to the field and the potential of bufalin for the treatment of cancer. This will help other researchers obtain an overview of progress in the field, enhance collaboration and knowledge sharing, and promote future research on bufalin.

15.
Microbiol Spectr ; 12(3): e0501622, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38289115

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, 1,483 compounds were screened from a traditional Chinese medicine monomer library, and bufalin showed potential antiviral activity against IHNV. The 50% cytotoxic concentration of bufalin was >20 µM, and the 50% inhibitory concentration was 0.1223 µΜ against IHNV. Bufalin showed the inhibition of diverse IHNV strains in vitro, which confirmed that it had an inhibitory effect against all IHNV strains, rather than random activity against a single strain. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization. Bufalin also inhibited IHNV infection in vivo and significantly increased the survival of rainbow trout compared with the mock drug-treated group, and this was confirmed by in vivo viral load monitoring. Our data showed that the anti-IHNV activity of bufalin was proportional to extracellular Na+ concentration and inversely proportional to extracellular K+ concentration, and bufalin may inhibit IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout. IMPORTANCE: Infectious hematopoietic necrosis virus (IHNV) is the pathogen of infectious hematopoietic necrosis (IHN) which outbreak often causes huge economic losses and hampers the healthy development of salmon and trout farming. Currently, there is only one approved DNA vaccine for IHN worldwide, but it faces some biosafety problems. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, we report that bufalin, a traditional Chinese medicine, shows potential antiviral activity against IHNV both in vitro and in vivo. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization, and bufalin inhibited IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout.


Asunto(s)
Bufanólidos , Enfermedades de los Peces , Virus de la Necrosis Hematopoyética Infecciosa , Oncorhynchus mykiss , Vacunas de ADN , Animales , Virus de la Necrosis Hematopoyética Infecciosa/genética , Medicina Tradicional China , Antivirales/farmacología , Antivirales/uso terapéutico , Adenosina Trifosfatasas , Necrosis , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control
16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017247

RESUMEN

Objective To investigate the role of bufalin(BU)in inhibiting M2-type macrophage-mediated colorec-tal cancer metastasis.Methods Human acute leukemia mononuclear cells(THP-1)were differentiated into M0 macrophages using phorbol ester induction(PMA)for 48 hours.The M0 macrophages were then treated with IL-4 and IL-13 medium.Surface markers and morphological changes were observed through ELISA,morphology,and RT-qPCR experiments.RT-PCR and ELISA experiments were conducted to detect the surface markers TGF-β and IL-10 of M2 macrophages.The secretion level of IL-6 in the supernatant of M2 macrophages and colorectal cancer cells HCT116 was compared using ELISA.Additionally,the effect of conditioned medium on colorectal cancer cell HCT116 was assessed through Transwell,Wound healing,RT-qPCR,and Western blot experiments.Subsequent-ly,bufalin was added to the conditioned medium and the changes in AKT/PI3K protein,migration,and epithelial-mesenchymal transition ability in HCT116 were observed using Western blot,Transwell,Wound healing and RT-qPCR experiments.Results THP-1 were successfully differentiated into M2 macrophages.The activation of AKT/PI3K protein in HCT116 cells was induced by the secretion of IL-6 from M2 macrophages,which in turn promoted the migration and epithelial-mesenchymal transition ability of the HCT116 cells.The migration and epithelial-mes-enchymal transition mediated by M2 macrophages in HCT116 cells were effectively inhibited by Bufalin.Conclu-sion The release of IL-6 from M2 macrophages activates the AKT/PI3K signaling pathway in colorectal cancer cells,thereby promoting their migration and epithelial-mesenchymal transition capacity.Moreover,bufalin exhibits inhibitory effects on this effect.

17.
J Transl Med ; 21(1): 900, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082327

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. METHODS: IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/ß-catenin pathway. SKL2001, an activator of ß-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS: It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/ß-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS: Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enfermedades Mitocondriales , Humanos , Vía de Señalización Wnt , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Enfermedades Mitocondriales/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo
18.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188997, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832894

RESUMEN

Multidrug resistance (MDR) poses a significant obstacle to effective cancer treatment, and the tumor microenvironment (TME) is crucial for MDR development and reversal. The TME plays an active role in promoting MDR through several pathways. However, a promising therapeutic approach for battling MDR involves targeting specific elements within the TME. Therefore, this comprehensive review elaborates on the research developments regarding the dual role of the TME in promoting and reversing MDR in cancer. Understanding the complex role of the TME in promoting and reversing MDR is essential to developing effective cancer therapies. Utilizing the adaptability of the TME by targeting novel TME-specific factors, utilizing combination therapies, and employing innovative treatment strategies can potentially combat MDR and achieve personalized treatment outcomes for patients with cancer.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Resistencia a Múltiples Medicamentos/genética
19.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833925

RESUMEN

Pseudorabies virus (PRV), an alpha herpesvirus, induces significant economic losses to the swine industry and infects multiple kinds of animals. Therefore, it is of great importance to explore anti-PRV compounds. In this study, to explore the anti-PRV compounds, a library of natural compounds was screened through a cell-based ELISA assay, and it was discovered that bufalin, a Na+/K+-ATPase inhibitor, had a robust inhibitory effect on PRV replication. A time-of-addition experiment and temperature-shift assay showed that bufalin significantly inhibited the entry stage of PRV. NaCl- or KCl-treatment showed that NaCl could enhance the inhibitory effect of bufalin on PRV replication, whereas there was no significant effect under the treatment of KCl. Meanwhile, it was also found that bufalin possessed antiviral activity against other alpha herpesviruses, including human herpes simplex virus type 1 (HSV-1) and chicken Marek's disease virus (MDV). Finally, it was found that bufalin could decrease the viral load in multiple tissues, and reduce the morbidity and mortality in PRV-challenged BALB/c mice. Overall, our findings demonstrated that bufalin has the potential to be developed as an anti-PRV compound.


Asunto(s)
Herpesviridae , Herpesvirus Suido 1 , Ratones , Animales , Porcinos , Humanos , Cloruro de Sodio/farmacología , Adenosina Trifosfatasas
20.
Front Pharmacol ; 14: 1274336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860119

RESUMEN

Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA