Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 914899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865522

RESUMEN

Immunocyte migration to infection sites is important for host cellular defense, but the main types of migrating hemocytes and their mechanisms against pathogen invasions are unclear in invertebrates. In the present study, a population of hemocytes in the Pacific oyster Crassostrea gigas labeled with a fluorescein isothiocyanate (FITC)-conjugated Arg-Gly-Asp (RGD)-containing peptide was sorted. RGD+ hemocytes were characterized by a smaller cell size and cytoplasmic-nucleo ratio, fewer cytoplasmic granules, and higher levels of myeloperoxidase, reactive oxygen species, and intracellular free calcium concentration. RGD+ hemocytes exhibited a high level of migration activity, which was further induced after V. splendidus infection. Transcriptome analysis revealed that RGD+ hemocytes highly expressed a series of migration-related genes, which together with migration-promoting genes were significantly upregulated after V. splendidus infection. The neuroendocrine system was also proven to regulate the migration activity of RGD+ hemocytes, especially with the excitatory neuroendocrine factor dopamine, which promoted migration activity as confirmed by receptor blocking assays. Meanwhile, RGD+ hemocytes could highly express immunomodulatory factor interleukin (IL)-17s and their receptor genes, which was positively related to the production of antimicrobial peptides in whole hemocytes after V. splendidus infection. Collectively, this study identified a specific hemocyte population, i.e., RGD+ hemocytes, that shows high migration activity in response to pathogen infection and exerts a potential immunomodulatory role by highly expressing IL-17s that might enhance the hemocytes' antimicrobial peptide production in oysters.


Asunto(s)
Crassostrea , Vibrio , Animales , Crassostrea/genética , Hemocitos/fisiología , Oligopéptidos , Fagocitosis/genética
2.
J Appl Microbiol ; 133(2): 1099-1114, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35603677

RESUMEN

AIMS: Explore the diversity of culturable actinobacteria isolated from the Pacific oyster Crassostrea gigas with special emphasis on their antimicrobial activity. METHODS AND RESULTS: For the characterization of the isolated actinobacteria, a polyphasic approach was adopted and thereby phenotypic descriptions, phylogenetic analysis, evaluations of antimicrobial activities and chemical analyses of crude extracts through HPLC and LC-HRESIMS were performed. Five strains were isolated from C. gigas. The 16S rRNA gene analysis revealed that three of them were taxonomically affiliated to the genus Streptomyces and the other two strains were related to Micromonospora. High inhibition was detected against different test microorganisms such as Candida albicans, Staphylococcus aureus, Bacillus subtilis and Mycobacterium smegmatis. On the basis of the chemical analysis, 11 compounds from the active fractions of the crude extracts were determined, and 8 were related putatively to previously reported compounds. CONCLUSIONS: Actinobacteria isolated from C. gigas represent an interesting reservoir of antimicrobial compounds, and further study to uncover the full capacity of this source is encouraged. SIGNIFICANCE AND IMPACT: At present, the study of actinobacteria and their antimicrobial potential from uncommon sources as C. gigas is vital to the development of new therapeutic agents to cope with the widespread resistance of human pathogens.


Asunto(s)
Actinobacteria , Antiinfecciosos , Crassostrea , Ostreidae , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Mezclas Complejas , Humanos , Filogenia , ARN Ribosómico 16S/genética
3.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917059

RESUMEN

The Ostreid herpesvirus 1 species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of Ostreid herpesvirus1 (OsHV-1) and its variants infecting Crassostrea gigas (C. gigas). The LAMP assay has been optimized to use hydroxynaphthol blue (HNB) for visual colorimetric distinction of positive and negative templates. The effect of an additional Tte UvrD helicase enzyme used in the reaction was also evaluated with an improved reaction time of 10 min. Additionally, this study provides a robust workflow for optimization of primers for uncultured viruses using designed target plasmid when DNA availability is limited.


Asunto(s)
Virus ADN/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Crassostrea/virología , ADN Helicasas , Naftalenosulfonatos
4.
BMC Genomics ; 21(1): 620, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912133

RESUMEN

BACKGROUND: Since 2008, the aquaculture production of Crassostrea gigas was heavily affected by mass mortalities associated to Ostreid herpesvirus 1 (OsHV-1) microvariants worldwide. Transcriptomic studies revealed the major antiviral pathways of the oyster immune response while other findings suggested that also small non-coding RNAs (sncRNA) such as microRNAs might act as key regulators of the oyster response against OsHV-1. To explore the explicit connection between small non-coding and protein-coding transcripts, we performed paired whole transcriptome analysis of sncRNA and messenger RNA (mRNA) in six oysters selected for different intensities of OsHV-1 infection. RESULTS: The mRNA profiles of the naturally infected oysters were mostly governed by the transcriptional activity of OsHV-1, with several differentially expressed genes mapping to the interferon, toll, apoptosis, and pro-PO pathways. In contrast, miRNA profiles suggested more complex regulatory mechanisms, with 15 differentially expressed miRNAs (DE-miRNA) pointing to a possible modulation of the host response during OsHV-1 infection. We predicted 68 interactions between DE-miRNAs and oyster 3'-UTRs, but only few of them involved antiviral genes. The sncRNA reads assigned to OsHV-1 rather resembled mRNA degradation products, suggesting the absence of genuine viral miRNAs. CONCLUSIONS: We provided data describing the miRNAome during OsHV-1 infection in C. gigas. This information can be used to understand the role of miRNAs in healthy and diseased oysters, to identify new targets for functional studies and, eventually to disentangle cause and effect relationships during viral infections in marine mollusks.


Asunto(s)
Crassostrea/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética , Animales , Crassostrea/virología , Virus ADN/patogenicidad , Resistencia a la Enfermedad , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Transcriptoma
5.
Fish Shellfish Immunol ; 87: 638-649, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30753917

RESUMEN

Integrins are an important family of cell receptors that can bind foreign particles and promote cell phagocytosis after they are activated. In the present study, a novel ß integrin was identified from pacific oyster Crassostrea gigas with an extracellular domain, a single transmembrane segment, and a short cytoplasmic domain. It was phylogenetically clustered with phagocytosis-related insecta ßV, and designated as CgßV. CgßV shared a conserved NPX[Y/F] motif related to integrin activation with other phagocytosis-related ß integrins. The mRNA transcripts of CgßV were widely detected in oyster tissues including hemocytes, gonad, adductor muscle, mantle, gill, and hepatopancreas, and the expression level in hemocytes was significantly up-regulated at 12 h after lipopolysaccharide (LPS) stimulation (p < 0.05), which was 2.29-fold higher than that in the control group. CgßV proteins were mainly observed on the hemocytes surface. The oyster hemocytes were found to bind fluorescein isothiocyanate (FITC)-labeled Arg-Gly-Asp-containing peptides (RGDCPs), and the binding capability was significantly up-regulated with the peak percentage of 37.6% at 12 h post LPS stimulation, which was higher than that in the control group (8.8%, p < 0.05), suggesting the activation of RGD-binding integrins on oyster hemocytes surface. The label-free RGDCPs and anti-CgßV antibody inhibited the binding capability of hemocytes towards FITC-labeled RGDCPs, which were significant lower in RGD blocking group (7.4%, p < 0.05) and anti-CgßV blocking group (22.1%, p < 0.05) than that in the control group (37.6%), indicating that CgßV could be a RGD-binding integrin. Phagocytosis assay demonstrated that LPS could enhance the phagocytosis of hemocytes towards Escherichia coli and fluorescent beads with the phagocytic rate (PR) of 18.3% and 17.4%, and phagocytic index (PI) of 5.29 and 37.71, respectively, which were significant higher than that in the control group (11.0% and 3.65 for E. coli, 9.8% and 29.26 for fluorescent beads, respectively, p < 0.05). In addition, both the label-free RGDCPs and anti-CgßV antibody significantly hindered the phagocytosis of hemocytes towards E. coli and fluorescent beads. After the E. coli and fluorescent beads were opsonized by oyster serum, the label-free RGDCPs still inhibited the phagocytosis of hemocytes towards them, while the anti-CgßV antibody could only inhibit the phagocytosis of hemocytes towards E. coli, suggesting that only the activated CgßV was involved in the enhancing phagocytosis for bacteria in oyster. Moreover, the key components of conserved integrin-mediated phagocytosis pathway including GTPases, talin proteins, Ca2+ and cAMP were all induced by LPS in hemocytes of oyster. All these results suggested that the activated CgßV enhanced RGD-binding and phagocytic capabilities of hemocytes, shedding lights on the mechanisms of integrin-mediated phagocytosis in mollusks.


Asunto(s)
Crassostrea/fisiología , Hemocitos/inmunología , Cadenas beta de Integrinas/genética , Oligopéptidos/metabolismo , Fagocitosis , Animales , Crassostrea/genética , Crassostrea/inmunología , Cadenas beta de Integrinas/metabolismo
6.
Fish Shellfish Immunol ; 84: 587-598, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30336283

RESUMEN

The mitochondrial pathway of apoptosis is well studied as the major mechanism of physiological cell death in vertebrates. In the present study, a second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis-binding protein (IAP) with low pI protein (DIABLO) (designated as CgSmac) was identified from oyster Crassostrea gigas. The open reading frame of CgSmac was of 966 bp nucleotides encoding a predicted polypeptide of 321 amino acids with a conserved Smac/DIABLO domain containing a potential IAP-binding motif of VMPV. CgSmac proteins were distributed in hemocytes and co-localized with mitochondria. Western blotting analysis revealed that CgSmac proteins mainly existed in the dimer form in hemocytes, and the monomeric precursors and mature monomers were also detected. After lipopolysaccharide (LPS) stimulation, the mRNA expression of CgSmac in hemocytes was significantly up-regulated and peaked at 6 h (12.26-fold, p < 0.05), and the protein level of its dimers was significantly up-regulated at 6 h, 12 h, 24 h, and 48 h, while that of CgSmac monomers was up-regulated at 6 h, 12 h and down-regulated at 24 h, 48 h. The decrease of mitochondrial membrane potential indicated that the occurrence of early stage of apoptosis in primary cultured hemocytes was induced by LPS, and RNA interference (RNAi) of CgSmac could not rescue this decrease. The caspase-3 activity in primary cultured hemocytes was significantly suppressed after RNAi of CgSmac. Correspondingly, the total apoptotic rate of primary cultured hemocytes was also significantly suppressed in dsCgSmac + LPS group (31.57%) compared to dsEGFP + LPS group (40.27%, p < 0.05), which in turn demonstrated the conserved pro-apoptotic function of CgSmac. Furthermore, the early apoptotic rate (10.4% vs. 8.5%, p < 0.05) was significantly higher in dsCgSmac + LPS group than that of dsEGFP + LPS group, while the necrosis (7.7% vs. 10.0%, p < 0.05) and late apoptotic rates (13.4% vs. 21.9%, p < 0.05) were lower in dsCgSmac + LPS group than those of dsEGFP + LPS group. Collectively, CgSmac could activate mitochondrial apoptosis pathway by promoting caspase-3 activity in oyster hemocytes against exogenous LPS invasion. These results provided new insights on oyster apoptosis and the immune defense mechanisms in invertebrates.


Asunto(s)
Apoptosis/efectos de los fármacos , Crassostrea/genética , Crassostrea/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Mitocondrias/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Secuencia de Bases , Péptidos y Proteínas de Señalización Intracelular/química , Lipopolisacáridos/farmacología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/inmunología , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA