Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
medRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38978661

RESUMEN

Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the iver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3aR1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.

2.
Clin Exp Med ; 24(1): 139, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951265

RESUMEN

IgA nephropathy (IgAN) is still one of the leading causes of end-stage kidney disease (ESRD), and complement system activation is a key to the pathogenesis of IgAN. The role of complement C3a/C3aR and C5a/C5aR in late stage of IgAN remains unknown. Renal specimens of 75 IgAN patients at the stage 4 CKD were stained using immunofluorescence and immunohistochemistry. The primary outcome was a composite of end-stage renal disease (ESRD) and death. Associations of complement components with baseline clinicopathological characteristics and outcomes were assessed using multivariable Cox regression and Spearman analyses. During a median follow-up of 15.0 months, 27 patients progressed to ESRD and none died. Lower eGFR [hazards ratio (HR), 0.827, 95% confidence interval (CI), 0.732-0.935; P = 0.002] and glomerular C3 deposition (HR, 3.179, 95% CI, 1.079-9.363; P = 0.036) were predictive of time to ESRD in stage 4 CKD IgAN. Higher expression of C3a (P = 0.010), C3aR (P = 0.005), C5a (P = 0.015), and C5aR (P < 0.001) was identified in ESRD group than in non-ESRD group. Glomerular C3a/C3aR and C5a/C5aR deposits were both correlated with a lower baseline eGFR, higher baseline 24 h-urinary protein (24 h-UP) and faster decline of eGFR. Besides, C3a and C5a deposits were found in patients with high S (S1) and T (T1/2) scores, respectively. Complement C3a/C3aR and C5a/C5aR in IgAN patients with stage 4 CKD may portend a faster deterioration of kidney function.

3.
Exp Anim ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38945882

RESUMEN

The complement active product, C3a, and the receptor C3aR comprise an axis that exerts various biological functions, such as protection against infection. C3a is highly expressed in the inflamed skin and blood from patients with psoriasiform dermatitis. However, the role of the C3a/C3aR axis in psoriasiform dermatitis remains unclear because conflicting results using C3-/- mice have been published. In this study, to elucidate the contribution of commensal microbiota in C3-/- and wild-type (WT) mice were subjected to imiquimod-induced psoriasiform dermatitis under different housing conditions. C3-/- mice showed increased epidermal thickness and keratinocyte proliferation markers in the inflamed ear compared to WT mice upon treatment with IMQ. These inflamed phenotypes were observed in both cohoused and separately housed conditions, and antibiotic treatment did not abolish the aggravation of IMQ-induced psoriasiform dermatitis in C3-/- mice. These results suggested that the difference of commensal microbiota is not important for the C3-involved psoriasiform dermatitis. Keratinocyte hyperproliferation is a major feature of the inflamed skin in patients with psoriasiform dermatitis. In vitro experiments showed that C3a and C3aR agonists inhibited keratinocyte proliferation, which was abolished by introduction of a C3aR antagonist. Collectively, these results suggest that the C3a/C3aR axis plays a critical role in psoriasiform dermatitis development by inhibiting keratinocyte proliferation, regardless of the regulation of the commensal microbiota.

4.
Eur J Immunol ; 54(8): e2350815, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38778507

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. Despite its widespread prevalence, our comprehension of the intricate mechanisms governing the pathogenesis of the disease remains incomplete, posing a challenge for the development of efficient therapies. Pathologically characterized by the presence of amyloid ß plaques and neurofibrillary tau tangles, AD is also accompanied by the hyperactivation of glial cells and the immune system. The complement cascade, the evolutionarily conserved innate immune pathway, has emerged as a significant contributor to AD. This review focuses on one of the complement components, the C3a receptor (C3aR), covering its structure, ligand-receptor interaction, intracellular signaling and its functional consequences. Drawing insights from cellular and AD mouse model studies, we present the multifaceted role of complement C3aR signaling in AD and attempt to convey to the readers that C3aR acts as a crucial immune and metabolic modulator to influence AD pathogenesis. Building on this framework, the objective of this review is to inform future research endeavors and facilitate the development of therapeutic strategies for this challenging condition.


Asunto(s)
Enfermedad de Alzheimer , Receptores de Complemento , Transducción de Señal , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Transducción de Señal/inmunología , Receptores de Complemento/metabolismo , Receptores de Complemento/inmunología , Ratones , Inmunidad Innata , Modelos Animales de Enfermedad
5.
Brain Res Bull ; 213: 110986, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810789

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI), a prevalent stroke-related complication, can lead to severe brain damage. Inflammation is a crucial factor in CIRI pathogenesis, and the complement component 3a receptor (C3aR) could be a key mediator in the post-CIRI inflammatory cascade. In this study, the role of C3aR in CIRI was investigated utilizing a middle cerebral artery occlusion (MCAO) model in C3aR knockout (KO) mice. Magnetic resonance imaging (MRI) and neurofunctional assessments revealed that C3aR KO mice exhibited significantly diminished cerebral infarction and improved neurological impairments. Consequently, the focus shifted to searching for a small molecule antagonist of C3aR. JR14a, a new potent thiophene antagonist of C3aR, was injected intraperitoneally into mice 1-h post-MCAO model implementation. The mass spectrometry (MS) results indicated the ability of JR14a to penetrate the blood-brain barrier. Subsequent TTC staining and neurofunctional assessments revealed the efficacy of JR14a in reducing cerebral infarct volume and neurological impairment following MCAO. In addition, immunofluorescence (IF) and immunohistochemistry (IHC) demonstrated attenuated microglial activation, neutrophil infiltration, and blood-brain barrier disruption by JR14a in the MCAO model. Furthermore, enzyme-linked immunosorbent assay (ELISA) and Western blotting supported the role of JR14a in downregulating the expression levels of C3aR, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), as well as the phosphorylation of p65. In conclusion, the findings suggested that C3aR could be a potential therapeutic target for CIRI, and JR14a emerged as a promising treatment candidate.


Asunto(s)
Infarto de la Arteria Cerebral Media , Ratones Noqueados , Enfermedades Neuroinflamatorias , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratones , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Ratones Endogámicos C57BL , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Receptores de Complemento/antagonistas & inhibidores , Receptores de Complemento/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Microglía/metabolismo , Tiofenos/farmacología , Tiofenos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
6.
Mol Neurobiol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713438

RESUMEN

Microglia and astrocytes are key players in neuroinflammation and ischemic stroke. A1 astrocytes are a subtype of astrocytes that are extremely neurotoxic and quickly kill neurons. Although the detrimental A1 astrocytes are present in many neurodegenerative diseases and are considered to accelerate neurodegeneration, their role in the pathophysiology of ischemic stroke is poorly understood. Here, we combined RNA-seq, molecular and immunological techniques, and behavioral tests to investigate the role of A1 astrocytes in the pathophysiology of ischemic stroke. We found that astrocyte phenotypes change from a beneficial A2 type in the acute phase to a detrimental A1 type in the chronic phase following ischemic stroke. The activated microglial IL1α, TNF, and C1q prompt commitment of A1 astrocytes. Inhibition of A1 astrocytes induction attenuates reactive gliosis and ameliorates morphological and functional defects following ischemic stroke. The crosstalk between astrocytic C3 and microglial C3aR contributes to the formation of A1 astrocytes and morphological and functional defects. In addition, NF-κB is activated following ischemic stroke and governs the formation of A1 astrocytes via direct targeting of inflammatory cytokines and chemokines. Taken together, we discovered that A2 astrocytes and A1 astrocytes are enriched in the acute and chronic phases of ischemic stroke respectively, and that the C3/C3aR/NF-κB signaling leads to A1 astrocytes induction. Therefore, the C3/C3aR/NF-κB signaling is a novel therapeutic target for ischemic stroke treatment.

7.
Prog Neurobiol ; 236: 102614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641040

RESUMEN

Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.


Asunto(s)
Depresión , Lipopolisacáridos , Ratones Noqueados , Neuronas , Corteza Prefrontal , Animales , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Lipopolisacáridos/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones , Depresión/metabolismo , Depresión/inducido químicamente , Receptores de Complemento/metabolismo , Ratones Endogámicos C57BL , Masculino , Ácido Glutámico/metabolismo
8.
Transplant Rev (Orlando) ; 38(2): 100839, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412598

RESUMEN

The complement system is part of innate immunity and is pivotal in protecting the body against pathogens and maintaining host homeostasis. Activation of the complement system is triggered through multiple pathways, including antibody deposition, a mannan-binding lectin, or activated complement deposition. C3 glomerulopathy (C3G) is a rare glomerular disease driven by complement dysregulation with high post-transplantation recurrence rates. Its treatment is mainly based on immunosuppressive therapies, specifically mycophenolate mofetil and glucocorticoids. Recent years have seen significant progress in understanding complement biology and its role in C3G pathophysiology. New complement-tergeting treatments have been developed and initial trials have shown promising results. However, challenges persist in C3G, with recurrent post-transplantation cases leading to suboptimal outcomes. This review discusses the pathophysiology and management of C3G, with a focus on its recurrence after kidney transplantation.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Enfermedades Renales , Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Complemento C3 , Glomerulonefritis Membranoproliferativa/terapia , Ácido Micofenólico
9.
Trends Biochem Sci ; 49(4): 280-282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38233283

RESUMEN

Recent advances in cryo-electron microscopy (Cryo-EM) have revolutionized our understanding of the complement C5a/C3a receptors that are crucial in inflammation. A recent report by Yadav et al. has elucidated the activation, ligand binding, selectivity, and signaling bias of these receptors, thereby enhancing structure-guided drug discovery. This paves the way for more effective anti-inflammatory therapies that target these receptors with unprecedented precision.


Asunto(s)
Anafilatoxinas , Complemento C5a , Anafilatoxinas/química , Anafilatoxinas/metabolismo , Complemento C5a/metabolismo , Complemento C3a/metabolismo , Microscopía por Crioelectrón , Receptores de Complemento/metabolismo
10.
BMC Biol ; 21(1): 285, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066646

RESUMEN

BACKGROUND: Immature cumulus-oocyte complexes are retrieved to obtain mature oocytes by in vitro maturation (IVM), a laboratory tool in reproductive medicine to obtain mature oocytes. Unfortunately, the efficiency of IVM is not satisfactory. To circumvent this problem, we therefore intended to commence with the composition of ovarian follicular fluid (FF), an important microenvironment influencing oocyte growth. It is well known that FF has a critical role in oocyte development and maturation. However, the components in human FF remain largely unknown, particularly with regard to small molecular peptides. RESULTS: In current study, the follicular fluid derived from human mature and immature follicles were harvested. The peptide profiles of FF were further investigated by using combined ultrafiltration and LC-MS/MS. The differential peptides were preliminary determined by performing differentially expressed analysis. Human and mouse oocyte culture were used to verify the influence of differential peptides on oocyte development. Constructing plasmids, cell transfecting, Co-IP, PLA etc. were used to reveal the detail molecular mechanism. The results from differentially expressed peptide as well as cultured human and mouse oocytes analyses showed that highly conserved C3a-peptide, a cleavage product of complement C3a, definitely affected oocytes development. Intriguingly, C3a-peptide possessed a novel function that promoted F-actin aggregation and spindle migration, raised the percentage of oocytes at the MII stage, without increasing the chromosome aneuploidy ratio, especially in poor-quality oocytes. These effects of C3a-peptide were attenuated by C3aR morpholino inhibition, suggesting that C3a-peptide affected oocytes development by collaborating with its classical receptor, C3aR. Specially, we found that C3aR co-localized to the spindle with ß-tubulin to recruit F-actin toward the spindle and subcortical region of the oocytes through specific binding to MYO10, a key regulator for actin organization, spindle morphogenesis and positioning in oocytes. CONCLUSIONS: Our results provide a new perspective for improving IVM culture systems by applying FF components and also provide molecular insights into the physiological function of C3a-peptide, its interaction with C3aR, and their roles in enabling meiotic division of oocytes.


Asunto(s)
Actinas , Complemento C3a , Líquido Folicular , Oocitos , Fragmentos de Péptidos , Animales , Femenino , Humanos , Ratones , Actinas/metabolismo , Cromatografía Liquida , Células del Cúmulo/metabolismo , Líquido Folicular/fisiología , Oocitos/crecimiento & desarrollo , Espectrometría de Masas en Tándem , Complemento C3a/fisiología , Fragmentos de Péptidos/fisiología , Técnicas de Maduración In Vitro de los Oocitos
11.
Front Immunol ; 14: 1239146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753090

RESUMEN

The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.

12.
Cancers (Basel) ; 15(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37174113

RESUMEN

The complement (C) innate immune system has been shown to be activated in the tumor microenvironment of various cancers. The C may support tumor growth by modulating the immune response and promoting angiogenesis through the actions of C anaphylatoxins (e.g., C5a, C3a). The C has important double-edged sword functions in the brain, but little is known about its role in brain tumors. Hence, we analyzed the distribution and the regulated expression of C3a and its receptor C3aR in various primary and secondary brain tumors. We found that C3aR was dramatically upregulated in Grade 4 diffuse gliomas, i.e., glioblastoma multiforme, IDH-wildtype (GBM) and astrocytoma, IDH-mutant, Grade 4, and was much less expressed in other brain tumors. C3aR was observed in tumor-associated macrophages (TAM) expressing CD68, CD18, CD163, and the proangiogenic VEGF. Robust levels of C3a were detected in the parenchyma of GBM as a possible result of Bb-dependent C activation of the alternative C pathway. Interestingly, in vitro models identified TGF-ß1 as one of the most potent growth factors that upregulate VEGF, C3, and C3aR in TAM (PMA-differentiated THP1) cell lines. Further studies should help to delineate the functions of C3a/C3aR on TAMs that promote chemotaxis/angiogenesis in gliomas and to explore the therapeutic applications of C3aR antagonists for brain tumors.

13.
J Ovarian Res ; 16(1): 64, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005667

RESUMEN

BACKGROUND: C3AR1 was reported in driving tumor immunity in multiple cancers. However, its roles in ovarian cancer remain unclear. This study aims to determine role of C3AR1 in prognosis and regulating tumor infiltrating immune cells of ovarian cancer (OC). MATERIALS AND METHODS: The expression, prognosis and clinical data related to C3AR1 were collected from public databases such as The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA) and Clinical Proteomics Tumor Analysis Alliance (CPTAC), and further analyze their relationship with immune infiltration. Immunohistochemistry verified the expression of C3AR1 in ovarian cancer and control tissues. C3AR1 was forced expressed in SKOV3 cells by plasmid transfection, and verified by qRT-PCR and Western blot. Cell proliferation were evaluated by EdU assay. RESULTS: Bioinformatics analysis (TCGA, CPTAC) and immunohistochemical staining of clinical samples confirmed higher C3AR1 expression in ovarian cancer than that in normal tissues. High C3AR1 expression predicted adverse clinical outcomes. KEGG and GO analysis showed that the biological processes of C3AR1 in ovarian cancer are mainly involved in T cell activation, cytokine and chemokine activation. C3AR1 expression was positively correlated with chemokines and their receptors in the tumor microenvironment, such as CCR1(R = 0.83), IL10RA (R = 0.92), and INFG (R = 0.74). In addition, increased C3AR1 expression predicted more infiltration of tumor-associated macrophages, dendritic cell and CD8 + T cell. Some important m6A regulators, such as IGF2BP2, ALKBH5, IGFBP3 and METL14, are significantly positively or negatively correlated with C3AR1. Finally, overexpression of C3AR1 significantly increased proliferation of SKOV3 cells. CONCLUSION: In summary, our study suggested that C3AR1 is associated with the prognosis and immune cell infiltration of ovarian cancer, and is a promising immunotherapeutic target.


Asunto(s)
Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Pronóstico , Terapia de Inmunosupresión , Neoplasias Ováricas/genética , Proliferación Celular , Proteínas de Unión al ARN
14.
Toxicol Lett ; 381: 27-35, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084829

RESUMEN

Aristolochic acid I (AAI) can cause nephrotoxicity and is characterized by interstitial fibrosis. The C3a/C3aR axis of macrophages and matrix metalloproteinase-9 (MMP-9) play important roles in fibrosis, but whether they are involved in AAI-induced renal interstitial fibrosis and are related remains to be elucidated. In this study, we investigated whether C3a/C3aR axis of macrophages promotes renal interstitial fibrosis by regulating MMP-9 in aristolochic acid nephropathy (AAN). Intraperitoneal injection of AAI for 28 days successfully induced AAN in C57bl/6 mice. The content of C3a in the kidney of AAN mice was increased, and there was a significant distribution of macrophages in the renal tubules. The same results were observed in the in vitro experiment. We also explored the role and mechanism of macrophages after AAI administration in the epithelial-mesenchymal transformation (EMT) of renal tubular epithelial cells (RTECs) and found that AAI could activate the C3a/C3aR axis of macrophages to upregulate p65 expression in macrophages. p65 upregulated MMP-9 expression in macrophages not only directly but also by promoting the secretion if interleukin-6 by macrophages and then activating STAT3 in RTECs. The upregulation of MMP-9 expression could promote the EMT of RTECs. Taken together, our study demonstrated that the AAI-activated the C3a/C3aR axis of macrophages, which induced MMP-9 production, was one of the causes of renal interstitial fibrosis. Therefore, targeting the C3a/C3aR axis of macrophages is an effective therapeutic strategy for the prevention and treatment of renal interstitial fibrosis in AAN.


Asunto(s)
Ácidos Aristolóquicos , Enfermedades Renales , Ratones , Animales , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Enfermedades Renales/patología , Túbulos Renales/metabolismo , Macrófagos/metabolismo , Fibrosis , Ácidos Aristolóquicos/toxicidad
15.
Animals (Basel) ; 13(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899694

RESUMEN

Cryptosporidium parvum is an important zoonotic protozoon that threatens the health of humans and animals, but the interaction mechanisms between C. parvum and hosts are poorly understood. Our previous study indicated that the expression levels of C3a and C3aR were up-regulated in mice during C. parvum infection, but the mechanisms of C3a/C3aR signaling during C. parvum infection have not been elucidated. In the present study, an optimized BALB/c suckling mouse model infected with C. parvum was used to explore the function of C3a/C3aR signaling during C. parvum infection. The expression levels of C3aR in the ileum tissues of mice infected with C. parvum were analyzed using real-time PCR, Western blot and immunohistochemistry. The mRNA levels of the Cryptosporidium 18S rRNA gene, tight junction proteins (zo-1, claudin 3, and occludin), intestinal stem cell marker lgr5, cell proliferation marker ki67, Th1 cell-related cytokine ifn-γ, and Treg cell-related cytokine tgf-ß in mouse ileum tissues were analyzed by real-time PCR. The pathological injury of ileal mucosa was examined by histopathology analysis. The mRNA expression levels of Cryptosporidium 18S rRNA gene were significantly up-regulated in the ileum tissues of C3aR-inhibited mice during C. parvum infection. Meanwhile, histopathology analysis of ileal mucosa in mice showed that inhibition of C3aR significantly aggravated the changes in villus length, villus diameter, mucosal thickness and the ratio of villus length to crypt depth during C. parvum infection. Further studies found inhibition of C3aR aggravated the down-regulation of occludin at most time points during C. parvum infection. The mRNA levels of ki67 and lgr5 in the ileum tissues of mice infected with C. parvum were significantly down-regulated. Inhibition of C3aR significantly down-regulated the mRNA expression levels of lgr5 at most time points, but significantly up-regulated the mRNA expression levels of ki67 at most time points. The mRNA expression levels of ifn-γ and tgf-ß were significantly up-regulated and down-regulated in the ileum tissues of mice infected with C. parvum, respectively. However, inhibition of C3aR significantly increased the mRNA expression levels of ifn-γ and tgf-ß in the ileum tissues of mice infected with C. parvum. Taken together, C3a/C3aR signaling could possibly affect the propagation of C. parvum in mouse ileum tissues by regulating the gut barrier, cell proliferation and CD4+ T cell main effectors, which would contribute to our understanding of the interaction between Cryptosporidium and hosts.

16.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166672, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871753

RESUMEN

BACKGROUND: Astrocyte activation, which is polarized into classical neurotoxic A1, neuroprotective A2, A-pan, etc., is thought to be involved in the transition from acute to chronic post-thoracotomy pain. The C3aR receptor associated with astrocyte-neuron and -microglia interactions is necessary for A1 astrocytes polarization. This study aimed to determine whether C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 expression in a rat thoracotomy pain model. METHODS: A rat thoracotomy pain model was employed. The mechanical withdraw threshold was measured to evaluate pain behavior. Lipopolysaccharide (LPS) was injected intraperitoneally to induce A1. Intrathecal injection of AAV2/9-rC3ar1 shRNA-GFAP was used to knock down in vivo C3aR expression in astrocytes. The expression of associated phenotypic markers before and after intervention was assessed by RT-PCR, western blot, co-immunofluorescence, and single-cell RNA sequencing. RESULTS: C3aR downregulation was found to inhibit LPS-induced A1 astrocytes activation, decrease the expression of C3aR, C3, and GFAP, which were activated from acute to chronic pain, and alleviate the mechanical withdrawal threshold and chronic pain incidence. In addition, more A2 astrocytes were activated in the model group that did not develop chronic pain. C3aR downregulation increased the number of A2 astrocytes upon LPS exposure. Knockdown of C3aR also decreased the activation of M1 microglia induced by LPS or thoracotomy. CONCLUSIONS: Our study confirmed that C3aR-induced A1 polarization contributes to chronic post-thoracotomy pain. Inhibition of A1 activation via C3aR downregulation increases anti-inflammatory A2 and decreases pro-inflammatory M1 activation, which may also be involved in the mechanism of chronic post-thoracotomy pain.


Asunto(s)
Astrocitos , Dolor Crónico , Animales , Masculino , Ratas , Astrocitos/metabolismo , Dolor Crónico/metabolismo , Lipopolisacáridos/farmacología , Microglía/metabolismo , Toracotomía/efectos adversos
17.
Front Immunol ; 14: 1086673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776827

RESUMEN

TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 µM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.


Asunto(s)
Macrófagos , Receptores de Complemento , Cricetinae , Humanos , Ratones , Animales , Cricetulus , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Receptor de Anafilatoxina C5a/metabolismo
18.
Front Neurol ; 14: 1061860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741285

RESUMEN

Background: Although epilepsy has been linked to subarachnoid hemorrhage (SAH), the underlying mechanism has not been fully elucidated. This study aimed to further explore the potential mechanisms in epilepsy and SAH through genes. Methods: Gene expression profiles for subarachnoid hemorrhage (GSE36791) and epilepsy (GSE143272) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis was performed to identify the common differentially expressed genes (DEGs) to epilepsy and SAH, which were further analyzed by functional enrichment analysis. Single-sample gene set enrichment analysis (ssGSEA) and weighted correlation network analysis (WGCNA) were used to identify common module genes related to the infiltration of immune cells in epilepsy and SAH. Hub module genes were identified using a protein-protein interaction (PPI) network. Finally, the most relevant genes were obtained by taking the intersection points between the DEGs and hub module genes. We performed validation by retrospectively analyzing the RT-PCR levels of the most relevant genes in patients with pure SAH and patients with SAH complicated with epilepsy. Our experiments verified that the SAH and SAH+epilepsy groups were significantly different from the normal control group. In addition, significant differences were observed between the SAH and SAH+epilepsy groups. Results: In total, 159 common DEGs-85 downregulated genes and 74 upregulated genes-were identified. Functional analysis emphasized that the immune response was a common feature to epilepsy and SAH. The results of ssGSEA and WGCNA revealed changes in immunocyte recruitment and the related module genes. Finally, MMP9 and C3aR1 were identified as hub genes, and RT-PCR confirmed that the expression levels of the hub genes were higher in epilepsy and SAH samples than in normal samples. Conclusions: Our study revealed the pathogenesis of SAH complicated with epilepsy and identified hub genes that might provide new ideas for further mechanistic studies.

19.
Cell Rep ; 42(2): 112078, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36735535

RESUMEN

Complement activation is thought to underline the pathologic progression of obesity-related metabolic disorders; however, its role in adaptive thermogenesis has scarcely been explored. Here, we identify complement C3a receptor (C3aR) and C5a receptor (C5aR) as critical switches to control adipocyte browning and energy balance in male mice. Loss of C3aR and C5aR in combination, more than individually, increases cold-induced adipocyte browning and attenuates diet-induced obesity in male mice. Mechanistically, loss of C3aR and C5aR increases regulatory T cell (Treg) accumulation in the subcutaneous white adipose tissue during cold exposure or high-fat diet. Activated Tregs produce adenosine, which is converted to inosine by adipocyte-derived adenosine deaminases. Inosine promotes adipocyte browning in a manner dependent on activating adenosine A2a receptor. These data reveal a regulatory mechanism of complement in controlling adaptive thermogenesis and suggest that targeting the C3aR/C5aR pathways may represent a therapeutic strategy in treating obesity-related metabolic diseases.


Asunto(s)
Receptor de Anafilatoxina C5a , Transducción de Señal , Animales , Masculino , Ratones , Adipocitos , Dieta , Obesidad , Receptor de Anafilatoxina C5a/metabolismo
20.
Toxicol Lett ; 378: 51-60, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898628

RESUMEN

Aristolochic acid is an established human carcinogen. Previous reports have demonstrated a link between aristolochic acid exposure and liver cancer prevalence in Asia. The C3a/C3AR axis plays an essential role in regulating cancer cell migration and invasion. Here, we focused on the relationship between AA I-induced migration, invasion and epithelial-mesenchymal transition in HCC cells, as well as the possible role of the C3a/C3AR axis in these effects. HCC cells were exposed to different concentrations of AA I for 24 h. Cell migration and invasion abilities were evaluated with wound healing assays and Transwell invasion assays. The protein and mRNA expression levels were detected by western blot, immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR) assays. Furthermore, the level of complement component C3a in the cell supernatant was determined by enzyme-linked immunosorbent assay. C3aRA, a C3a receptor antagonist, was used to block the C3a-C3aR axis. The results showed that aristolochic acid I promoted HCC cell invasion and migration. AAI exposure also induced EMT in HCC cells through E-cadherin downregulation and Snail, N-cadherin, and vimentin upregulation. AAI exposure increased the levels of secreted C3a and the expression of C3aR protein and mRNA in HCC cells. We further found that AA I-induced C3a/C3AR activation was involved in these effects. AA I-induced epithelial-to-mesenchymal transition (EMT), cell migration, and invasion were decreased by C3aR inhibition. Overall, our results suggest that AA I induces HCC cell migration and invasion through the EMT process, which is regulated by C3a/C3aR axis activation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Complemento C3a/genética , Transición Epitelial-Mesenquimal , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA