Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125760

RESUMEN

Since 1991, several genetic disorders caused by unstable trinucleotide repeats (TNRs) have been identified, collectively referred to as triplet repeat diseases (TREDs). They share a common mutation mechanism: the expansion of repeats (dynamic mutations) due to the propensity of repeated sequences to form unusual DNA structures during replication. TREDs are characterized as neurodegenerative diseases or complex syndromes with significant neurological components. Spinocerebellar ataxia type 17 (SCA17) falls into the former category and is caused by the expansion of mixed CAA/CAG repeats in the TBP gene. To date, a five-unit organization of this region [(CAG)3 (CAA)3] [(CAG)n] [CAA CAG CAA] [(CAG)n] [CAA CAG], with expansion in the second [(CAG)n] unit being the most common, has been proposed. In this study, we propose an alternative organization scheme for the repeats. A search of the PubMed database was conducted to identify articles reporting both the number and composition of GAC/CAA repeats in TBP alleles. Nineteen reports were selected. The sequences of all identified CAG/CAA repeats in the TBP locus, including 67 cases (probands and b relatives), were analyzed in terms of their repetition structure and stability in inheritance, if possible. Based on the analysis of three units [(CAG)3 (CAA)2] [CAA (CAG)n CAA CAG] [CAA (CAG)n CAA CAG], the organization of repeats is proposed. Detailed analysis of the CAG/CAA repeat structure, not just the number of repeats, in TBP-expanded alleles should be performed, as it may have a prognostic value in the prediction of stability/instability during transmission and the possible anticipation of the disease.


Asunto(s)
Mutación , Proteína de Unión a TATA-Box , Expansión de Repetición de Trinucleótido , Humanos , Alelos , Ataxias Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/genética , Proteína de Unión a TATA-Box/genética , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/genética
2.
Mol Ther Nucleic Acids ; 35(3): 102234, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38974999

RESUMEN

Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.

3.
Intern Med ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38897956

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurological disorder characterized by chorea, psychiatric symptoms, and cognitive decline but typically lacks muscular atrophy and weakness. We herein report a case of genetically confirmed HD showing progressive systemic weakness with findings of upper and lower motor neuron involvement due to amyotrophic lateral sclerosis (ALS). The current patient and the previously reported cases with complications of HD and ALS indicate that cytosine-adenine-guanine (CAG) repeat expansion in the huntingtin gene might have a pathogenic role in causing the two neurological disorders.

4.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673939

RESUMEN

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Asunto(s)
Ataxina-7 , Dependovirus , Modelos Animales de Enfermedad , Péptidos , Fenotipo , ARN Interferente Pequeño , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/metabolismo , Péptidos/genética , Dependovirus/genética , Ratones , Ataxina-7/genética , Ataxina-7/metabolismo , Expansión de Repetición de Trinucleótido/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratones Transgénicos , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Terapia Genética/métodos , Alelos
5.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38237588

RESUMEN

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Asunto(s)
Enfermedad de Huntington , Animales , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Corteza Cerebral/metabolismo , Núcleo Solitario/metabolismo , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
6.
Brain ; 147(2): 486-504, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776516

RESUMEN

The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.


Asunto(s)
Empalme Alternativo , Atrofias Olivopontocerebelosas , Ataxias Espinocerebelosas , Animales , Ratones , Empalme Alternativo/genética , Cerebelo , Mutación , Progresión de la Enfermedad , Expansión de Repetición de Trinucleótido
7.
Prog Neurobiol ; 227: 102484, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315918

RESUMEN

TAR binding protein 43 (TDP-43) is normally present in the nucleus but mislocalized in the cytoplasm in a number of neurodegenerative diseases including Huntington's disease (HD). The nuclear loss of TDP-43 impairs gene transcription and regulation. However, it remains to be investigated whether loss of TDP-43 influences trinucleotide CAG repeat expansion in the HD gene, a genetic cause for HD. Here we report that CRISPR/Cas9 mediated-knock down of endogenous TDP-43 in the striatum of HD knock-in mice promoted CAG repeat expansion, accompanied by the increased expression of the DNA mismatch repair genes, Msh3 and Mlh1, which have been reported to increase trinucleotide repeat instability. Furthermore, suppressing Msh3 and Mlh1 by CRISPR/Cas9 targeting diminished the CAG repeat expansion. These findings suggest that nuclear TDP-43 deficiency may dysregulate the expression of DNA mismatch repair genes, leading to CAG repeat expansion and contributing to the pathogenesis of CAG repeat diseases.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Expansión de Repetición de Trinucleótido/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cuerpo Estriado/metabolismo , Neostriado/metabolismo , Neostriado/patología
8.
Mov Disord ; 37(7): 1541-1546, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35426475

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3 (SCA3) is an inherited motor disorder that is characterized by low body mass index (BMI). Considering the role of the hypothalamus in regulating appetitive behaviors and metabolism, low BMI may result from hypothalamic degeneration. OBJECTIVES: To examine hypothalamic volume changes in SCA3 by comparing patients and matched healthy controls and to identify potential mediating effects of hypothalamic pathology on CAG repeats for BMI. METHODS: Magnetic resonance imaging datasets of hypothalamic volumes from 41 SCA3 patients and 49 matched controls were analyzed. Relationships among CAG repeat number, hypothalamic volumes, and BMI were assessed using correlation and mediation analyses. RESULTS: SCA3 patients exhibited significant hypothalamic atrophy. Tubular hypothalamic volume was significantly associated with BMI. Mediation analysis revealed an indirect effect of CAG repeat number on BMI via tubular hypothalamic atrophy. CONCLUSIONS: Low BMI in SCA3 is related to neurodegeneration within the tubular hypothalamus, providing a potential target for energy-based treatment. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Atrofia , Índice de Masa Corporal , Humanos , Enfermedad de Machado-Joseph/diagnóstico por imagen , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Imagen por Resonancia Magnética/métodos , Pérdida de Peso
9.
Mov Disord Clin Pract ; 9(3): 330-333, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35392298
10.
Comput Struct Biotechnol J ; 19: 4447-4455, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471491

RESUMEN

CAG repeat instability causes a number of neurodegenerative disorders. The unusual hairpin stem structure formed by the CAG repeats in DNA traps the human mismatch repair MSH2.MSH3 (Mutsß) complex. To understand the mechanism behind the abnormal binding of Mutsß with the imperfect hairpin stem structure formed by CAG repeats, molecular dynamics simulations have been carried out for Mutsß-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 (1 A…A mismatch) and Mutsß-d(CAG)5.d(CAG)5 (5 mismatches, wherein, A…A occurs periodically) complexes. The interaction of MSH3 residue Tyr245 at the minor groove side of A…A, an essential interaction responsible for the recognition by Mutsß, are retained in both the cases. Nevertheless, the periodic unwinding caused by the nonisostericity of A…A with the flanking canonical base pairs in d(CAG)5.d(CAG)5 distorts the regular B-form geometry. Such an unwinding exposes one of the A…A mismatches (that interacts with Tyr245) at the major groove side and also facilitates the on and off hydrogen bonding interaction with Lys546 sidechain (MSH2-domain-IV). In contrast, kinking of the DNA towards the major groove in Mutsß-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 doesn't facilitate such an exposure of the bases at the major groove. Further, the unwinding of the helix in d(CAG)5.d(CAG)5 enhances the tighter binding between MSH2-domain-I and d(CAG)5.d(CAG)5 at the major groove side as well as between MSH3-domain-I and MSH3-domain-IV. Markedly, such enhanced interactions are absent in Mutsß-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 that has a single A…A mismatch. Thus, the above-mentioned enhancement in intra- and inter- molecular interactions in Mutsß-d(CAG)5.d(CAG)5 provide the stereochemical rationale for the trapping of Mutsß in CAG repeat expansion disorders.

11.
Front Neurosci ; 15: 695049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539331

RESUMEN

OBJECTIVE: To study the possible implication of the two biomarkers, intermediate alleles (IAs) of the Huntingtin (HTT) gene and neurofilament light chain (NfL) levels in plasma, in amyotrophic lateral sclerosis (ALS) patients. METHODS: We analyzed IAs in a cohort of 106 Italian ALS patients and measured the plasma NfL levels in 20% of the patients of the cohort. We correlated the two biomarkers with clinical phenotypes. RESULTS: Intermediate alleles were present in 7.5% of the patients of our cohort, a frequency higher than that reported in general population. Plasma NfL levels increased with age at onset (p < 0.05). Patients with bulbar onset (BO) had higher plasma NfL concentration (CI -0.61 to -0.06, p = 0.02) and a later age at onset of the disease (CI -24.78 to -4.93, p = 0.006) with respect to the spinal onset (SO) form. Additionally, two of the patients, with IAs and plasma NfL concentration lower with respect to normal alleles' carriers, presented an age at onset higher than the mean of the entire cohort. CONCLUSION: According to our findings, plasma NfL and IAs of HTT gene may represent potential biomarkers in ALS, providing evidence of a possible implication in clinical phenotype.

12.
Mov Disord ; 36(6): 1372-1380, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33548146

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 2 is a progressive neurodegenerative disorder due to an unstable expansion of a CAG repeat in the ATXN2 gene. Although weight loss has been associated with disease progression in several neurodegenerative conditions, it has been barely assessed in patients with spinocerebellar ataxia type 2. OBJECTIVE: The objective of this study was to test whether body mass index is altered in patients with spinocerebellar ataxia type 2 with varying expansion sizes from early to late disease stages. METHODS: A cross-sectional case-control study was performed, which included 222 clinically and molecularly diagnosed patients and 214 sex- and age-matched healthy individuals. ATXN2 genotypes and sex were considered as risk factors. Clinical outcomes included the body mass index, age at onset, disease duration, Scale for the Assessment and Rating of Ataxia score, disease stage, dysphagia, and progression rate. Multiple linear regression models were generated. RESULTS: Body mass index was significantly decreased in male patients, but not in female patients, relative to control subjects. In addition to sex, body mass index was significantly associated with age at onset and progression rate. Conversely, body mass index, along with repeat length in ATXN2 expanded alleles and disease duration, was associated with Scale for the Assessment and Rating of Ataxia score. In addition, body mass index, along with the age at onset and the repeat length in ATXN2 normal and expanded alleles, has a significant influence on progression rate. CONCLUSIONS: Body mass index might be a useful biomarker of disease severity, particularly in male patients with spinocerebellar ataxia type 2 in the context of nutritional interventions or clinical trials assessing the efficacy of promising new drugs. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxias Espinocerebelosas , Índice de Masa Corporal , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Masculino , Índice de Severidad de la Enfermedad , Ataxias Espinocerebelosas/genética
13.
Front Neurosci ; 14: 489, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581673

RESUMEN

Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) are the most prevalent subset of SCAs and share the aberrant expansion of Q-encoding CAG repeats within the coding sequences of disease-responsible genes as their common genetic cause. These polyQ SCAs (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) are inherited neurodegenerative diseases characterized by the progressive atrophy of the cerebellum and connected regions of the nervous system, which leads to loss of fine muscle movement coordination. Upon the expansion of polyQ repeats, the mutated proteins typically accumulate disproportionately in the neuronal nucleus, where they sequester various target molecules, including transcription factors and other nuclear proteins. However, it is not yet clearly understood how CAG repeat expansion takes place or how expanded polyQ proteins accumulate in the nucleus. In this article, we review the current knowledge on the molecular and cellular bases of nuclear proteotoxicity of polyQ proteins in SCAs and present our perspectives on the remaining issues surrounding these diseases.

14.
Clin Neurol Neurosurg ; 184: 105426, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31351215

RESUMEN

Spinal and bulbar (bulbospinal) muscular atrophy (BSMA, SBMA, Kennedy's disease) is a progressive motor neuron disease with rare involvement of structures other than the lower motor neuron, such as the endocrine system and the central nervous system (CNS). Aim of the review was to study type and frequency of clinical, imaging, and functional (CNS) abnormalities in SBMA patients. The most frequent clinical CNS manifestations in SBMA are postural or kinetic tremor predominantly of the hands and mild cognitive impairment. The most frequent instrumental CNS abnormality in SBMA patients are white matter lesions, visible on voxel-based morphometry, magnetic resonance spectroscopy, or diffusion tensor imaging. Single patients with enlarged pituitary volume, or diminished somato-sensory representation in the cortex have been also reported. Seizures, epilepsy, ataxia, spasticity, dystonia, or migraine have not been found in SBMA patients. Only supportive treatment is available for CNS manifestations in SBMA. It is concluded that the most frequent CNS abnormalities in SBMA are tremor, cognitive impairment, and white matter lesions on new imaging modalities. CNS involvement in SBMA should not be neglected as a phenotypic manifestation of SBMA and, apart from cognitive involvement, may help to differentiate clinically SBMA from other types of motor neuron disease.


Asunto(s)
Enfermedad de la Neurona Motora/patología , Atrofia Muscular Espinal/patología , Atrofia Muscular/patología , Malformaciones del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso Central/patología , Humanos , Neuronas Motoras/patología
15.
Neurogenetics ; 20(2): 65-71, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30847648

RESUMEN

Intermediate-length CAG repeats in ATXN2 have been widely shown to be a risk factor for sporadic amyotrophic lateral sclerosis (SALS). To evaluate the association of ATXN2 intermediate-length CAG repeat alleles with an increased risk of SALS, we investigated distributions of CAG repeat alleles in 394 patients with SALS and 490 control individuals in the Japanese population. In the intermediate-length repeat units of 29 or more, we identified one SALS patient with 31 repeat units and two control individuals with 30 repeat units. Thus, no significant differences in the carrier frequency of intermediate-length CAG repeat alleles were detected between patients with SALS and control individuals. When we investigated the distribution of "large normal alleles" defined as ATXN2 CAG repeats ranging from 24 up to 33 in the Japanese population compared with those in other populations in previous studies, the frequency of large normal alleles was significantly higher in the European and North American series than in the Japanese series. Moreover, these frequencies in the Turkish, Chinese, Korean, and Brazilian (Latin American) series were also higher than that in the Japanese series. These results raise the possibility that the frequencies of large normal alleles in individual populations underlie the frequencies of ALS risk alleles in the corresponding populations.


Asunto(s)
Alelos , Esclerosis Amiotrófica Lateral/etnología , Esclerosis Amiotrófica Lateral/genética , Ataxina-2/genética , Adulto , Anciano , Pueblo Asiatico , Estudios de Casos y Controles , Análisis Mutacional de ADN , Etnicidad , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Japón , Masculino , Persona de Mediana Edad , Secuencias Repetitivas de Ácidos Nucleicos
16.
Neuroscientist ; 25(5): 512-520, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30614396

RESUMEN

Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of unstable polyQ repeats in their associated disease proteins. To date, the pathogenesis of each disease remains poorly understood, and there are no effective treatments. Growing evidence has indicated that, in addition to neurodegeneration, polyQ-expanded proteins can cause a wide array of abnormalities in peripheral tissues. Indeed, polyQ-expanded proteins are ubiquitously expressed throughout the body and can affect the function of both the central nervous system (CNS) and peripheral tissues. The peripheral effects of polyQ disease proteins include muscle wasting and reduced muscle strength in patients or animal models of spinal and bulbar muscular atrophy (SBMA), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxia type 17 (SCA17). Since skeletal muscle pathology can reflect disease progression and is more accessible for treatment than neurodegeneration in the CNS, understanding how polyQ disease proteins affect skeletal muscle will help elucidate disease mechanisms and the development of new therapeutics. In this review, we focus on important findings in terms of skeletal muscle pathology in polyQ diseases and also discuss the potential mechanisms underlying the major peripheral effects of polyQ disease proteins, as well as their therapeutic implications.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Péptidos/metabolismo , Animales , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Péptidos/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
17.
Neurobiol Aging ; 74: 235.e5-235.e8, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30342765

RESUMEN

Intermediate-length ATXN2 CAG repeats are a risk factor for amyotrophic lateral sclerosis (ALS). Here we report on a female patient with heterozygous repeat expansion mutation in the CACNA1A gene presenting with a pure ALS syndrome while her father, who also carries that CACNA1A mutation, suffers from a classical spinocerebellar ataxia type 6. Hypothesizing that CACNA1A CAG repeat expansions could be a monogenic cause for familial ALS (fALS), we analyzed the CAG repeat lengths in CACNA1A in a large cohort of genetically unexplained patients with fALS. Our results indicate that CAG repeat expansion mutations in CACNA1A are not a frequent monogenic cause of fALS but could phenotypically present as ALS in rare instances.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Canales de Calcio/genética , Expansión de Repetición de Trinucleótido/genética , Estudios de Cohortes , Femenino , Heterocigoto , Humanos , Masculino , Mutación , Ataxias Espinocerebelosas/genética , Secuenciación del Exoma
18.
J Neurol Sci ; 390: 111-114, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29801869

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3 (SCA3) is the most common subtype of SCAs worldwide. SCA3 homozygote is defined as expanded CAG repeats in both alleles that might exhibit severe phenotype due to gene dosage effect. However, a study on the systematic comparison of clinical phenotypes between homozygotes and heterozygotes to indicate these verity of phenotypes of homozygotes is still lacking. METHODS: A total of 14 SCA3 homozygotes (3 Chinese participants and 11 participants from various ethnicity in different published studies) and 143 Chinese heterozygotes of SCA3 were recruited for this study. The 95% confidence intervals (CIs) of age at onset and disease severity expected from heterozygous patients were analyzed to detect the phenotypic differences between homozygotes and heterozygotes. RESULTS: Almost all the homozygotes (13 of 14) were found to present a significant earlier age at onset compared with heterozygotes, because age at onset of most homozygotes was lower than the 95% CIs of age at onset of heterozygotes. Also, the clinical severity in most of the homozygotes (3 of 4) with identified clinical phenotypes was higher than the 95% CIs of severity in heterozygotes, indicating more severe clinical phenotypes in SCA3 homozygotes. CONCLUSIONS: The homozygosity for SCA3 could lead to an earlier age of onset and putative severe clinical features. The findings of the present study suggested an influence of gene dosage on SCA3 phenotypes.


Asunto(s)
Homocigoto , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/fisiopatología , Adolescente , Adulto , Edad de Inicio , Preescolar , Femenino , Dosificación de Gen , Heterocigoto , Humanos , Enfermedad de Machado-Joseph/epidemiología , Masculino , Fenotipo , Índice de Severidad de la Enfermedad , Expansión de Repetición de Trinucleótido
19.
Neurobiol Aging ; 67: 201.e5-201.e8, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29665996

RESUMEN

ATXN2 intermediate-length trinucleotide repeat expansions have been reported as a risk factor for amyotrophic lateral sclerosis (ALS) in various ethnicities. We tried to confirm this finding in Korean patients with ALS by screening ATXN2 cytosine-adenine-guanine nucleotide sequences (CAG) repeat lengths in 464 unrelated ALS patients and 703 controls. The most common and the highest CAG repeat lengths in the controls were 22 and 28, respectively, whereas those in ALS patients were 22 and 33, respectively. The frequency of CAG repeat lengths of 30 or more was significantly different between the 2 groups after Bonferroni correction (1.5% in ALS vs. 0% in controls, corrected p = 0.0075). There were no significant differences in gender, age at onset, site of onset, functional rating scale-revised score at initial visit, calculated progression rate, or survival between patients with CAG repeat lengths of 30-33 and patients with CAG repeat lengths <30. These findings support the notion that intermediate-length ATXN2 repeat expansions might be a risk factor in Korean patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxina-2/genética , Estudios de Asociación Genética , Expansión de Repetición de Trinucleótido/genética , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Genetics ; 208(3): 963-976, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29305386

RESUMEN

CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Expansión de Repetición de Trinucleótido , Reordenamiento Génico , Repeticiones de Trinucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA