Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Clin Transl Med ; 14(6): e1734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888967

RESUMEN

BACKGROUND: Sporadic parathyroid adenoma (PA) is the most common cause of hyperparathyroidism, yet the mechanisms involved in its pathogenesis remain incompletely understood. METHODS: Surgically removed PA samples, along with normal parathyroid gland (PG) tissues that were incidentally dissected during total thyroidectomy, were analysed using single-cell RNA-sequencing with the 10× Genomics Chromium Droplet platform and Cell Ranger software. Gene set variation analysis was conducted to characterise hallmark pathway gene signatures, and single-cell regulatory network inference and clustering were utilised to analyse transcription factor regulons. Immunohistochemistry and immunofluorescence were performed to validate cellular components of PA tissues. siRNA knockdown and gene overexpression, alongside quantitative polymerase chain reaction, Western blotting and cell proliferation assays, were conducted for functional investigations. RESULTS: There was a pervasive increase in gene transcription in PA cells (PACs) compared with PG cells. This is associated with high expression of histone-lysine N-methyltransferase 2A (KMT2A). High KMT2A levels potentially contribute to promoting PAC proliferation through upregulation of the proto-oncogene CCND2, which is mediated by the transcription factors signal transducer and activator of transcription 3 (STAT3) and GATA binding protein 3 (GATA3). PA tissues are heavily infiltrated with myeloid cells, while fibroblasts, endothelial cells and macrophages in PA tissues are commonly enriched with proinflammatory gene signatures relative to their counterparts in PG tissues. CONCLUSIONS: We revealed the previously underappreciated involvement of the KMT2A‒STAT3/GATA3‒CCND2 axis and chronic inflammation in the pathogenesis of PA. These findings underscore the therapeutic promise of KMT2A inhibition and anti-inflammatory strategies, highlighting the need for future investigations to translate these molecular insights into practical applications. HIGHLIGHTS: Single-cell RNA-sequencing reveals a transcriptome catalogue comparing sporadic parathyroid adenomas (PAs) with normal parathyroid glands. PA cells show a pervasive increase in gene expression linked to KMT2A upregulation. KMT2A-mediated STAT3 and GATA3 upregulation is key to promoting PA cell proliferation via cyclin D2. PAs exhibit a proinflammatory microenvironment, suggesting a potential role of chronic inflammation in PA pathogenesis.


Asunto(s)
Adenoma , N-Metiltransferasa de Histona-Lisina , Inflamación , Neoplasias de las Paratiroides , Humanos , Neoplasias de las Paratiroides/genética , Neoplasias de las Paratiroides/metabolismo , Neoplasias de las Paratiroides/patología , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Inflamación/genética , Inflamación/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proto-Oncogenes Mas , Proliferación Celular/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38888699

RESUMEN

OBJECTIVE: Breast cancer (BC) is a cancer that seriously affects women's health. BC cell migration increases the mortality of BC patients. Current studies have shown that long noncoding RNAs (LncRNAs) are related to the metastasis mechanism of BC. This study aimed to explore the function and role of LncRNA OIP5-AS1 in BC. And we analyzed its regulatory mechanism and related modification process. METHODS: Our study analyzed the expression pattern of OIP5-AS1 in BC tissues and cell lines by qRT-PCR. The effects of OIP5-AS1 on the function of BC cells were detected by CCK-8 and transwell experiments. Bioinformatics analysis and double luciferase reporter gene detection were used to confirm the correlation between OIP5-AS1 and miR-150-5p and between miR-150-5p and Cyclin D2 (CCND2). The rescue test analyzed the effect of miR-150-5p regulating OIP5-AS1. In addition, the N6-methyladenosine (m6A) modification process of OIP5-AS1 was analyzed by RNA m6A dot blot, RIP assay, and double luciferase report experiment. RESULTS: OIP5-AS1 was significantly upregulated in BC tissues and cell lines. OIP5-AS1 knockdown inhibited BC cell viability, migration and invasion. OIP5-AS1 upregulated CCND2 by binding with miR-150-5p. This process affected the metastasis of BC. Higher degree of m6A methylation was confirmed in BC cell lines. There were some binding sites between methyltransferase like 3 (METTL3) and OIP5-AS1. Moreover, the silencing of METTL3 inhibited the OIP5-AS1 expression through decreasing the m6A methylation levels. CONCLUSIONS: LncRNA OIP5-AS1 promoted cell viability and metastasis of BC cells by targeting miR-150-5p/CCND2 axis. This process was modified by m6A methylation of METTL3.

3.
Cardiovasc Toxicol ; 24(7): 625-636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38743320

RESUMEN

Circular RNAs (circRNAs) have been discovered to serve as vital regulators in atherosclerosis (AS). However, the role and mechanism of circ_0002331 in AS process are still unclear. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL to establish an in vitro model for AS. The expression levels of circ_0002331, Cyclin D2 (CCND2) and ELAVL1 were analyzed by quantitative real-time PCR. Cell proliferation, apoptosis, migration, invasion and angiogenesis were assessed by EdU assay, flow cytometry, transwell assay and tube formation assay. The protein levels of CCND2, ELAVL1, and autophagy-related markers were detected using western blot analysis. IL-8 level was analyzed by ELISA. The relationship between ELAVL1 and circ_0002331 or CCND2 was analyzed by RIP assay and RNA pull-down assay. Moreover, FISH assay was used to analyze the co-localization of ELAVL1 and CCND2 in HUVECs. Our data showed that circ_0002331 was obviously downregulated in AS patients and ox-LDL-induced HUVECs. Overexpression of circ_0002331 could promote proliferation, migration, invasion and angiogenesis, while inhibit apoptosis, autophagy and inflammation in ox-LDL-induced HUVECs. Furthermore, CCND2 was positively regulated by circ_0002331, and circ_0002331 could bind with ELAVL1 to promote CCND2 mRNA stability. Besides, CCND2 overexpression suppressed ox-LDL-induced HUVECs dysfunction, and its knockdown also reversed the regulation of circ_0002331 on ox-LDL-induced HUVECs dysfunction. In conclusion, circ_0002331 might be a potential target for AS treatment, which could improve ox-LDL-induced dysfunction of HUVECs via regulating CCND2 by binding with ELAVL1.


Asunto(s)
Apoptosis , Aterosclerosis , Movimiento Celular , Proliferación Celular , Ciclina D2 , Proteína 1 Similar a ELAV , Células Endoteliales de la Vena Umbilical Humana , Lipoproteínas LDL , Estabilidad del ARN , ARN Circular , ARN Mensajero , Transducción de Señal , Humanos , ARN Circular/metabolismo , ARN Circular/genética , Lipoproteínas LDL/toxicidad , Lipoproteínas LDL/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ciclina D2/metabolismo , Ciclina D2/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Células Cultivadas , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regulación de la Expresión Génica , Estudios de Casos y Controles , Autofagia , Masculino , Persona de Mediana Edad , Femenino
4.
DNA Cell Biol ; 43(7): 325-330, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38700464

RESUMEN

Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH), a type of overgrowth syndrome, is characterized by progressive megalencephaly, cortical brain malformations, and distal limb anomalies. Previous studies have revealed that the overactivity of the phosphatidylinositol 3-kinase-Protein kinase B pathway and the increased cyclin D2 (CCND2) expression were the main factors contributing to this disease. Here, we present the case of a patient who exhibited megalencephaly, polymicrogyria, abnormal neuronal migration, and developmental delay. Serum tandem mass spectrometry and chromosome examination did not detect any metabolic abnormalities or copy number variants. However, whole-exome sequencing and Sanger sequencing revealed a de novo nonsense mutation (NM_001759.3: c.829C>T; p.Gln277X) in the CCND2 gene of the patient. Bioinformatics analysis predicted that this mutation may disrupt the structure and surface charge of the CCND2 protein. This disruption could potentially prevent polyubiquitination of CCND2, leading to its resistance against degradation. Consequently, this could drive cell division and growth by altering the activity of key cell cycle regulatory nodes, ultimately contributing to the development of MPPH. This study not only presents a new case of MPPH and expands the mutation spectrum of CCND2 but also enhances our understanding of the mechanisms connecting CCND2 with overgrowth syndromes.


Asunto(s)
Ciclina D2 , Megalencefalia , Polidactilia , Polimicrogiria , Femenino , Humanos , Masculino , Codón sin Sentido/genética , Ciclina D2/genética , Secuenciación del Exoma , Hidrocefalia , Malformaciones del Desarrollo Cortical , Megalencefalia/genética , Megalencefalia/diagnóstico , Polidactilia/genética , Polidactilia/diagnóstico , Polimicrogiria/genética , Polimicrogiria/diagnóstico , Preescolar
5.
Biomedicines ; 12(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790894

RESUMEN

Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.

6.
Transl Cancer Res ; 13(3): 1241-1251, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38617521

RESUMEN

Background: CCND2 expression influences the growth and proliferation of cancer cells and plays a crucial role in immune response of tumor. However, few studies focused on the correlation between CCND2 and lung adenocarcinoma (LUAD) in terms of prognosis and tumor immune infiltration. Methods: Original LUAD case data were screened from The Cancer Genome Atlas (TCGA) database. Using R software, we analyzed differently expressed CCND2 between LUAD and adjacent normal tissues. Kaplan-Meier analysis was conducted to determine the relationship between CCND2 expression and the overall survival of LUAD patients, and Cox regression analysis was performed to identify the independently prognostic risk factors for LUAD. Using TIMER (Tumor Immune Estimation Resource) and CIBERSORTx (Cell-type Identification by Estimating Relative Subsets of known RNA Transcripts) databases, the connection between CCND2 expression and LUAD immune infiltration was investigated. Results: The level of CCND2 was significantly lower in LUAD than in adjacent normal tissues [adjusted P<0.05 and log2 fold change (FC) =-1.33]. LUAD patients who expressed lower CCND2 had a shorter overall survival (P=0.046) and CCND2 was an independently prognostic risk factor for LUAD [hazard ratio (HR): 0.77, P=0.049]. In LUAD patients, CCND2 expression was positively associated with the levels of B cells (r=0.159, P=4.00e-04), CD8+ T cells (r=0.287, P=7.88e-11), CD4+ T cells (r=0.301, P=8.14e-12), macrophages (r=0.128, P=4.57e-03), neutrophils (r=0.373, P=1.07e-17), and myeloid dendritic cells (r=0.284, P=1.43e-10). The levels of B cells and macrophages had significantly association with the overall survival of LUAD patients. CIBERSORTx showed that the proportions of naive B cells, resting dendritic cells, and macrophages M1 were higher in the low CCND2 expression group (P<0.05); whereas macrophages M1, activated natural killer (NK) cells, and resting CD4+ memory cells were lower (P<0.05). Conclusions: CCND2 can be exploited as a novel prognostic biomarker involved in immune infiltration of LUAD, hence providing new preventative and therapeutic options for LUAD.

7.
Am J Hum Genet ; 111(1): 119-132, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38141607

RESUMEN

Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity.


Asunto(s)
Megalencefalia , Proteínas Proto-Oncogénicas c-myc , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Dimerización , Megalencefalia/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
8.
Mod Pathol ; 37(2): 100405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104893

RESUMEN

Large or blastoid B-cell neoplasms that are SOX11+ are a diagnostic dilemma and raise a differential diagnosis of cyclin D1-negative blastoid/pleomorphic mantle cell lymphoma (MCL) versus diffuse large B-cell lymphoma (DLBCL) or blastoid high-grade B-cell lymphoma (HGBL) with aberrant SOX11 expression. Here we report a study cohort of 13 SOX11+ large/blastoid B-cell neoplasms. Fluorescence in situ hybridization analysis was negative for CCND1 rearrangement in all 13 cases; 1 of 8 (12.5%) cases tested showed CCND2 rearrangement and 2 (25%) cases had extracopies of CCND2. Gene expression profiling showed that the study group had a gene expression signature similar to cyclin D1+ blastoid/pleomorphic MCL but different from DLBCL. Principal component analysis revealed that the cohort cases overlapped with cyclin D1+ blastoid/pleomorphic MCL but had minimal overlap with DLBCL. All patients in the cohort had clinicopathologic features similar to those reported for patients with cyclin D1+ MCL. We also performed a survey of SOX11 expression in a group of 85 cases of DLBCL and 24 cases of blastoid HGBL. SOX11 expression showed a 100% specificity and positive predictive value for the diagnosis of MCL. Overall, the results support the conclusion that large or blastoid B-cell neoplasms that are positive for SOX11 are best classified as cyclin D1-negative blastoid/pleomorphic MCL, and not as DLBCL or blastoid HGBL. We also conclude that SOX11 is a specific marker for the diagnosis of MCL, including cyclin D1-negative blastoid/pleomorphic MCL cases and should be performed routinely on blastoid/large B-cell neoplasms to help identify potential cases of cyclin D1-negative blastoid/pleomorphic MCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Adulto , Humanos , Linfoma de Células del Manto/metabolismo , Ciclina D1/genética , Hibridación Fluorescente in Situ , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/patología , Factores de Transcripción SOXC/genética
9.
Life Sci ; 334: 122191, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866807

RESUMEN

Gamma-aminobutyric acid (GABA) is a multifunctional molecule that is widely present in the nervous system and nonneuronal tissues. It plays pivotal roles in neurotransmission, regulation of secretion, cell differentiation, proliferation, and tumorigenesis. However, the exact mechanisms of GABA in head and neck squamous cell carcinomas (HNSCCs) are unknown. We took advantage of RNA sequencing in this work and uncovered the potential gene expression profiles of the GABA-treated HNSCC cell line HN4-2. We found that the expression of CCND2 and BCL2L1 was significantly upregulated. Furthermore, GABA treatment inhibited the cell apoptosis induced by cisplatin and regulated the cell cycle after treatment with cisplatin in HN4-2 cells. Moreover, we also found that GABA could upregulate the expression of CCND2 and BCL2L1 after treatment with cisplatin. Our results not only reveal the potential pro-tumorigenic effect of GABA on HNSCCs but also provide a novel therapeutic target for HNSCC treatment.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Cisplatino/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Regulación Neoplásica de la Expresión Génica , Ciclina D2/genética , Ciclina D2/metabolismo , Proteína bcl-X/metabolismo
10.
Anticancer Agents Med Chem ; 23(17): 1944-1957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497684

RESUMEN

BACKGROUND: Glutaminase (GLS), the key enzyme involved in glutamine metabolism, has been identified as a critical player in tumor growth and progression. The GLS inhibitor CB-839 has entered several clinical trials against a variety of tumors. OBJECTIVE: Our study aimed to investigate the role and underlying mechanism of GLS and its inhibitor CB-839 in nasopharyngeal carcinoma (NPC). METHODS: The expression, downstream genes, and signaling pathways of GLS in NPC were determined by real-time polymerase chain reaction (RT-PCR), PCR array, western blotting (WB), and immunohistochemical staining (IHC), and the phenotype of GLS was confirmed by in vivo experiments of subcutaneous tumor formation in mice and in vitro experiments of functional biology, including Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell migration, and Boyden invasion assay. Finally, it was also verified whether the treatment of NPC cells by GLS inhibitor CB-839 can change various biological functions and protein expression to achieve the purpose of blocking tumor progression. RESULTS: GLS was remarkably overexpressed in NPC cells and tissues, predicting a poor overall survival of NPC patients. GLS promoted cell cycle, proliferation, colony formation, migratory, and invasive capacities by regulating Cyclin D2 (CCND2) via PI3K/AKT/mTOR pathway in NPC in vitro and in vivo. Notably, CB-839 showed an effective anti-NPC tumor effect by blocking the biological functions of the tumor. CONCLUSION: The first innovative proof is that GLS promotes cell proliferation by regulating CCND2 via PI3K/AKT/mTOR pathway in NPC, and GLS inhibitor CB-839 may serve as a new potential therapeutic target for NPC treatment.


Asunto(s)
Glutaminasa , Glutamina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/farmacología , Glutamina/genética , Glutamina/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Biotechnol Genet Eng Rev ; : 1-17, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130193

RESUMEN

OBJECTIVE: hsa_circ_0057104 (circPDK1) has been elucidated to regulate malignant behavior in pancreatic and renal cell carcinoma. The study functionally aimed at how circPDK1 modifies colorectal cancer (CRC) progression, along with its potential molecular mechanism. METHODS: circPDK1 expression patterns in CRC tissues and cell lines were analyzed by RT-qPCR. circPDK1/miR-627-5p/CCND2 expression levels were changed by transient transfection. CCK-8 assay, flow cytometry, Transwell, immunoblotting, and commercial kits were utilized to measure CRC cell proliferation, apoptosis, invasion/migration, and glycolysis processes. Dual luciferase reporting assay and RIP assay were employed to evaluate the targeting relationship between circPDK1/miR-627-5p/CCND2. RESULTS: circPDK1 was highly expressed in CRC. circPDK1 knockdown inhibited CRC cell proliferation, invasion/migration, and warburg effect and forced apoptosis. Overexpressing circPDK1 had the opposite effect. The effects of circPDK1 knockdown or circPDK1 overexpression on CRC cells were mitigated by downregulating miR-627-5p or CCND2, respectively. CircPDK1, by competitive adsorption of miR-627-5p, mediated CCND2 expression. CONCLUSION: CircPDK1 induces the malignant behavior of CRC by competitive adsorption of miR-627-5p mediating CCND2 expression, offering new insights into the future development of CRC-targeted drugs.

12.
BMC Womens Health ; 23(1): 157, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013521

RESUMEN

BACKGROUND: Uterine angioleiomyoma is benign tumor that composed of smooth muscle cells and thick-walled vessels. It is a very rare condition reported to present as lower abdominal mass, accompanied by dysmenorrhea and hypermenorrhea. However, its clinical presentation is not known. CASE PRESENTATION: We report the case of a 44-year-old Japanese woman who developed severe anemia with disseminated intravascular coagulation without obvious external bleeding. The patient had a huge abdominal mass of over 20 cm in size, which was thought to be a uterine tumor. She received daily blood transfusions and her condition improved rapidly after she underwent hysterectomy. Pathological examination of the tumor revealed spindle-shaped cells with little atypia and mitosis, and numerous large vessels with smooth muscle and thrombus in the vessels. CONCLUSIONS: Uterine angioleiomyoma was identified as the cause of the coagulation abnormality. CCND2 and AR gene amplification was detected in the tumor. Uterine tumors that present with coagulopathy despite a clinical course suggestive of benign disease should undergo differential diagnosis for uterine angioleiomyoma.


Asunto(s)
Angiomioma , Coagulación Intravascular Diseminada , Neoplasias Uterinas , Femenino , Humanos , Adulto , Angiomioma/diagnóstico , Angiomioma/patología , Angiomioma/cirugía , Coagulación Intravascular Diseminada/complicaciones , Útero , Neoplasias Uterinas/complicaciones , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/patología , Histerectomía
13.
Exp Biol Med (Maywood) ; 248(17): 1469-1478, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36847415

RESUMEN

CD5+ diffuse large B-cell lymphoma (DLBCL), as a significant heterogeneity category of DLBCL, is reflected in both the molecular biological and genetic levels, which in turn induces ever-changing clinical manifestations, and what mediates tumor survival mechanisms are still unclear. This study aimed to predict the potential hub genes in CD5+ DLBCL. A total of 622 patients with DLBCL diagnosed between 2005 and 2019 were included. High expression of CD5 was correlated with IPI, LDH, and Ann Arbor stage, patients with CD5-DLBCL have longer overall survival. We identified 976 DEGs between CD5-negative and positive DLBCL patients in the GEO database and performed GO and KEGG enrichment analysis. After intersecting the genes obtained through the Cytohubba and MCODE, further external verification was performed in the TCGA database. Three hub genes were screened: VSTM2B, GRIA3, and CCND2, of which CCND2 were mainly involved in cell cycle regulation and JAK-STAT signaling pathways. Analysis of clinical samples showed that the expression of CCND2 was found to be correlated with CD5 (p = 0.001), and patients with overexpression of CCND2 in CD5+ DLBCL had poor prognosis (p = 0.0455). Cox risk regression analysis showed that, for DLBCL, CD5, and CCND2 double positive was an independent poor prognostic factor (HR: 2.545; 95% CI: 1.072-6.043; p = 0.034). These findings demonstrate that CD5 and CCND2 double-positive tumors should be stratified into specific subgroups of DLBCL with poor prognosis. CD5 may regulate CCND2 through JAK-STAT signaling pathways, mediating tumor survival. This study provides independent adverse prognostic factors for risk assessment and treatment strategies for newly diagnosed DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Pronóstico , Proteínas de la Membrana/genética
14.
Pulm Pharmacol Ther ; 77: 102173, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280202

RESUMEN

BACKGROUND: Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness, bronchial inflammation, and airway remodeling. Abnormal proliferation of airway smooth muscle cells (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginine-rich splicing factor 1 (SRSF1) in ASMC proliferation in asthma. METHODS: SRSF1 expressions in the bronchi of ovalbumin-induced asthmatic mice and IgE-treated mouse ASMCs (mASMCs) were evaluated using quantitative real-time PCR and Western blot. The localization and expression of SRSF1 in the bronchi of asthmatic mice were assessed by immunohistochemistry. Functionally, gain- and loss-of-function assays, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were conducted. Mechanistically, RNA degradation assay, RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays were carried out. RESULTS: SRSF1 was highly expressed in the bronchi of ovalbumin-induced asthma mice and IgE-treated mASMCs and was mainly located in the nucleus. Experiments on the function of SRSF1 showed that the silencing of SRSF1 induced the cell cycle of mASMC arrest and restrained mASMC proliferation. Investigations into the mechanism of SRSF1 revealed that SRSF1 and miR-135a are competitively bound to the 3'UTR region of Cyclin D2 (CCND2). SRSF1 overexpression repressed the degradation of CCND2 mRNA, and miR-135a negatively regulated CCND2 expression. Furthermore, SRSF1 knockdown inhibited ASMC proliferation in asthma mouse models by regulating the levels of miR-135a and CCND2. CONCLUSION: SRSF1 knockdown repressed ASMC proliferation in asthma by regulating miR-135a/CCND2 levels.


Asunto(s)
Asma , Ciclina D2 , MicroARNs , Factores de Empalme Serina-Arginina , Animales , Ratones , Asma/genética , Asma/patología , Bronquios/metabolismo , Proliferación Celular/genética , Ciclina D2/metabolismo , Inmunoglobulina E , MicroARNs/genética , Miocitos del Músculo Liso/metabolismo , Ovalbúmina , Factores de Empalme Serina-Arginina/metabolismo
15.
Med Oncol ; 39(12): 250, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209344

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) has a poor prognosis. The bifunctional protein peroxiredoxin 6 (PRDX6), which has both calcium-independent phospholipase A2 (iPLA2) and glutathione peroxidase (GPx) activity, participates in the development of multiple tumors. However, the function and clinical significance of PRDX6 in ICC remain unclear. In this study, we characterized PRDX6 in both human ICC and thioacetamide (TAA)-induced rat ICC. We found PRDX6 was significantly increased in ICC tissues, compared with the peritumoral tissues, and PRDX6 expression level was positively correlated with the malignant phenotype in ICC patients. Furthermore, PRDX6 genetic knockout significantly inhibited the tumor progression in rats. By using RNA sequencing analysis, we found 127 upregulated genes and 321 downregulated genes after PRDX6 knockout. In addition, we noticed a significant repression in the Wnt7a/b cascade, which has been shown to play an important role in the occurrence of ICC. We confirmed that gene expressions in the Wnt7a/b cascade were inhibited in ICC tissues after PRDX6 knockout by using qRT-PCR and immunohistochemistry analysis. Collectively, our findings suggest that PRDX6 may promote ICC by regulating the Wnt7a/b pathway, which could be a novel therapeutic target for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Peroxiredoxina VI/metabolismo , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Peroxiredoxina VI/genética , Ratas , Tioacetamida
16.
J Gastrointest Oncol ; 13(4): 1875-1888, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36092323

RESUMEN

Background: This study aimed to verify the hypothesis that circular RNA MMP9 (circMMP9) promotes hepatocellular carcinoma (HCC) progression through targeting miR-149 and regulating cyclin D2 (CCND2) expression. Methods: Expression of circMMP9, miR-149 and CCND2 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or protein blotting. Cell Counting Kit-8 (CCK-8) was used to evaluate cell proliferation. The HCC cell migration and invasion were evaluated using wound healing and transwell assays. The interaction among circMMP9, miR-149, and CCND2 was evaluated using luciferase, RNA-pull down, and RNA immunoprecipitation (RIP) assays, respectively. Cell apoptosis and cycle were examined by flow cytometry. A subcutaneous HCC xenograft mouse model was established for analyzing the role of circMMP9 in regulating the progression of HCC in vivo. Results: The expression of circMMP9 was elevated in HCC tissues and its high expression correlated with poor prognosis (P<0.05). Knockdown of circMMP9 restrained the proliferation, migration, and invasion of HCC cells and led to arrested cell cycle and increased apoptosis (all P<0.05). Furthermore, knockdown of circMMP9 attenuated HCC growth in vivo (P<0.05). Mechanically, circMMP9 acted as a sponge for miR-149 and enhanced CCND2 expression in HCC cells (P<0.05). Inhibition of miR-149 or overexpression of CCND2 abrogated knockdown of circMMP9-mediated alleviation of the malignant phenotypes of HCC (P<0.05). Conclusions: For the first time, we demonstrated that circMMP9 exacerbated HCC progression through the miR-149/CCND2 axis, which suggested that circMMP9 could be potentially targeted for HCC treatment.

17.
Mol Biol Rep ; 49(7): 6601-6611, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35616759

RESUMEN

BACKGROUND: Cyclin D (CCND) plays an important role in the cell cycle and is a rate-limiting factor that facilitates the G1/S transition. METHODS: In this study, the full-length cDNA of Hc-CCND2 was isolated from freshwater pearl mussel (Hyriopsis cumingii; Hc) and amplified using the 3´/5´ RACE system. The Hc-CCND2 expression profiles were analysed by quantitative real-time PCR. Functional analysis of the Hc-CCND2 genes was examined by both RNA interference (RNAi) and overexpression in H. cumingii. RESULTS: Hc-CCND2 protein sequences were 295 amino acids long, possessed D-type cyclin signature motifs and contained conserved cyclin box domains. Hc-CCND2 was expressed in all examined tissues (adductor, foot, visceral mass, gill, outer mantle, inner mantle and gonad), with the highest expression levels found in the gill (P < 0.05). During the different developmental periods of the embryo, the relative expression of Hc-CCND2 increased with embryonic development, peaking at the blastula stage and decreasing significantly in the gastrula stage. After knockdown of Hc-CCND2 by RNAi, a significant decrease in CDK6 expression levels was found, while the percentage of cells in the G0/G1 phase significantly increased. Overexpression of Hc-CCND2 in mantle cells led to increased proliferation of cultured cells (P < 0.05). CONCLUSIONS: Our results demonstrated that Hc-CCND2 may promote cell cycle progression in H. cumingii, and that overexpression of Hc-CCND2 promotes mantle cell proliferation. These findings may provide a novel approach for improving the slow proliferation rate of shellfish cells in in vitro cultures.


Asunto(s)
Bivalvos , Unionidae , Animales , Secuencia de Bases , Bivalvos/genética , Bivalvos/metabolismo , Clonación Molecular , Ciclinas/genética , Agua Dulce , Filogenia , Unionidae/genética
18.
Bioengineered ; 13(3): 7380-7391, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35266852

RESUMEN

Gastric cancer is the most common malignant tumor in the digestive system. However, the detection rate of early gastric cancer is low, resulting in delayed prognosis and poor outcomes. The identification of effective therapeutic targets for gastric cancer is, therefore, of profound significance. Recently, various lncRNAs have been shown to be biomarkers for different cancers. This study investigated the role of long non-coding RNA (lncRNA) TTTY15 in gastric cancer. The expression level of TTTY15, miR-98-5p, and cyclin D2 (CCND2) were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot assay using tumor and non-tumor tissues collected from 30 patients with gastric cancer, gastric cancer cell lines (AGS, SNU-5, and NCI-N87), and the normal gastric epithelial cell line GES-1. The interaction between TTTY15 and miR-98-5p and between miR-98-5p and CCND2 were predicted by bioinformatics and then further verified by dual-luciferase and RNA pull-down analyses. Cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay, and apoptosis was measured using flow cytometry and caspase-3 assay. The results indicate that TTTY15 and CCND2 expression increased and miR-98-5p expression decreased in gastric cancer tumor tissues and cell lines. TTTY15 knockdown inhibited gastric cancer cell proliferation but promoted apoptosis by sponging miR-98-5p, which acted as a tumor suppressor gene by reducing the expression of its target gene CCND2 in gastric cancer. In conclusion, lncRNA TTTY15 is a potential oncogene involved in gastric cancer and may be a novel therapeutic target for gastric cancer treatment.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Ciclina D2/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oncogenes , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
19.
J. physiol. biochem ; 78(1): 39-50, feb. 2022.
Artículo en Inglés | IBECS | ID: ibc-215871

RESUMEN

Exosomes are the mediators of intercellular signal transduction, and they have been involved in the carcinogenesis and chemoresistance of tumor cells. Herein, we intended to investigate whether circular RNA (circRNA) circ_0006174 can regulate chemoresistance of doxorubicin (DOX) in colorectal cancer via exosomes. Forty-one pairs of normal and CRC (DOX sensitive, n = 16; DOX resistant, n = 25) samples were collected. The resistant cell lines (LoVo/DOX and HCT116/DOX) were constructed by exposure of parental cell lines (LoVo and HCT116) to DOX. The detection of circ_0006174, microRNA-1205 (miR-1205), and cyclin D2 (CCND2) was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8(CCK-8) was applied for determining the half of inhibitory concentration (IC50) of DOX and cell proliferation. The migration and invasion capacities were analyzed via transwell assay. Exosomes were extracted using ultracentrifugation. Protein levels were determined using western blot. Dual-luciferase reporter assay was used for affirming target interaction. In vivo experiment was performed by establishing xenograft models in mice. Circ_0006174 level was upregulated in DOX-resistant CRC tissues and cells. The downregulation of circ_0006174 inhibited DOX resistance, cell proliferation, migration, and invasion in DOX-resistant CRC cells. Interestingly, the abundant circ_0006174 was enriched in exosomes derived from DOX-resistant CRC cells. Furthermore, circ_0006174 could enhance DOX resistance via the exosomal intercellular transfer. Moreover, we validated the target relation of circ_0006174/miR-1205 or miR-1205/CCND2. The effect of exosomal circ_0006174 on DOX resistance was achieved by upregulating the miR-1205-mediated CCND2. In vivo, knockdown of circ_0006174 also enhanced tumor sensitivity to DOX by targeting miR-1205/CCND2 axis. (AU)


Asunto(s)
Humanos , Animales , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , MicroARNs/genética , MicroARNs/metabolismo , Resistencia a Medicamentos/genética , Doxorrubicina/farmacología , Ciclina D2/farmacología
20.
Cancer Cell Int ; 22(1): 27, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033075

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. METHODS: The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. RESULTS: We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. CONCLUSIONS: The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...