Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Proteins Proteom ; 1873(1): 141044, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218139

RESUMEN

Bacteriophages have evolved different mechanisms of infection and penetration of bacterial cell walls. In Siphoviridae-like viruses, the inner tail proteins have a pivotal role in these processes and often encode lytic protein domains which increase infection efficiency. A soluble lytic transglycosylase (SLT) domain was identified in the minor tail protein gp15 from the BFK20 bacteriophage. Six fragments containing this SLT domain with adjacent regions of different lengths were cloned, expressed and purified. The biophysical properties of the two best expressing fragments were characterized by nanoDSF and CD spectroscopy, which showed that both fragments had a high refolding ability of 90 %. 3D modeling indicated that the bacteriophage BFK20 SLT domain is structurally similar to lysozyme. The degradation activity of these SLT proteins was evaluated using a lysozyme activity assay. BFK20 might use its transglycosylase activity to allow efficient phage DNA entry into the host cell by degrading bacterial peptidoglycan.

2.
Biophys Chem ; 314: 107318, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226875

RESUMEN

The Ebola delta peptide is an amphipathic, 40-residue peptide encoded by the Ebola virus, referred to as E40. The membrane-permeabilising activity of the E40 delta peptide has been demonstrated in cells and lipid vesicles suggesting the E40 delta peptide likely acts as a viroporin. The lytic activity of the peptide increases in the presence of anionic lipids and a disulphide bond in the C-terminal part of the peptide. Previous in silico work predicts the peptide to show a partially helical structure, but there is no experimental information on the structure of E40. Here, we use circular dichroism spectroscopy to report the secondary structure propensities of the reduced and oxidised forms of the E40 peptide in water, detergent micelles, and lipid vesicles composed of neutral and anionic lipids (POPC and POPG, respectively). Results indicate that the peptide is predominately a random coil in solution, and the disulphide bond has a small but measurable effect on peptide conformation. Secondary structure analysis shows large uncertainties and dependence on the reference data set and, in our system, cannot be used to accurately determine the secondary structure motifs of the peptide in membrane environments. Nevertheless, the spectra can be used to assess the relative changes in secondary structure propensities of the peptide depending on the solvent environment and disulphide bond. In POPC-POPG vesicles, the peptide transitions from a random coil towards a more structured conformation, which is even more pronounced in negatively charged SDS micelles. In vesicles, the effect depends on the peptide-lipid ratio, likely resulting from vesicle surface saturation. Further experiments with zwitterionic POPC vesicles and DPC micelles show that both curvature and negatively charged lipids can induce a change in conformation, with the two effects being cumulative. Electrostatic screening from Na+ ions reduced this effect. The oxidised form of the peptide shows a slightly lower propensity for secondary structure and retains a more random coil conformation even in the presence of PG-PC vesicles.


Asunto(s)
Dicroismo Circular , Ebolavirus , Micelas , Estructura Secundaria de Proteína , Ebolavirus/química , Fosfatidilcolinas/química , Soluciones , Fosfatidilgliceroles/química , Péptidos/química , Agua/química , Proteínas Virales/química , Secuencia de Aminoácidos
3.
Molecules ; 29(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39202986

RESUMEN

Parallel-stranded G-quadruplex structures are found to be common in the human promoter sequences. We tested highly fluorescent 9-methoxyluminarine ligand (9-MeLM) binding interactions with different parallel G-quadruplexes DNA by spectroscopic methods such as fluorescence and circular dichroism (CD) titration as well as UV melting profiles. The results showed that the studied 9-MeLM ligand interacted with the intramolecular parallel G-quadruplexes (G4s) with similar affinity. The binding constants of 9-methoxyluminarine with different parallel G4s were determined. The studies upon oligonucleotides with different flanking sequences on c-MYC G-quadruplex suggest that 9-methoxyluminarine may preferentially interact with 3'end of the c-MYC promoter. The high decrease in 9-MeLM ligand fluorescence upon binding to all tested G4s indicates that 9-methoxyluminarine molecule can be used as a selective fluorescence turn-off probe for parallel G-quadruplexes.


Asunto(s)
Dicroismo Circular , G-Cuádruplex , Ligandos , Humanos , Espectrometría de Fluorescencia , Regiones Promotoras Genéticas , ADN/química , ADN/metabolismo , Fluorescencia , Colorantes Fluorescentes/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-39041320

RESUMEN

Helicobacter pylori, a leading human pathogen associated with duodenal ulcer and gastric cancer, presents a significant threat to human health due to increasing antibiotic resistance rates. This study investigates G-quadruplexes (G4s), which are non-canonical secondary structures form in G-rich regions within the H. pylori genome. Extensive research on G4s in eukaryotes has revealed their role in epigenetically regulating cellular processes like gene transcription, DNA replication, and oncogene expression. However, understanding of G4-mediated gene regulation in other organisms, especially bacterial pathogens, remains limited. Although G4 motifs have been extensively studied in a few bacterial species such as Mycobacterium, Streptococci, and Helicobacter, research on G4 motifs in other bacterial species is still sparse. Like in other organisms such as archaea, mammals, and viruses, G4s in H. pylori display a non-random distribution primarily situated within open reading frames of various protein-coding genes. The occurrence of G4s in functional regions of the genome and their conservation across different species indicates that their placement is not random, suggesting an evolutionary pressure to maintain these sequences at specific genomic sites. Moreover, G-quadruplexes show enrichment in specific gene classes, suggesting their potential involvement in regulating the expression of genes related to cell wall/membrane/envelope biogenesis, amino acid transport, and metabolism. This indicates a probable regulatory role for G4s in controlling the expression of genes essential for H. pylori survival and virulence. Biophysical techniques such as Circular Dichroism spectroscopy and Nuclear Magnetic Resonance were used to characterize G4 motifs within selected H. pylori genes. The study revealed that G-quadruplex ligand inhibited the growth of H. pylori, with minimal inhibitory concentrations in the low micromolar range. This suggests that targeting G4 structures could offer a promising approach for developing novel anti-H. pylori drugs.

5.
Heliyon ; 10(13): e34189, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071576

RESUMEN

Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.

6.
Chirality ; 36(6): e23681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839280

RESUMEN

An N-centered epimeric mixture of chlorophyll-a derivatives methylated at the inner nitrogen atom was separated by reverse-phase high-performance liquid chromatography. Circular dichroism (CD) spectroscopic analyses of the epimerically pure N22-methyl-chlorins revealed that the minor first-eluted and major second-eluted stereoisomers were (22S)- and (22R)-configurations, respectively. Their visible absorption and CD spectra in solution were dependent on the N22-stereochemistry. The epimer-dependent spectral changes were independent of the substituents at the peripheral 3-position of the core chlorin chromophore.


Asunto(s)
Clorofila A , Clorofila , Dicroismo Circular , Estereoisomerismo , Clorofila/química , Metilación , Clorofila A/química , Cromatografía Líquida de Alta Presión/métodos , Nitrógeno/química
7.
Methods Appl Fluoresc ; 12(3)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38697201

RESUMEN

Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.


Asunto(s)
Espectrometría de Fluorescencia , Espectrometría Raman , Espectrometría Raman/métodos , Espectrometría de Fluorescencia/métodos , Dicroismo Circular/métodos , Espectrofotometría Infrarroja/métodos , Humanos
8.
Molecules ; 29(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792033

RESUMEN

Copper(II), nickel(II) and zinc(II) complexes of various peptide fragments of tau protein were studied by potentiometric and spectroscopic techniques. All peptides contained one histidyl residue and represented the sequences of tau(91-97) (Ac-AQPHTEI-NH2), tau(385-390) (Ac-KTDHGA-NH2) and tau(404-409) (Ac-SPRHLS-NH2). Imidazole-N donors of histidine were the primary metal binding sites for all peptides and all metal ions, but in the case of copper(II) and nickel(II), the deprotonated amide groups were also involved in metal binding by increasing pH. The most stable complexes were formed with copper(II) ions, but the presence of prolyl residues resulted in significant changes in the thermodynamic stability and speciation of the systems. It was also demonstrated that nickel(II) and especially zinc(II) complexes have relatively low thermodynamic stability with these peptides. The copper(II)-catalyzed oxidation of the peptides was also studied. In the presence of H2O2, the fragmentation of peptides was detected in all cases. In the simultaneous presence of H2O2 and ascorbic acid, the fragmentation of the peptide is less preferred, and the formation of 2-oxo-histidine also occurs.


Asunto(s)
Complejos de Coordinación , Cobre , Níquel , Fragmentos de Péptidos , Zinc , Proteínas tau , Níquel/química , Cobre/química , Zinc/química , Proteínas tau/química , Complejos de Coordinación/química , Fragmentos de Péptidos/química , Oxidación-Reducción , Histidina/química , Concentración de Iones de Hidrógeno , Peróxido de Hidrógeno/química , Termodinámica
9.
Curr Res Struct Biol ; 7: 100138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707546

RESUMEN

Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (µs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.

10.
Carbohydr Res ; 539: 109122, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657354

RESUMEN

The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain. Current studies emphasize in-silico structural and functional analysis, recombinant expression, characterization, structural studies through CD spectroscopy, and ligand binding studies of the novel α-amylase from P. abyssi. The soluble expression of PaAFG was observed in the E. coli Rosetta™ (DE3) pLysS strain upon incubation overnight at 18 °C in an orbital shaker. The optimum temperature and pH of the PaAFG were observed at 90 °C in 50 mM phosphate buffer pH 6. The Km value for PaAFG against wheat starch was determined as 0.20 ± 0.053 mg while the corresponding Vmax value was 25.00 ± 0.67 µmol min-1 mg-1 in the presence of 2 mM CaCl2 and 12.5 % glycerol. The temperature ramping experiments through CD spectroscopy reveal no significant change in the secondary structures and positive and negative ellipticities of the CD spectra showing the proper folding and optimal temperature of PaAFG protein. The RMSD and RMSF of the PaAFG enzyme determined through molecular dynamic simulation show the significant protein's stability and mobility. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various industrial applications.


Asunto(s)
Pyrococcus abyssi , Almidón , alfa-Amilasas , alfa-Amilasas/metabolismo , alfa-Amilasas/química , alfa-Amilasas/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Modelos Moleculares , Pyrococcus abyssi/enzimología , Almidón/metabolismo , Almidón/química , Temperatura
11.
Chemistry ; 30(33): e202400082, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38628039

RESUMEN

Fagopyrins are phenantroperylenequinones present in the flowers of Fagopyrum esculentum (buckwheat) endowed with photodynamic activity. It has been reported that fagopyrin extracts actually contain a complex mixture of closely related compounds, differing only on the nature of the perylenequinone substituents. We report our systematic and detailed study on the chemical composition of fagopyrin extracts by a combination of preparative and analytical techniques. The combined use of 1H-NMR and CD spectroscopy was found to be particularly suited to fully characterize all stereochemical aspects of the extracted fagopyrins. For the first time nine isomers have been structurally characterized and their stereochemistry fully elucidated. The presence of two different heterocyclic ring substituents, two stereogenic centers and the inherent axial chirality of the aromatic system provides a complex stereochemical relationships among isomers, thus giving account of the high level of molecular multiplicity found in the extract.


Asunto(s)
Dicroismo Circular , Fagopyrum , Flores , Fagopyrum/química , Flores/química , Estereoisomerismo , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular , Estructura Molecular , Extractos Vegetales/química , Quinonas
12.
Int J Biol Macromol ; 266(Pt 2): 131298, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574913

RESUMEN

This article delves into the interaction between HSA protein and synthesized platinum complexes, with formula: [Pt(Propyl-NH2)2(Propylglycine)]NO3 and [Pt(Tertpentyl-NH2)2(Tertpentylglycine)]NO3, through a range of methods, including spectroscopic (UV-visible, fluorescence, synchronous fluorescence and CD) analysis and computational modeling (molecular docking and MD simulation). The binding constants, the number of binding sites, and thermodynamic parameters were obtained at 25 to 37 °C. The study found that both complexes could bind with HSA (moderate affinity for Tertpentyl and strong affinity for Propyl derivatives) and occupied one binding site in HSA (validated with, Stern-Volmer, Job-plots, and molecular docking investigations) located in subdomain IIA. The binding mechanisms of both mentioned Pt(II) agents were different, with the Propyl derivative predominantly using van der Waals forces and hydrogen bond interactions with a static quenching mechanism and the Tertpentyl derivative mainly utilizing hydrophobic force with a dynamic quenching mechanism. However, the two ligands affected protein differently; the Tertpentyl complex did not significantly alter the protein structure upon binding, as evidenced by synchronous fluorescence spectroscopy (SFS), CD spectroscopy, and MD analysis. The outcome helps in understanding the binding mechanisms and structural modifications induced by the ligands, which could aid in the innovation of more effective and stable Pt(II)-based drugs.


Asunto(s)
Glicina , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Humana , Termodinámica , Humanos , Glicina/química , Glicina/análogos & derivados , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular , Espectrometría de Fluorescencia , Ligandos , Platino (Metal)/química
13.
Methods Enzymol ; 695: 233-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521587

RESUMEN

i-Motifs are non-canonical secondary structures of DNA formed by mutual intercalation of hemi-protonated cytosine-cytosine base pairs, most typically in slightly acidic conditions (pH<7.0). These structures are well-studied in vitro and have recently been suggested to exist in cells. Despite nearly a decade of active research, the quest for small-molecule ligands that could selectively bind to and stabilize i-motifs continues, and no reference, bona fide i-motif ligand is currently available. This is, at least in part, due to the lack of robust methods to assess the interaction of ligands with i-motifs, since many techniques well-established for studies of other secondary structures (such as CD-, UV-, and FRET-melting) may generate artifacts when applied to i-motifs. Here, we describe an implementation of automated, potentiometric (pH) titrations as a robust isothermal method to assess the impact of ligands or cosolutes on thermodynamic stability of i-motifs. This approach is validated through the use of a cosolute previously known to stabilize i-motifs (PEG2000) and three small-molecule ligands that are able to stabilize, destabilize, or have no effect on the stability of i-motifs, respectively.


Asunto(s)
Citosina , ADN , Ligandos , Motivos de Nucleótidos , Emparejamiento Base , ADN/química , Citosina/química
14.
J Pept Sci ; 30(6): e3568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317295

RESUMEN

Cyclopeptides hold significant relevance in various fields of science and medicine, due to their unique structural properties and diverse biological activities. Cyclic peptides, characterized by intrinsically higher conformational order, exhibit remarkable stability and resistance to proteolytic degradation, making them attractive candidates for developing targeted drug delivery systems. The aim of this work is to elucidate the unique coordination properties of the multi-His cyclic peptide with c(HDHKHPHHKHHP) sequence (HDCP - heterodomain cyclopeptide). This peptide, indeed, is able to form homo- and hetero-dinuclear complexes in a wide pH range, being thus a good chelator for Cu(II) ions. Herein, we present the results of a combined study, involving potentiometric, spectroscopic (UV-Vis, CD, and EPR), and computational investigations, on its coordination properties. To better understand the interaction pattern with Cu(II) metal ions, two other peptides, each one bearing only one of the two binding domains of HDCP are also considered in this study: c(HDHKHPGGKGGP) = CP1, c(GKGGKPHHKHHP) = CP2, which share sequence fragments of HDCP and allow separate investigations of its coordination domains.


Asunto(s)
Cobre , Péptidos Cíclicos , Cobre/química , Péptidos Cíclicos/química , Histidina/química , Unión Proteica , Complejos de Coordinación/química , Concentración de Iones de Hidrógeno , Secuencia de Aminoácidos
15.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339061

RESUMEN

From the point of view of the search for new pharmaceuticals, pyridazinone derivatives are a very promising group of compounds. In our previous works, we have proved that newly synthesized ligands from this group have desirable biological and pharmacokinetic properties. Therefore, we decided to continue the research evaluating the activity of pyrrolo[3,4-dpyridazinone derivatives. In this work, we focused on the interactions of five pyridazinone derivatives with the following biomolecules: DNA and two plasma proteins: orosomucoid and gamma globulin. Using several of spectroscopic methods, such as UV-Vis, CD, and fluorescence spectroscopy, we proved that the tested compounds form stable complexes with all biomacromolecules selected for analysis. These findings were also confirmed by the results obtained by molecular modeling. All tested pyridazinone derivatives bind to the ctDNA molecule via groove binding mechanisms. All these molecules can also be bound and transported by the tested plasma proteins; however, the stability of the complexes formed is lower than those formed with serum albumin.


Asunto(s)
Antiinflamatorios , Antioxidantes , ADN/química , Modelos Moleculares , Proteínas Sanguíneas , Simulación del Acoplamiento Molecular
16.
Protein Pept Lett ; 31(2): 161-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38243925

RESUMEN

INTRODUCTION: Parvovirus B19 (B19V) is a human pathogen, and the minor capsid protein of B19V possesses a unique N terminus called VP1u that plays a crucial role in the life cycle of the virus. OBJECTIVES: The objective of this study was to develop a method for domain segmentation of B19 VP1u using intein technology, particularly its receptor binding domain (RBD) and phospholipase A2 (PLA2) domain. METHODS: RBD and PLA2 domains of VP1u were each fused to the DnaE split inteins derived from the Nostoc punctiforme. Each of these precursor proteins was expressed in E. coli. Combining the purified precursors in equal molar ratios resulted in the formation of full-length VP1u. Furthermore, Circular Dichroism (CD) spectroscopy and PLA2 assays were used to probe the structure and activity of the newly formed protein. RESULTS: The CD spectrum of the full length VP1u confirmed the secondary structure of protein, while the PLA2 assay indicated minimal disruption in enzymatic activity. CONCLUSION: This method would allow for the selective incorporation of NMR-active isotopes into either of the VP1u domains, which can reduce signal overlap in NMR structural determination studies.


Asunto(s)
Proteínas de la Cápside , Escherichia coli , Inteínas , Inteínas/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dominios Proteicos , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/química , Nostoc/genética , Nostoc/enzimología , Nostoc/química , Fosfolipasas A2/química , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Dicroismo Circular , Humanos
17.
Protein Sci ; 33(3): e4867, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38093605

RESUMEN

Prostate apoptosis response-4 (Par-4) tumor suppressor protein has gained attention as a potential therapeutic target owing to its unique ability to selectively induce apoptosis in cancer cells, sensitize them to chemotherapy and radiotherapy, and mitigate drug resistance. It has recently been reported that Par-4 interacts synergistically with cisplatin, a widely used anticancer drug. However, the mechanistic details underlying this relationship remain elusive. In this investigation, we employed an array of biophysical techniques, including circular dichroism spectroscopy, dynamic light scattering, and UV-vis absorption spectroscopy, to characterize the interaction between the active caspase-cleaved Par-4 (cl-Par-4) fragment and cisplatin. Additionally, elemental analysis was conducted to quantitatively assess the binding of cisplatin to the protein, utilizing inductively coupled plasma-optical emission spectroscopy and atomic absorption spectroscopy. Our findings provide evidence of direct interaction between cl-Par-4 and cisplatin, and reveal a binding stoichiometry of 1:1. This result provides insights that could be useful in enhancing the efficacy of cisplatin-based and tumor suppressor-based cancer therapies.


Asunto(s)
Antineoplásicos , Cisplatino , Masculino , Humanos , Cisplatino/farmacología , Cisplatino/química , Caspasas , Próstata , Apoptosis , Línea Celular Tumoral , Antineoplásicos/farmacología
18.
Proteins ; 92(3): 356-369, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37881117

RESUMEN

The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 µg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 µg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 µg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 µg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.


Asunto(s)
Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Virus de la Peste de los Pequeños Rumiantes/metabolismo , Peste de los Pequeños Rumiantes/metabolismo , Línea Celular , Proteínas Virales/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Cabras
19.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069271

RESUMEN

SLURP-1 is a three-finger human protein targeting nicotinic acetylcholine receptors (nAChRs). The recombinant forms of SLURP-1 produced in E. coli differ in added fusion fragments and in activity. The closest in sequence to the naturally occurring SLURP-1 is the recombinant rSLURP-1, differing by only one additional N-terminal Met residue. sSLURP-1 can be prepared by peptide synthesis and its amino acid sequence is identical to that of the natural protein. In view of recent NMR analysis of the conformational mobility of rSLURP-1 and cryo-electron microscopy structures of complexes of α-bungarotoxin (a three-finger snake venom protein) with Torpedo californica and α7 nAChRs, we compared conformations of sSLURP-1 and rSLURP-1 by Raman spectroscopy and CD-controlled thermal denaturation, analyzed their competition with α-bungarotoxin for binding to the above-mentioned nAChRs, compared the respective receptor complexes with computer modeling and compared their inhibitory potency on the α9α10 nAChR. The CD revealed a higher thermostability of sSLURP-1; some differences between sSLURP-1 and rSLURP-1 were observed in the regions of disulfides and tyrosine residues by Raman spectroscopy, but in binding, computer modeling and electrophysiology, the proteins were similar. Thus, sSLURP-1 and rSLURP-1 with only one additional Met residue appear close in structure and functional characteristics, being appropriate for research on nAChRs.


Asunto(s)
Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bungarotoxinas/metabolismo , Microscopía por Crioelectrón , Proteínas/metabolismo
20.
Foods ; 12(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38137304

RESUMEN

Green technologies using renewable and alternative sources, including supercritical carbon dioxide (sc-CO2), are becoming a priority for researchers in a variety of fields, including the control of enzyme activity which, among other applications, is extremely important in the food industry. Namely, extending shelf life of e.g., flour could be reached by tuning the present enzymes activity. In this study, the effect of different sc-CO2 conditions such as temperature (35-50 °C), pressure (200 bar and 300 bar), and exposure time (1-6 h) on the inactivation and structural changes of α-amylase, lipase, and horseradish peroxidase (POD) from white wheat flour and native enzymes was investigated. The total protein (TPC) content and residual activities of the enzymes were determined by standard spectrophotometric methods, while the changes in the secondary structures of the enzymes were determined by circular dichroism spectrometry (CD). The present work is therefore concerned for the first time with the study of the stability and structural changes of the enzyme molecules dominant in white wheat flour under sc-CO2 conditions at different pressures and temperatures. In addition, the changes in aggregation or dissociation of the enzyme molecules were investigated based on the changes in particle size distribution and ζ-potential. The results of the activity assays showed a decrease in the activity of native POD and lipase under optimal exposure conditions (6 h and 50 °C; and 1 h and 50 °C) by 22% and 16%, respectively. In contrast, no significant changes were observed in α-amylase activity. Consequently, analysis of the CD spectra of POD and lipase confirmed a significant effect on secondary structure damage (changes in α-helix, ß-sheet, and ß-turn content), whereas the secondary structure of α-amylase retained its original configuration. Moreover, the changes in particle size distribution and ζ-potential showed a significant effect of sc-CO2 treatment on the aggregation and dissociation of the selected enzymes. The results of this study confirm that sc-CO2 technology can be effectively used as an environmentally friendly technology to control the activity of major flour enzymes by altering their structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA