Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739106

RESUMEN

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microglía , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Animales , Femenino , Ratones , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Lipopolisacáridos/farmacología , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Glicoproteína Mielina-Oligodendrócito/inmunología
2.
Front Immunol ; 15: 1382320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711503

RESUMEN

Myasthenia gravis (MG), primarily caused by acetylcholine receptor (AChR) autoantibodies, is a chronic autoimmune disorder causing severe muscle weakness and fatigability. In particular, seronegative MG constitutes 10%-15% of MG cases and presents diagnostic challenges especially in early-onset female patients who often show severe disease and resistance to immunosuppressive therapy. Furthermore, the immunopathology of seronegative MG remains unclear. Thus, in this study, we aimed to elucidate the pathogenic mechanism of seronegative MG using scRNA-seq analysis and plasma proteome analysis; in particular, we investigated the relationship between immune dysregulation status and disease severity in refractory seronegative MG. Employing single-cell RNA-sequencing and plasma proteome analyses, we analyzed peripheral blood samples from 30 women divided into three groups: 10 healthy controls, 10 early-onset AChR-positive MG, and 10 refractory early-onset seronegative MG patients, both before and after intravenous immunoglobulin treatment. The disease severity was evaluated using the MG-Activities of Daily Living (ADL), MG composite (MGC), and revised 15-item MG-Quality of Life (QOL) scales. We observed numerical abnormalities in multiple immune cells, particularly B cells, in patients with refractory seronegative MG, correlating with disease activity. Notably, severe MG cases had fewer regulatory T cells without functional abnormalities. Memory B cells were found to be enriched in peripheral blood cells compared with naïve B cells. Moreover, plasma proteome analysis indicated significantly lower plasma protein levels of soluble CD22, expressed in the lineage of B-cell maturation (including mature B cells and memory B cells), in refractory seronegative MG patients than in healthy donors or patients with AChR-positive MG. Soluble CD22 levels were correlated with disease severity, B-cell frequency, and RNA expression levels of CD22. In summary, this study elucidates the immunopathology of refractory seronegative MG, highlighting immune disorders centered on B cells and diminished soluble CD22 levels. These insights pave the way for novel MG treatment strategies focused on B-cell biology.


Asunto(s)
Linfocitos B , Miastenia Gravis , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Humanos , Miastenia Gravis/inmunología , Miastenia Gravis/sangre , Femenino , Adulto , Linfocitos B/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Persona de Mediana Edad , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Inmunoglobulinas Intravenosas/uso terapéutico , Receptores Colinérgicos/inmunología , Índice de Severidad de la Enfermedad , Adulto Joven , Proteoma
3.
Mol Ther Oncol ; 32(1): 200775, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596311

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.

4.
In Vitro Cell Dev Biol Anim ; 60(4): 321-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589736

RESUMEN

Chimeric antigen receptors (CARs) offer a promising new approach for targeting B cell malignancies through the immune system. Despite the proven effectiveness of CAR T cells targeting CD19 and CD22 in hematological malignancies, it is imperative to note that their production remains a highly complex process. Unlike T cells, NK cells eliminate targets in a non-antigen-specific manner while avoiding graft vs. host disease (GvHD). CAR-NK cells are considered safer than CAR-T cells because they have a shorter lifespan and produce less toxic cytokines. Due to their unlimited ability to proliferate in vitro, NK-92 cells can be used as a source for CAR-engineered NK cells. We found that CARs created from the m971 anti-CD22 mAb, which specifically targets a proximal CD22 epitope, were more effective at anti-leukemic activity compared to those made with other binding domains. To further enhance the anti-leukemic capacity of NK cells, we used lentiviral transduction to generate the m971-CD28-CD3ζ NK-92. CD22 is highly expressed in B cell lymphoma. To evaluate the potential of targeting CD22, Raji cells were selected as CD22-positive cells. Our study aimed to investigate CD22 as a potential target for CAR-NK-92 therapy in the treatment of B cell lymphoma. We first generated m971-CD28-CD3ζ NK-92 that expressed a CAR for binding CD22 in vitro. Flow cytometric analysis was used to evaluate the expression of CAR. The 7AAD determined the cytotoxicity of the m971-CD28-CD3ζ NK-92 towards target lymphoma cell lines by flow cytometry assay. The ELISA assay evaluated cytokine production in CAR NK-92 cells in response to target cells. The m971-CD28-CD3ζ NK-92 cells have successfully expressed the CD22-specific CAR. m971-CD28-CD3ζ NK-92 cells efficiently lysed CD22-expressing lymphoma cell lines and produced large amounts of cytokines such as IFN-γ and GM-CSF but a lower level of IL-6 after coculturing with target cells. Based on our results, it is evident that transferring m971-CD28-CD3ζ NK-92 cells could be a promising immunotherapy for B cell lymphoma.


Asunto(s)
Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Humanos , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Células Asesinas Naturales/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Linfoma/terapia , Linfoma/inmunología , Linfoma/patología , Linfoma de Células B/terapia , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Citotoxicidad Inmunológica
5.
Curr Med Chem ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38445701

RESUMEN

BACKGROUND: Punica granatum L. is well-known for its multifaceted therapeutic potential, including anti-inflammatory and immunomodulatory activities. AIM: This study aimed to characterize an immunomodulatory compound isolated from Punica granatum L. using a bioactivity-guided approach. METHODS: Chromatographic techniques were adopted for isolation and purification of secondary metabolites. In silico, in vitro, and in vivo methods were performed to characterize the therapeutic potential of the isolated compound. RESULTS: Using preparative thin-layer chromatography, rosmarinic acid was isolated from F4 (column chromatography product obtained from a butanolic fraction of the extract). The impact of rosmarinic acid was assessed in rats using the neutrophil adhesion test, DTH response, and phagocytic index. In immunized rats, rosmarinic acid demonstrated significant immunomodulatory potential. Computational experiments, like molecular docking and molecular dynamics, were also conducted against two targeted receptors, Cereblon (PDB ID: 8AOQ) and human CD22 (PDB ID: 5VKM). Computational studies suggested that an increase in phagocytic index by rosmarinic acid could be attributed to inhibiting Cereblon and CD22. Pharmacokinetics and toxicity prediction also suggested the drug-likeness of rosmarinic acid. CONCLUSION: Rosmarinic acid is a potential candidate, but extensive research needs to be done to translate this molecule from bench to bedside.

6.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38298420

RESUMEN

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

7.
Br J Haematol ; 204(5): 1649-1659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362778

RESUMEN

Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Antígenos CD19/inmunología , Linfoma de Células B/terapia , Linfoma de Células B/inmunología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Antígenos CD20/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Antígenos de Neoplasias/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología
8.
Clin Lymphoma Myeloma Leuk ; 24(4): e168-e173, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38212207

RESUMEN

BACKGROUND: The combination of low-intensity chemotherapy and inotuzumab ozogamicin (INO), with sequential blinatumomab, is highly effective in older adults with newly diagnosed B-cell acute lymphoblastic leukemia (ALL) and in relapsed or refractory B-cell ALL. Earlier, "dose-dense" administration of blinatumomab could lead to earlier and deeper measurable residual disease (MRD) responses and better outcomes. PATIENTS AND METHODS: We performed a retrospective analysis of the safety and efficacy of a dose-dense regimen of mini-hyper-CVD (mini-hyperfractionated cyclophosphamide, vincristine, and dexamethasone alternating with mini-methotrexate and cytarabine), INO, and blinatumomab in patients with B-cell ALL. RESULTS: Twenty-one patients were treated (frontline, n = 9; MRD consolidation, n = 4; relapsed/refractory, n = 8). In the frontline cohort, all patients achieved CR/CRi and MRD negativity by flow cytometry at the end of cycle 1. Across the frontline and MRD consolidation cohorts, 10/11 patients (91%) achieved next-generation sequencing MRD negativity at a sensitivity of 10-6, including 6/10 evaluable patients (60%) who achieved next-generation sequencing MRD negativity after cycle 1. The CR/CRi rate in the relapsed/refractory cohort was 63%, and all responders achieved MRD negativity by flow cytometry at the end of cycle 1. The 1-year overall survival rate for the combined cohort of the frontline and MRD-positive patients was 83%. No new safety signals were observed with the dose-dense mini-hyper-CVD, INO, and blinatumomab regimen. CONCLUSION: Dose-dense delivery of mini-hyper-CVD, INO, and blinatumomab was safe and resulted in rapid and deep MRD negativity in patients with B-cell ALL. This regimen is now being prospectively evaluated in both the frontline and relapsed/refractory settings.


Asunto(s)
Anticuerpos Biespecíficos , Enfermedades Cardiovasculares , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Anciano , Inotuzumab Ozogamicina/farmacología , Inotuzumab Ozogamicina/uso terapéutico , Estudios Retrospectivos , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Anticuerpos Biespecíficos/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Enfermedades Cardiovasculares/inducido químicamente
9.
Hematol Oncol ; 42(1): e3227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776326

RESUMEN

Dual-targeted chimeric antigen receptor T (CAR-T) cell is an important strategy to improve the efficacy of CD19 CAR-T cell against refractory or relapsed B cell non-Hodgkin lymphoma (R/R B-NHL). However, durable responses are not achieved in most patients, in part owing CAR-T cell exhaustion caused by PD-1/PD-L1 pathway. We conducted a prospective, single-arm study of dual-targeted CD19/22 CAR-T cell combined with anti-PD-1 antibody, tislelizumab, in R/R B-NHL (NCT04539444). Tislelizumab was administrated on +1 day after patients received infusion of CD19/22 CAR-T cell. Responses, survival and safety were evaluated. From 1 August 2020 to 30 March 2023, 16 patients were enrolled. The median follow-up time is 16.0 (range: 5.0-32.0 months) months. Overall response was achieved in 14 of 16 (87.5%) patients, and the complete response (CR) was achieved in 11 of 16 (68.8%) patients. The 1-year progression-free survival and overall survival rates were 68.8% and 81.3%, respectively. Of the 14 patients responded, 9 patients maintained their response until the end of follow-up. Among the 15 out of 16 (93.8%) patients who had extranodal involvement, 14 (93.3%) patients achieved overall response rate with 11 (73.3%) patients achieving CR. Eight (50%) patients experienced cytokine release syndrome. No neurologic adverse events were reported. Gene Ontology-Biological Process enrichment analysis showed that immune response-related signaling pathways were enriched in CR patients. Our results suggest that CD19/22 CAR-T cell combined with tislelizumab elicit a safe and durable response in R/R B-NHL and may improve the prognosis of those patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Linfoma de Células B , Receptores Quiméricos de Antígenos , Humanos , Linfocitos T , Estudios Prospectivos , Linfoma de Células B/tratamiento farmacológico
10.
Carbohydr Res ; 535: 108988, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048747

RESUMEN

Naturally occurring glycans are often found in a multivalent presentation. Cell surface receptors that recognize these displays may form clusters, which can lead to signalling or endocytosis. One of the challenges in generating synthetic displays of multivalent carbohydrates is providing high valency as well as access to heterofunctional conjugates to allow attachment of multiple antigens or payloads. We designed a strategy based on a set of bifunctional linkers to generate a heterobifunctional multivalent display of two carbohydrate antigens to bind BCR and CD22 with four and twelve antigen copies, respectively. We confirmed that the conjugates were able to engage both CD22 and BCR on cells by observing receptor clustering. The strategy is modular and would allow for alternative carbohydrate antigens to be attached bearing amine and alkyne groups and should be of interest for the development of immunomodulators and vaccines.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Glicoconjugados , Carbohidratos , Polisacáridos
11.
Clin Case Rep ; 11(12): e8289, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38084356

RESUMEN

There are no reports of application of inotuzumab ozogamicin (InO) for the treatment of MRD in r/r B-ALL. We firstly report the efficacy of InO for a patient experienced morphological relapse after HSCT and molecular relapse after CART therapy.

12.
Nutrients ; 15(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960165

RESUMEN

Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1ß, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity.


Asunto(s)
Colitis , Lactobacillus plantarum , Probióticos , Animales , Ratones , Lactobacillus plantarum/fisiología , Ácido Araquidónico/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Colitis/inducido químicamente , Colitis/terapia , Colitis/microbiología , Transformación Celular Neoplásica , Carcinogénesis , Modelos Animales de Enfermedad , Sulfato de Dextran
13.
J Pers Med ; 13(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003910

RESUMEN

Non-Hodgkin lymphomas (NHL) are a group of cancers that originate in the lymphatic system, especially from progenitor or mature B-cells, T-cells, or natural killer (NK) cells. NHL is the most common hematological malignancy worldwide and also the fourth most frequent type of cancer among pediatric patients. This cancer can occur in children of any age, but it is quite rare under the age of 5 years. In recent decades, available medicines and therapies have significantly improved the prognosis of patients with this cancer. However, some cases of NHL are treatment resistant. For this reason, immunotherapy, as a more targeted and personalized treatment strategy, is becoming increasingly important in the treatment of NHL in pediatric patients. The objective of the following review is to gather the latest available research results, conducted among pediatric and/or adult patients with NHL, regarding one immunotherapy method, i.e., chimeric antigen receptor (CAR) T cell therapy. We focus on assessing the effectiveness of CAR-T cell therapy, which mainly targets B cell markers, CD19, CD20, and CD22, their connections with one another, sequential treatment, or connections with co-stimulatory molecules. In addition, we also evaluate the safety, aftermath (especially neurotoxicities) and limitations of CAR-T cell therapy.

14.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37873222

RESUMEN

Chimeric antigen receptor (CAR)-T cell-based therapies demonstrate remarkable efficacy for the treatment of otherwise intractable cancers, particularly B-cell malignancies. However, existing FDA-approved CAR-Ts are limited by low antigen sensitivity, rendering their insufficient targeting to low antigen-expressing cancers. To improve the antigen sensitivity of CAR-Ts, we engineered CARs targeting CD19, CD22, and HER2 by including intrinsically disordered regions (IDRs) that promote signaling condensation. The "IDR CARs" triggered enhanced membrane-proximal signaling in the CAR-T synapse, which led to an increased release of cytotoxic factors, a higher killing activity towards low antigen-expressing cancer cells in vitro, and an improved anti-tumor efficacy in vivo. No elevated tonic signaling was observed in IDR CAR-Ts. Together, we demonstrated IDRs as a new tool set to enhance CAR-T cytotoxicity and to broaden CAR-T's application to low antigen-expressing cancers.

15.
Exp Hematol Oncol ; 12(1): 90, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821931

RESUMEN

CD19-targeted chimeric receptor antigen (CAR)-T cell therapy has shown remarkable clinical efficacy in the treatment of relapsed or refractory (R/R) B-cell malignancies. However, 30%-60% of patients eventually relapsed, with the CD19-negative relapse being an important hurdle to sustained remission. CD22 expression is independent of CD19 expression in malignant B cells. Consequently, CD22 is a potential alternative target for CD19 CAR-T cell-resistant patients. CD22-targeted therapies, mainly including the antibody-drug conjugates (ADCs) and CAR-T cells, have come into wide clinical use with acceptable toxicities and promising efficacy. In this review, we explore the molecular and physiological characteristics of CD22, development of CD22 ADCs and CAR-T cells, and the available clinical data on CD22 ADCs and CAR-T cell therapies. Furthermore, we propose some perspectives for overcoming tumor escape and enhancing the efficacy of CD22-targeted therapies.

16.
J Transl Med ; 21(1): 710, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817249

RESUMEN

BACKGROUND: Chimeric antigen receptor NK (CAR-NK) cell therapy is one of the most promising immunotherapies. Although it has shown a significant therapeutic effect in hematologic malignancies, few successes have been obtained in solid tumors including esophageal squamous cell carcinoma (ESCC). The major reasons are lack of specific cell surface antigens and complex tumor microenvironment. Here we identify CD22, a well-known tumor surface marker in hematologic malignancies, is expressed in ESCC, possibly serving as a potential target of CAR-NK cell therapy. METHODS: The expression of 13 tumor cell surface antigens used clinically was analyzed in patients from The Cancer Genome Atlas (TCGA) database. Also, mRNA expression were detected in 2 ESCC cell lines and 2 patients samples by qCPR. Then according to Venn diagram, CD22 was selected for further investigation. Following this, the expression of CD22 by immunofluorescence (IF) in ESCC cell lines and by immunohistochemistry (IHC) in 87 cases of human ESCC samples was detected respectively. On the basis of H-score results, the correlation between CD22 expression and clinical parameters was analyzed. As a proof, the efficacy of CD22-targeted CAR-NK cells against ESCC cell lines was performed by a real-time cell analyzer (RTCA) platform. RESULTS: KYSE-140 and KYSE-150 cell lines displayed surface expression of CD22. IHC showed an 80.46% (70/87) positive rate in ESCC patient samples. Among these, cell membranous expression of CD22 was observed in 27.59% (24/87) patient samples. Through chi-square test, expression of CD22 in ESCC was associated with lymph node metastasis while it was no related to the depth of tumor invasion and clinical stage. Engineered CD22-targeted CAR-NK cells exhibited inhibitory growth capability against ESCC cell lines (p < 0.0001). CONCLUSIONS: CD22 is a potential tumor surface antigen capable of being targeted by CAR-NK cells in ESCC. And potential therapeutics for ESCC may be developed based on immune cells expressing anti-CD22 CAR. The study also indicates that CD22 CAR-NK cells could be used in other cancers and more in vivo experiments are needed.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Hematológicas , Humanos , Carcinoma de Células Escamosas de Esófago/terapia , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas/patología , Biomarcadores de Tumor/genética , Células Asesinas Naturales , Antígenos de Superficie/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Línea Celular Tumoral , Microambiente Tumoral , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo
17.
Mol Ther Nucleic Acids ; 33: 698-712, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37662970

RESUMEN

Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects. One such target is the B cell surface protein CD22. The restricted expression of CD22 on the B-cell lineage and its ligand-induced internalizing properties make it an attractive target in cases of B cell malignancies. To target B-ALL and the CD22 protein, we performed cell internalization SELEX (Systematic Evolution of Ligands by EXponential enrichment) followed by molecular docking to identify internalizing aptamers specific for B-ALL cells that bind the CD22 cell-surface receptor. We identified two RNA aptamers, B-ALL1 and B-ALL2, that target human malignant B cells, with B-ALL1 the first documented RNA aptamer interacting with the CD22 antigen. These B-ALL-specific aptamers represent an important first step toward developing novel targeted therapies for B cell malignancy treatments.

18.
Front Immunol ; 14: 1237738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600823

RESUMEN

Inotuzumab ozogamicin (InO) is an antibody drug conjugate composed of a humanized monoclonal antibody targeting the cell surface receptor CD22 coupled to a cytotoxic calicheamicin payload via an acid labile linker. InO has shown significant activity in relapsed and refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in both single agent and combination chemotherapy regimens in adult and pediatric trials. Its use in newly diagnosed elderly patients has also been established while clinical trials investigating its use in newly diagnosed pediatric patients and fit adults are ongoing. Notable toxicities include sinusoidal obstruction syndrome (SOS), particularly in patients who undergo hematopoietic stem cell transplantation (HSCT) after InO as well as myelosuppression and B-cell aplasia which confer increased infection risk, particularly in combination with cytotoxic chemotherapy. In the relapsed/refractory (R/R) setting, the planned subsequent curative therapy modality must be considered when using InO to mitigate SOS risk if proceeding to HSCT and account for potential B-cell aplasia if proceeding to chimeric antigen receptor CAR-T therapy. Studies exploring mechanisms of resistance or failure of InO are ongoing but modulation or loss CD22 expression, alternative CD22 splicing, and high Bcl-2 expression have been implicated. In this review, we will summarize the currently available data on InO, with an emphasis on pediatric trials, and explore future directions including combinatorial therapy.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Anciano , Humanos , Niño , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
19.
Int Immunol ; 35(10): 461-473, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37504378

RESUMEN

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of membrane molecules that recognize sialic acid. Most of them are inhibitory receptors that inhibit immune-cell activation by recognizing sialic acid as a self-motif. Human B cells express CD22 (also known as Siglec-2), Siglec-5, Siglec-6 and Siglec-10 whereas mouse B cells express CD22 and Siglec-G (ortholog of human Siglec-10). Siglecs recognize both sialylated molecules expressed on the same cell (cis-ligands) and those expressed by other cells (trans-ligands). In Guillain-Barré syndrome (GBS), antibody production to gangliosides (which are sialic acid-containing glycolipids) expressed by neurons plays a pathogenic role. A Siglec-10 variant deficient in recognition of gangliosides is genetically associated with GBS, suggesting that Siglec-10 induces self-tolerance to gangliosides by recognizing gangliosides as trans-ligands. Recognition of the BCR as a cis-ligand by Siglec-G and CD22 suppresses BCR signaling in B-1 cells and conventional B cells, respectively. This signal suppression prevents excess expansion of B-1 cells and is involved in the quality control of signaling-competent B cells by setting a threshold for tonic signaling during B cell development. CD22 recognizes other cis-ligands including CD22 and ß7 integrin. Interaction of CD22 with other CD22 molecules induces CD22 clustering that suppresses CD22-mediated signal inhibition upon BCR ligation, and interaction with ß7 integrin maintains its function in the gut-homing of B cells. Taken together, interactions of B cell Siglecs with multiple trans- and cis-ligands play important roles in B cell homeostasis and immune responses.


Asunto(s)
Ácido N-Acetilneuramínico , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Ratones , Animales , Humanos , Autoinmunidad , Autoantígenos , Ligandos , Receptores de Antígenos de Linfocitos B , Control de Calidad , Gangliósidos
20.
Heliyon ; 9(7): e17960, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456045

RESUMEN

CD22, as the B-cell malignancies antigen, has been targeted for immunotherapies through CAR-T cells, antibody-drug conjugates (ADCs) and immunotoxins via interaction of antibodies with binding domains on the receptor. We hypothesized that avidity and binding domain of antibody to target cells may have significant impact on the biological function in tumor immunotherapy, and T cell-engaging bispecific antibody (TCB) targeting CD22 could be used in the therapy of hematologic malignancies. So, to address the question, we utilized the information of six previously reported CD22 mAbs to generate CD22-TCBs with different avidity to different domains on CD22 protein. We found that the avidity of CD22-TCBs to protein was not consistent with the avidity to target cells, indicating that TCBs had different binding mode to the protein and cells. In vitro results indicated that CD22-TCBs mediated cytotoxicity depended on the avidity of antibodies to target cells rather than to protein. Moreover, distal binding domain of the antigen contributed to the avidity and biological activity of IgG-[L]-scfv-like CD22-TCBs. The T cells' proliferation, activation, cytotoxicity as well as cytokine release were compared, and G5/44 BsAb was selected for further in vivo assessment in anti-tumor activity. In vivo results demonstrated that CD22-TCB (G5/44 BsAb) significantly inhibited the tumors growth in mice. All these data suggested that CD22-TCBs could be developed as a promising candidate for B-cell malignancies therapy through optimizing the design with avidity and binding domain to CD22 target in consideration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA