Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Commun ; : 101072, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39192582

RESUMEN

Plants utilize plasma membrane-localized pattern recognition receptors (PRRs) to perceive pathogen-associated molecular patterns (PAMPs) to activate broad-spectrum pattern-triggered immunity (PTI). However, the regulatory mechanism ensuring robust broad-spectrum plant immunity remains largely unknown. Here, we reveal the dual roles of the transcription factor WRKY8 in transcriptional regulation of PRR genes: repressing the nlp20/nlp24 receptor gene RLP23 whereas promoting the chitin receptor gene CERK1. Remarkably, SsNLP1 and SsNLP2, two nlp24 type PAMPs in the destructive fungal pathogen Sclerotinia sclerotiorum, activate two calcium-elicited kinases, CPK4 and CPK11 to phosphorylate WRKY8 and consequently release its inhibition on RLP23 expression to accumulate RLP23. Meanwhile, SsNLPs activate a RLCK type kinase, PBL19 to phosphorylate WRKY8 and consequently enhance the accumulation of CERK1. Intriguingly, RLP23 is repressed at late stage by PBL19-mediated phosphorylation of WRKY8, to avoid excessive immunity for normal growth. Our findings unveil a "killing two birds with one stone" strategy employed by plants to elicit robust broad-spectrum immunity, which is based on PAMP-triggered fine-tuning of a dual-role transcription factor to simultaneously amplify two PRRs recognizing PAMPs well conserved in a wide range of pathogens. Moreover, our results reveal a novel plant strategy based on fine-tuning of multiple PRR gene expression to balance the trade-off between growth and immunity.

2.
New Phytol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187921

RESUMEN

In Arabidopsis, the enzymatically active lysin motif-containing receptor-like kinase (LysM-RLK) CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and the pseudokinases LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 5 (LYK5) and LYK4 are the core components of the canonical chitin receptor complex. CERK1 dimerizes and autophosphorylates upon chitin binding, resulting in activation of chitin signaling. In this study, we clarified and further elucidated the individual contributions of LYK4 and LYK5 to chitin-dependent signaling using mutant (combination)s and stably transformed Arabidopsis plants expressing fluorescence-tagged LYK5 and LYK4 variants from their endogenous promoters. Our analyses revealed that LYK5 interacts with CERK1 upon chitin treatment, independently of LYK4 and vice versa. We show that chitin-induced autophosphorylation of CERK1 is predominantly dependent on LYK5, whereas chitin-triggered ROS generation is almost exclusively mediated by LYK4. This suggests specific signaling functions of these two co-receptor proteins apart from their redundant function in mitogen-activated protein kinase (MAPK) signaling and transcriptional reprogramming. Moreover, we demonstrate that LYK5 is subject to chitin-induced and CERK1-dependent ubiquitination, which serves as a signal for chitin-induced internalization of LYK5. Our experiments provide evidence that a combination of phosphorylation and ubiquitination events controls LYK5 removal from the plasma membrane via endocytosis, which likely contributes to receptor complex desensitization.

3.
Plant Commun ; 5(4): 100788, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38160257

RESUMEN

Multilayered defense responses are activated upon pathogen attack. Viruses utilize a number of strategies to maximize the coding capacity of their small genomes and produce viral proteins for infection, including suppression of host defense. Here, we reveal translation leakage as one of these strategies: two viral effectors encoded by tomato golden mosaic virus, chloroplast-localized C4 (cC4) and membrane-associated C4 (mC4), are translated from two in-frame start codons and function cooperatively to suppress defense. cC4 localizes in chloroplasts, to which it recruits NbPUB4 to induce ubiquitination of the outer membrane; as a result, this organelle is degraded, and chloroplast-mediated defenses are abrogated. However, chloroplast-localized cC4 induces the production of singlet oxygen (1O2), which in turn promotes translocation of the 1O2 sensor NbMBS1 from the cytosol to the nucleus, where it activates expression of the CERK1 gene. Importantly, an antiviral effect exerted by CERK1 is countered by mC4, localized at the plasma membrane. mC4, like cC4, recruits NbPUB4 and promotes the ubiquitination and subsequent degradation of CERK1, suppressing membrane-based, receptor-like kinase-dependent defenses. Importantly, this translation leakage strategy seems to be conserved in multiple viral species and is related to host range. This finding suggests that stacking of different cellular antiviral responses could be an effective way to abrogate viral infection and engineer sustainable resistance to major crop viral diseases in the field.


Asunto(s)
Antivirales , Proteínas Virales , Proteínas Virales/genética , Sistemas de Lectura Abierta
4.
J Agric Food Chem ; 71(36): 13535-13545, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665660

RESUMEN

Plant lysin motif (LysM) ectodomain receptors interact with pathogen-associated molecular patterns (PAMPs) and have critical functions in plant-microbe interactions. In this study, 65 LysM family genes were identified using the recent version of the reference sequence of bread wheat (Triticum aestivum), in which 23, 16, 20, and 6 members belonged to LysM-containing receptor-like kinases (LYKs), LysM-containing receptor-like proteins (LYPs), extracellular LysM proteins (LysMes), and intracellular nonsecretory LysM proteins (LysMns), respectively. The study found that TaCEBiP, TaLYK5, and TaCERK1 were highly responsive to PAMP elicitors and phytopathogens, with TaCEBiP and TaLYK5 binding directly to chitin. TaCERK1 acted as a coreceptor with TaCEBiP and TaLYK5 at the plasma membrane. Overexpression of TaCEBiP, TaLYK5, and TaCERK1 in Nicotiana benthamiana leaves exhibited enhanced resistance to Sclerotinia sclerotiorum. Subsequently, knocking down TaCEBiP, TaLYK5, and TaCERK1 genes with barley stripe mosaic virus-VIGS compromised the wheat defense response to an avirulent strain of Puccinia striiformis. The study concluded that wheat has two synergistic chitin perception systems for detecting pathogen elicitors, with the activated CERK1 intracellular kinase domain leading to signaling transduction. This research provides valuable insights into the functional roles and regulatory mechanisms of wheat LysM members under biotic stress.


Asunto(s)
Quitina , Triticum , Triticum/genética , Pan , Membrana Celular , Inmunidad
5.
Front Plant Sci ; 13: 1064628, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518504

RESUMEN

Chitin is a well-known elicitor of disease resistance and its recognition by plants is crucial to perceive fungal infections. Chitin can induce both a local immune response and a systemic disease resistance when provided as a supplement in soils. Unlike local immune responses, it is poorly explored how chitin-induced systemic disease resistance is developed. In this study, we report the systemic induction of disease resistance against the fungal pathogen Bipolaris oryzae by chitin supplementation of soils in rice. The transcriptome analysis uncovered genes related to cell-wall biogenesis, cytokinin signaling, regulation of phosphorylation, and defence priming in the development of chitin-induced systemic response. Alterations of cell-wall composition were observed in leaves of rice plants grown in chitin-supplemented soils, and the disease resistance against B. oryzae was increased in rice leaves treated with a cellulose biosynthesis inhibitor. The disruption of genes for lysin motif (LysM)-containing chitin receptors, OsCERK1 (Chitin elicitor receptor kinase 1) and OsCEBiP (Chitin elicitor-binding protein), compromised chitin-induced systemic disease resistance against B. oryzae and differential expression of chitin-induced genes found in wild-type rice plants. These findings suggest that chitin-induced systemic disease resistance in rice is caused by a perturbation of cell-wall biogenesis in leaves through long-distance signalling after local recognition of chitins by OsCERK1 and OsCEBiP.

6.
Mol Plant Microbe Interact ; 35(9): 845-856, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36107197

RESUMEN

Lysin-motif receptor-like kinases (LysM-RLKs) are involved in the recognition of microbe-associated molecular patterns to initiate pattern-triggered immunity (PTI). LysM-RLKs are also required for recognition of microbe-derived symbiotic signal molecules upon establishing mutualistic interactions between plants and microsymbionts. A LysM-RLK CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) plays central roles both in chitin-mediated PTI and in arbuscular mycorrhizal symbiosis, suggesting the overlap between immunity and symbiosis, at least in the signal perception and the activation of downstream signal cascades. In this study, we screened for the interacting proteins of Nod factor Receptor1 (NFR1), a CERK1 homolog in the model legume Lotus japonicus, and obtained a protein orthologous to NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13), a protein involved in the activation of innate immunity in Arabidopsis thaliana, which we named LjNHL13a. LjNHL13a interacted with NFR1 and with the symbiosis receptor kinase SymRK. LjNHL13a also displayed positive effects in nodulation. Our results suggest that NHL13 plays a role both in plant immunity and symbiosis, possibly where they overlap. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lotus , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Lotus/fisiología , Fosfotransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Simbiosis/fisiología
7.
Plants (Basel) ; 11(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35807643

RESUMEN

The soil-borne fungus Verticillium dahliae is causing a devastating vascular disease in more than 200 species of dicotyledonous plants. The pathogen attacks susceptible plants through the roots, colonizes the plant vascular system, and causes the death of aerial tissues. In this study, we used Arabidopsis and eggplants to examine the plant protective and immunization effects of autoclaved V. dahliae spores against V. dahliae. We observed that the application of V. dahliae autoclaved spores in eggplants and Arabidopsis resulted in enhanced protection against V. dahliae, since the disease severity and pathogen colonization were lower in the plants treated with V. dahliae autoclaved spores when compared to controls. In addition, upregulation of the defense related genes PR1 and PDF1.2 in the Arabidopsis plants treated with the V. dahliae autoclaved spores was revealed. Furthermore, pathogenicity experiments in the Arabidopsis mutant cerk1, defective in chitin perception, revealed a loss of protection against V. dahliae in the cerk1 treated with the V. dahliae autoclaved spores. The participation of the chitin receptor CERK1 is evident in Arabidopsis immunization against V. dahliae using autoclaved spores of the pathogen.

8.
New Phytol ; 234(5): 1606-1613, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35297054

RESUMEN

CERK1 (Chitin Elicitor Receptor Kinase 1), a lysin motif-containing pattern recognition receptor (PRR), perceives chitooligosaccharides (COs) to mount immune and symbiotic responses. However, CERK1, for a relatively long time, has been regarded as a co-receptor in plant immunity, mainly due to its lack of high binding affinity to known elicitors. Recent studies demonstrated several novel carbohydrates as ligands of CERK1 in different plant species and recognized CERK1 as a key receptor in plant immunity and symbiosis. This review summarizes recent knowledge acquired on the role of CERK1 in plant-microbe interactions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas
9.
Front Plant Sci ; 12: 736560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764967

RESUMEN

A phosphorylation/dephosphorylation cycle at tyrosine 428 of CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) plays an essential role in chitin triggered immunity in Arabidopsis thaliana. In this study, we used a differential peptide pull-down (PPD) assay to identify factors that could participate downstream of this cycle. We identified ZYGOTIC ARREST 1 (ZAR1) and showed that it interacts with CERK1 specifically when the tyrosine 428 (Y428) residue of CERK1 is dephosphorylated. ZAR1 was originally characterized as an integrator for calmodulin and G-protein signals to regulate zygotic division in Arabidopsis. Our current results established that ZAR1 also negatively contributed to defense against the fungus Botrytis cinerea and played a redundant role with its homolog ZAR2 in this process. The zar1-3 zar2-1 double mutant exhibited stronger resistance to B. cinerea compared with zar1-3 single mutant, zar2-1 single mutant, and wild-type plants. Moreover, the inducible expression of numerous defense response genes upon B. cinerea infection was increased in the zar1-3zar2-1 double mutant, consistent with a repressive role for ZAR proteins in the defense response. Therefore, our findings provided insight into the function of ZAR1 in multiple defenses and developmental regulation pathways.

10.
Plant Biotechnol (Tokyo) ; 37(3): 359-362, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33088201

RESUMEN

Receptor complex formation at the cell surface is a key step to initiate downstream signaling but the contribution of this process for the regulation of the direction of downstream responses is not well understood. In the plant-microbe interactions, while CERK1, an Arabidopsis LysM-RLK, mediates chitin-induced immune responses, NFR1, a Lotus homolog of CERK1, regulates the symbiotic process with rhizobial bacteria through the recognition of Nod factors. Concerning the mechanistic insight of the regulation of such apparently opposite biological responses by the structurally related RLKs, Nakagawa et al. previously showed that the addition of YAQ sequence, conserved in NFR1 and other symbiotic LysM-RLKs, to the kinase domain of CERK1 switched downstream responses from defense to symbiosis using a set of chimeric receptors, NFR1-CERK1s. These results indicated that such a subtle difference in the cytoplasmic domain of LysM-RLKs could determine the direction of host responses from defense to symbiosis. On the other hand, it is still not understood how such structural differences in the cytoplasmic domains determine the direction of host responses. We here analyzed the interaction between chimeric NFR1s and NFR5, a partner receptor of NFR1, by co-immunoprecipitation (Co-IP) of these proteins transiently expressed in Nicotiana benthamiana. These results indicated that the cytoplasmic interaction between the LysM-RLKs is important for the symbiotic receptor complex formation and the YAQ containing region of NFR1 contributes to trigger symbiotic signaling through the successful formation of NFR1/NFR5 complex.

11.
Plant Signal Behav ; 15(12): 1816322, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902365

RESUMEN

Heat stress is a major growth-limiting factor for most crops over the world. Chitin elicitor receptor kinase 1 (CERK1) is a chitin/chitooligosaccharides receptor, and ERECTA (ER) plays a crucial role in plant resistance to heat stress. In the present study, a chitooligosaccharides-induced CERK1n-ERc fusion gene was designed and synthesized, in which the extracellular domain and transmembrane domain of CERK1 gene is connected with the response region of ER gene. We successfully constructed the CERK1n-ERc fusion gene by Overlap PCR and introduced it into Arabidopsis by Agrobacterium-medicated infection. Genetically modified (GM) plants had a greater germination rate and germination index, as well as a shorter mean germination time, indicating that they had a better thermotolerance compared with the wild-type (WT) lines under heat stress. Moreover, the GM lines showed a lower level of hydrogen peroxide (H2O2) and relative electrolyte leakage (REL), suggesting that they were in better state compared with the WT plants when exposed to high temperature. UPLC-MS/MS was employed to assess the phytohormone level, suggesting that the GM lines acquired a better thermotolerance via jasmonic acid (JA) signaling pathways. In general, we constructed a COS-induced fusion gene to enhance the thermotolerance of Arabidopsis during seed germination and postgermination growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Quitina/análogos & derivados , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Proteínas Recombinantes de Fusión/genética , Termotolerancia/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Quitina/farmacología , Quitosano , Ciclopentanos/metabolismo , Electrólitos/metabolismo , Germinación/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Hipocótilo/anatomía & histología , Hipocótilo/efectos de los fármacos , Oligosacáridos , Oxilipinas/metabolismo , Plantas Modificadas Genéticamente , Plásmidos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ácido Salicílico/metabolismo , Fracciones Subcelulares/metabolismo , Termotolerancia/efectos de los fármacos , Termotolerancia/genética
12.
Trends Plant Sci ; 25(8): 805-816, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32673581

RESUMEN

Fungal pathogens are major destructive microorganisms for land plants and pose growing challenges to global crop production. Chitin is a vital building block for fungal cell walls and also a broadly effective elicitor of plant immunity. Here we review the rapid progress in understanding chitin perception and signaling in plants and highlight similarities and differences of these processes between arabidopsis and rice. We also outline moonlight functions of CERK1, an indispensable chitin coreceptor conserved across the plant kingdom, which imply potential crosstalk between chitin signaling and symbiotic or biotic/abiotic stress signaling in plants via CERK1. Moreover, we summarize current knowledge about fungal counterstrategies for subverting chitin-triggered plant immunity and propose open questions and future directions in this field.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quitina , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas
13.
Plant Signal Behav ; 15(8): 1781384, 2020 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32567456

RESUMEN

Cell cultures established from various plant species have been used for a range of physiological and biochemical studies. Homogeneity of cell types and size of clusters in the cell culture often gave a clearer and simpler results compared to those obtained with the whole plant. On the other hand, possible variability of physiological conditions and responsiveness to external stimuli between the cell lines could be problematic for comparative studies. Aiming at combining the usefulness of plant cell culture with the rich information and genetic resources of Arabidopsis, we systemically examined the methods/conditions to establish cell lines for comparative studies, which could be applicable to a variety of genetic resources. Arabidopsis cell lines thus established from the meristem of mature seeds showed reproducible and comparable MAMP responses such as ROS generation and defense-related gene expression. MAMP responses of the cultured cells showed the specificity depending on the presence/absence of the corresponding MAMP receptor. Pharmacological study with a protein kinase inhibitor, K252a, also showed the usefulness of the cell culture for such studies. These results indicated the usefulness of the method to establish Arabidopsis cell lines, which are useful for comparative studies between genetic resources.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Plant J ; 102(6): 1142-1156, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31925978

RESUMEN

Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying ß-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different ß-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) ß-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long ß-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short ß-1,3-glucans. Hydrolysis of the ß-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain ß-glucans. Moreover, in contrast to the recognition of short ß-1,3-glucans in A. thaliana, perception of long ß-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that ß-glucan recognition may be mediated by multiple ß-glucan receptor systems.


Asunto(s)
Inmunidad de la Planta , beta-Glucanos/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Brachypodium/inmunología , Brachypodium/metabolismo , Capsella/inmunología , Capsella/metabolismo , Glucanos/metabolismo , Hordeum/inmunología , Hordeum/metabolismo , Oligosacáridos/metabolismo , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Especificidad de la Especie , Nicotiana/inmunología , Nicotiana/metabolismo
16.
New Phytol ; 225(4): 1762-1776, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31484206

RESUMEN

The symbiotic interaction between arbuscular mycorrhizal fungi (AMF) and land plants is essential for efficient nutrient acquisition and utilisation. Our understanding of key processes controlling the AMF colonisation in rice is still limited. Dongxiang wild rice (DY) exhibited a stronger colonisation with Rhizophagus irregularis than the rice cultivar Zhongzao 35 (ZZ35). Chromosome segment substitution lines were constructed and the OsCERK1 gene from DY was mapped. Transgenic plants in the japonica rice Zhonghua 11 (ZZ11) were constructed to compare root colonisation by AMF. Chromosome single-segment substitution lines containing OsCERK1DY showed higher phosphorus content and grain yield relative to ZZ35. Four amino acids substitutions were identified among the OsCERK1 haplotypes of DY, ZZ35 and ZH11 and two of these were in the second lysine-motif domain, which is essential for the differences of AMF colonisation level among rice varieties. Heterologous expression of OsCERK1DY in ZH11 significantly enhanced AMF colonisation and increased resistance against the pathogenic fungi Magnaporthe oryzae. Notably, the OsCERK1DY haplotype was absent from 4660 cultivated rice varieties. We conclude that OsCERK1 is a key gene affecting the symbiotic interaction with AMF and OsCERK1DY has the biotechnological potential to increase rice phosphorus acquisition and utilisation efficiency for sustainable agriculture.


Asunto(s)
Micorrizas/fisiología , Oryza/metabolismo , Oryza/microbiología , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Humanos , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , Simbiosis
17.
Cell Host Microbe ; 26(6): 810-822.e7, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31830443

RESUMEN

Living organisms can be primed for potentiated responses to recurring stresses based on prior experience. However, the molecular basis of immune priming remains elusive in plants that lack adaptive immunity. Here, we report that bacterial challenges can prepare plants for fungal attacks by inducing juxtamembrane phosphorylation of CERK1, the co-receptor indispensable for signaling in response to the fungal elicitor chitin. This phosphorylation is mediated by BAK1, a co-receptor for signaling in response to multiple elicitors. BAK1 interacts with CERK1, and loss of BAK1 reduces priming phosphorylation of CERK1. Juxtamembrane phosphomimetic mutations of CERK1 confer accelerated chitin responses and fortified fungal resistance without triggering constitutive immunity, whereas juxtamembrane phosphodeficient mutations diminish bacteria-induced protection against fungal infection. These findings reveal that crosstalk between cell-surface immune co-receptors can prime defense and demonstrate that juxtamembrane phosphorylation of plant receptor-like kinases can occur independent of kinase activation to place the protein into a prime state.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Inmunidad de la Planta , Plantas/microbiología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/inmunología , Bacterias/inmunología , Quitina/inmunología , Quitina/metabolismo , Hongos/inmunología , Inmunidad Heteróloga , Fosforilación/inmunología , Plantas/inmunología , Transducción de Señal/inmunología
18.
Elife ; 82019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31524595

RESUMEN

In plants, antimicrobial immune responses involve the cellular release of anions and are responsible for the closure of stomatal pores. Detection of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) induces currents mediated via slow-type (S-type) anion channels by a yet not understood mechanism. Here, we show that stomatal closure to fungal chitin is conferred by the major PRRs for chitin recognition, LYK5 and CERK1, the receptor-like cytoplasmic kinase PBL27, and the SLAH3 anion channel. PBL27 has the capacity to phosphorylate SLAH3, of which S127 and S189 are required to activate SLAH3. Full activation of the channel entails CERK1, depending on PBL27. Importantly, both S127 and S189 residues of SLAH3 are required for chitin-induced stomatal closure and anti-fungal immunity at the whole leaf level. Our results demonstrate a short signal transduction module from MAMP recognition to anion channel activation, and independent of ABA-induced SLAH3 activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Canales Iónicos/metabolismo , Estomas de Plantas/fisiología , Proteínas Quinasas/metabolismo , Arabidopsis/efectos de los fármacos , Quitina/inmunología , Hongos/química , Estomas de Plantas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
19.
Plant Cell Physiol ; 60(11): 2573-2583, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368495

RESUMEN

Lysin motif (LysM) receptor-like kinase CERK1 is a co-receptor essential for plant immune responses against carbohydrate microbe-associated molecular patterns (MAMPs). Concerning the immediate downstream signaling components of CERK1, receptor-like cytoplasmic kinases such as PBL27 and other RLCK VII members have been reported to regulate immune responses positively. In this study, we report that a novel CERK1-interacting E3 ubiquitin ligase, PUB4, is also involved in the regulation of MAMP-triggered immune responses. Knockout of PUB4 resulted in the alteration of chitin-induced defense responses, indicating that PUB4 positively regulates reactive oxygen species generation and callose deposition but negatively regulates MAPK activation and defense gene expression. On the other hand, detailed analyses of a double knockout mutant of pub4 and sid2, a mutant of salicylic acid (SA) synthesis pathway, showed that the contradictory phenotype of the pub4 mutant was actually caused by abnormal accumulation of SA in this mutant and that PUB4 is a positive regulator of immune responses. The present and recent findings on the role of PUB4 indicate that PUB4 is a unique E3 ubiquitin ligase involved in the regulation of both plant immunity and growth/development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Transducción de Señal/fisiología , Ubiquitina/metabolismo
20.
Front Plant Sci ; 9: 1004, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050553

RESUMEN

Arbuscular mycorrhiza (AM) is a widespread symbiotic relationship between plants and fungi (Glomeromycota), which improves the supply of water and nutrients to host plants. AM symbiosis is set in motion by fungal chitooligosaccharides and lipochitooligosaccharides, which are perceived by plant-specific LysM-type receptor kinases (LYK). In rice this involves OsCERK1, a LYK also essential for chitin triggered innate immunity. In contrast in legumes, the CERK1 homologous gene experienced duplication events resulting in subfunctionalization. However, it remains unknown whether this subfunctionalization is legume-specific, or has occurred also in other dicot plant species. We identified four CERK1 homologs in tomato (SlLYK1, SlLYK11, SlLYK12, and SlLYK13) and investigated their roles in chitin signaling and AM symbiosis. We found that knockdown of SlLYK12 in tomato significantly reduced AM colonization, whereas chitin-induced responses were unaffected. In contrast, knockdown of SlLYK1 resulted in reduced responses to chitin, but did not alter responses to AM fungi. Moreover, ectopic overexpression of SlLYK1 and SlLYK13 in Nicotiana benthamiana induced cell death, whereas SlLYK12 overexpression did not. Based on our results and comparison with rice OsCERK1, we hypothesize that OsCERK1 orthologs in tomato underwent gene duplication, leading to the subfunctionalization of immunity and symbiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA