Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hemodial Int ; 28(3): 304-312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38937144

RESUMEN

BACKGROUND: Continuous renal replacement therapy (CKRT) is delivered to some of the most critically ill patients in hospitals. This therapy is expensive and requires coordination of multidisciplinary teams to ensure the prescribed dose is delivered. With increased demands on the critical care nursing staff and increased complexities of patients admitted to critical care units, we evaluated the role of specialized renal technologists in ensuring the prescribed dose is delivered. Therefore, the aim of this study is to investigate the impact of supporting intensive care unit nurses with specialized renal technologists on optimizing efficiency of CKRT sessions in the United Arab Emirates. METHODS: This is a retrospective study that compared critically ill patients on CKRT overseen by specialized renal technologists versus who are non-covered in the year 2021. RESULTS: A total of 331 sessions on 158 patients were included in the study. The mean filter life was longer in specialized renal technologists-covered patients compared to the non-covered group (66 vs. 59 h, p = 0.019). After adjustment by multiple regression analysis for risk factors (i.e., age, gender, mechanical ventilation, sepsis, mean arterial pressure, vasopressors, and SOFA) that may affect CKRT machines' filter life, presence of a specialized renal technologists resulted in significantly longer filter life (co-efficient 0.129; CI 95% 1.080, 11.970; p-value: 0.019). CONCLUSION: Our study suggests that specialized renal technologists play a vital role in prolonging CKRT machine's filter life span and optimizing CKRT machine's efficiency. Further research should focus on other potential benefits of having specialized renal technologists performing CKRT sessions, and to confirm the finding of this study. Additionally, a cost-benefit analysis could be conducted to determine the economic impact of having specialized teams performing CKRT.


Asunto(s)
Terapia de Reemplazo Renal Continuo , Humanos , Estudios Retrospectivos , Masculino , Femenino , Terapia de Reemplazo Renal Continuo/métodos , Persona de Mediana Edad , Cuidados Críticos/métodos , Adulto , Emiratos Árabes Unidos , Anciano
2.
J Pers Med ; 14(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38540976

RESUMEN

The accurate interpretation of CRRT machine alarms is crucial in the intensive care setting. ChatGPT, with its advanced natural language processing capabilities, has emerged as a tool that is evolving and advancing in its ability to assist with healthcare information. This study is designed to evaluate the accuracy of the ChatGPT-3.5 and ChatGPT-4 models in addressing queries related to CRRT alarm troubleshooting. This study consisted of two rounds of ChatGPT-3.5 and ChatGPT-4 responses to address 50 CRRT machine alarm questions that were carefully selected by two nephrologists in intensive care. Accuracy was determined by comparing the model responses to predetermined answer keys provided by critical care nephrologists, and consistency was determined by comparing outcomes across the two rounds. The accuracy rate of ChatGPT-3.5 was 86% and 84%, while the accuracy rate of ChatGPT-4 was 90% and 94% in the first and second rounds, respectively. The agreement between the first and second rounds of ChatGPT-3.5 was 84% with a Kappa statistic of 0.78, while the agreement of ChatGPT-4 was 92% with a Kappa statistic of 0.88. Although ChatGPT-4 tended to provide more accurate and consistent responses than ChatGPT-3.5, there was no statistically significant difference between the accuracy and agreement rate between ChatGPT-3.5 and -4. ChatGPT-4 had higher accuracy and consistency but did not achieve statistical significance. While these findings are encouraging, there is still potential for further development to achieve even greater reliability. This advancement is essential for ensuring the highest-quality patient care and safety standards in managing CRRT machine-related issues.

3.
Pediatr Nephrol ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386072

RESUMEN

Extracorporeal membrane oxygenation (ECMO) provides temporary cardiorespiratory support for neonatal, pediatric, and adult patients when traditional management has failed. This lifesaving therapy has intrinsic risks, including the development of a robust inflammatory response, acute kidney injury (AKI), fluid overload (FO), and blood loss via consumption and coagulopathy. Continuous kidney replacement therapy (CKRT) has been proposed to reduce these side effects by mitigating the host inflammatory response and controlling FO, improving outcomes in patients requiring ECMO. The Pediatric Continuous Renal Replacement Therapy (PCRRT) Workgroup and the International Collaboration of Nephrologists and Intensivists for Critical Care Children (ICONIC) met to highlight current practice standards for ECMO use within the pediatric population. This review discusses ECMO modalities, the pathophysiology of inflammation during an ECMO run, its adverse effects, various anticoagulation strategies, and the technical aspects and outcomes of implementing CKRT during ECMO in neonatal and pediatric populations. Consensus practice points and guidelines are summarized. ECMO should be utilized in patients with severe acute respiratory failure despite the use of conventional treatment modalities. The Extracorporeal Life Support Organization (ELSO) offers guidelines for ECMO initiation and management while maintaining a clinical registry of over 195,000 patients to assess outcomes and complications. Monitoring and preventing fluid overload during ECMO and CKRT are imperative to reduce mortality risk. Clinical evidence, resources, and experience of the nephrologist and healthcare team should guide the selection of ECMO circuit.

4.
Pediatr Nephrol ; 39(6): 1937-1950, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38231233

RESUMEN

BACKGROUND: Infants with kidney failure (KF) demonstrate poor growth partly due to obligate fluid and protein restrictions. Delivery of liberalized nutrition on continuous kidney replacement therapy (CKRT) is impacted by clinical instability, technical dialysis challenges, solute clearance, and nitrogen balance. We analyzed delivered nutrition and growth in infants receiving CKRT with the Cardio-Renal, Pediatric Dialysis Emergency Machine (Carpediem™). METHODS: Single-center observational study of infants receiving CKRT with the Carpediem™ between June 1 and December 31, 2021. We collected prospective circuit characteristics, delivered nutrition, anthropometric measurements, and illness severity Score for Neonatal Acute Physiology-II. As a surrogate to normalized protein catabolic rate in maintenance hemodialysis, we calculated normalized protein nitrogen appearance (nPNA) using the Randerson II continuous dialysis model. Descriptive statistics, Spearman correlation coefficient, Mann Whitney, Wilcoxon signed rank, receiver operating characteristic curves, and Kruskal-Wallis analysis were performed using SAS version 9.4. RESULTS: Eight infants received 31.9 (22.0, 49.7) days of CKRT using mostly (90%) regional citrate anticoagulation. Delivered nutritional volume, protein, total calories, enteral calories, nPNA, and nitrogen balance increased on CKRT. Using parenteral nutrition, 90 ml/kg/day should meet caloric and protein needs. Following initial weight loss of likely fluid overload, exploratory sensitivity analysis suggests weight gain occurred after 14 days of CKRT. Despite adequate nutritional delivery, goal weight (z-score = 0) and growth velocity were not achieved until 6 months after CKRT start. Most (5 infants, 62.5%) survived and transitioned to peritoneal dialysis (PD). CONCLUSIONS: Carpediem™ is a safe and efficacious bridge to PD in neonatal KF. Growth velocity of infants on CKRT appears delayed despite delivery of adequate calories and protein.


Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Insuficiencia Renal , Lactante , Recién Nacido , Humanos , Niño , Diálisis Renal , Estudios Prospectivos , Estado Nutricional , Insuficiencia Renal/terapia , Nitrógeno/metabolismo , Lesión Renal Aguda/terapia
5.
Pediatr Nephrol ; 39(3): 879-887, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37723304

RESUMEN

BACKGROUND: In a group of children admitted to the paediatric intensive care unit (PICU) receiving continuous kidney replacement therapy (CKRT), we aim to evaluate the data about their hemodynamic, ventilation and analgo-sedation profile in the first 24 h of treatment and possible associations with mortality. METHODS: Retrospective cohort study of children admitted to the PICU of the University Hospital of Padova undergoing CKRT between January 2011 and March 2021. Data was collected at baseline (T0), after 1 h (T1) and 24 h (T24) of CKRT treatment. The differences in outcome measures were compared between these time points, and between survivors and non-survivors. RESULTS: Sixty-nine patients received CKRT, of whom 38 (55%) died during the PICU stay. Overall, the vasoactive inotropic score and the adrenaline dose increased at T1 compared to T0 (p = 0.012 and p = 0.022, respectively). Compared to T0, at T24 patients showed an improvement in the following ventilatory parameters: Oxygenation Index (p = 0.005), Oxygenation Saturation Index (p = 0.013) PaO2/FiO2 ratio (p = 0.005), SpO2/FiO2 ratio (p = 0.002) and Mean Airway Pressure (p = 0.016). These improvements remained significant in survivors (p = 0.01, p = 0.027, p = 0.01 and p = 0.015, respectively) but not in non-survivors. No changes in analgo-sedative drugs have been described. CONCLUSIONS: CKRT showed a significant impact on hemodynamics and ventilation in the first 24 h of treatment. We observed a significant rise in the inotropic/vasoactive support required after 1 h of treatment in the overall population, and an improvement in the ventilation parameters at 24 h only in survivors.


Asunto(s)
Enfermedad Crítica , Pulmón , Niño , Humanos , Enfermedad Crítica/terapia , Estudios Retrospectivos , Hemodinámica , Terapia de Reemplazo Renal
6.
Front Oncol ; 13: 1234677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664024

RESUMEN

Introduction: Tumor lysis syndrome (TLS) is often diagnosed in children with hematological malignancies and can be life threatening due to metabolic disturbances. Continuous renal replacement therapy (CKRT) can reverse these disturbances relatively quickly when conventional medical management fails. Our objective was to investigate the benefit of CKRT in the management of TLS in children admitted to the intensive care unit with hematologic malignancies. In addition, we sought to assess risk factors for acute kidney injury (AKI) in the setting of TLS. Methods: Retrospective review of all children admitted to the intensive care unit with TLS who received CKRT from January 2012 to August 2022. Results: Among 222 children hospitalized with TLS from January 2012 to August 2022, 20 (9%) underwent CKRT to manage TLS in the intensive care unit. The patients' median age was 13 years (range 3-17 y), and most were males (18/20). T-cell acute lymphoblastic leukemia was the most common diagnosis (n=10), followed by acute myeloid leukemia (n=4), Burkitt lymphoma (n=4), and B-cell acute lymphoblastic leukemia (n=2). Five patients required mechanical ventilation, and 2 required vasopressors. The most common indication for CKRT was hyperphosphatemia, followed by, hyperuricemia, and hyperkalemia. All metabolic abnormalities corrected within 12 h of initiation of CKRT. CKRT courses were brief, with a median duration of 2 days (range 1-7 days). Having higher serum phosphorus levels 12 h preceding CKRT was significantly associated with severe acute kidney injury (AKI). The median phosphorus level was 6.4 mg/dL in children with no/mild AKI and 10.5 mg/dL in children with severe AKI (p=0.0375). Serum uric acid levels before CKRT were not associated with AKI. All children survived to hospital discharge, and the one-year survival rate was 90%. Conclusion: CKRT is safe in children with hematologic malignancies with severe TLS and reverses metabolic derangements within 6-12 h. Most patients had AKI at the initiation of CKRT but did not require long-term kidney replacement therapy. Hyperphosphatemia before initiation of CKRT is associated with higher risk of AKI.

7.
Antibiotics (Basel) ; 12(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37760692

RESUMEN

Background: Extracorporeal therapies (ET) are increasingly used in pediatric settings as adjuvant therapeutic strategies for overwhelming inflammatory conditions. Although these treatments seem to be effective for removing inflammatory mediators, their influence on antimicrobials pharmacokinetic should not be neglected. Methods: A prospective observational study of children admitted to the pediatric intensive care unit (PICU) with a diagnosis of sepsis/septic shock. All critically ill children received hemoadsorption treatment with CytoSorb (CS) in combination with CKRT. Therapeutic drug monitoring has been performed on 10 critically ill children, testing four antimicrobial molecules: meropenem, ceftazidime, amikacin and levofloxacin. In order to evaluate the total and isolated CKRT and CS contributions to antibiotic removal, blood samples at each circuit point (post-hemofilter, post-CS and in the effluent line) were performed. Therefore, the clearance and mass Removal (MR) of the hemofilter and CS were calculated. Results: Our preliminary report describes a different impact of CS on these target drugs removal: CS clearance was low for amikacine (6-12%), moderate for ceftazidime (43%) and moderate to high for levofloxacine (52-72%). Higher MR and clearance were observed with CKRT compared to CS. To the best of our knowledge, this is the first report regarding pharmacokinetic dynamics in critically ill children treated with CKRT and CS for septic shock.

8.
J Clin Med ; 12(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37629242

RESUMEN

Regional Citrate Anticoagulation (RCA) is considered the first-line anticoagulation for Continuous Kidney Replacement Therapy (CKRT). The RCA requires strict protocols and trained staff to avoid unsafe use and ensure its benefit. We have analyzed all our CKRT prescriptions from December 2020 to April 2022 anonymously, collecting data on CKRT, lab tests, clinical conditions, and complications of RCA. In addition, in order to better detect citrate accumulation, we have performed an RCA protocol by reducing the CaTot/Ca2+ ratio cut-off from 2.50 to 2.40 and increasing the number of calcium checks according to its trend. Among the 374 patients in CKRT, 104 received RCA prescriptions, of which 11 (10.6%) were discontinued: 4 for the suspicion of citrate accumulation, 1 for the development of metabolic alkalosis, 1 for the shift to a different CKRT procedure due to the need for a higher bicarbonate dose, 4 for the elevation of hepatocytolysis indexes, and 1 due to a preemptive discontinuation following massive post-surgery bleeding. None of the patients have had citrate toxicity as indicated by a CaTot/Ca2+ greater than 2.50, and our protocol has allowed the early identification of patients who might develop clinical citrate toxicity.

9.
BMC Nephrol ; 24(1): 245, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608357

RESUMEN

BACKGROUND: On December 29, 2021, during the delta wave of the Coronavirus Disease 2019 (COVID-19) pandemic, the stock of premanufactured solutions used for continuous kidney replacement therapy (CKRT) at the University of New Mexico Hospital (UNMH) was nearly exhausted with no resupply anticipated due to supply chain disruptions. Within hours, a backup plan, devised and tested 18 months prior, to locally produce CKRT dialysate was implemented. This report describes the emergency implementation and outcomes of this on-site CKRT dialysate production system. METHODS: This is a single-center retrospective case series and narrative report describing and reporting the outcomes of the implementation of an on-site CKRT dialysate production system. All adults treated with locally produced CKRT dialysate in December 2021 and January 2022 at UNMH were included. CKRT dialysate was produced locally using intermittent hemodialysis machines, hemodialysis concentrate, sterile parenteral nutrition bags, and connectors made of 3-D printed biocompatible rigid material. Outcomes analyzed included dialysate testing for composition and microbiologic contamination, CKRT prescription components, patient mortality, sequential organ failure assessment (SOFA) scores, and catheter-associated bloodstream infections (CLABSIs). RESULTS: Over 13 days, 22 patients were treated with 3,645 L of locally produced dialysate with a mean dose of 20.0 mL/kg/h. Fluid sample testing at 48 h revealed appropriate electrolyte composition and endotoxin levels and bacterial colony counts at or below the lower limit of detection. No CLABSIs occurred within 7 days of exposure to locally produced dialysate. In-hospital mortality was 81.8% and 28-day mortality was 68.2%, though illness severity was high, with a mean SOFA score of 14.5. CONCLUSIONS: Though producing CKRT fluid with IHD machines is not novel, this report represents the first description of the rapid and successful implementation of a backup plan for local CKRT dialysate production at a large academic medical center in the U.S. during the COVID-19 pandemic. Though conclusions are limited by the retrospective design and limited sample size of our analysis, our experience could serve as a guide for other centers navigating similar severe supply constraints in the future.


Asunto(s)
COVID-19 , Infecciones Relacionadas con Catéteres , Terapia de Reemplazo Renal Continuo , Adulto , Humanos , Soluciones para Diálisis , Pandemias , Estudios Retrospectivos
10.
Kidney Med ; 5(6): 100641, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37274539

RESUMEN

Rationale & Objective: Continuous kidney replacement therapy (CKRT) is the predominant form of acute kidney replacement therapy used for critically ill adult patients with acute kidney injury (AKI). Given the variability in CKRT practice, a contemporary understanding of its epidemiology is necessary to improve care delivery. Study Design: Multicenter, prospective living registry. Setting & Population: 1,106 critically ill adults with AKI requiring CKRT from December 2013 to January 2021 across 5 academic centers and 6 intensive care units. Patients with pre-existing kidney failure and those with coronavirus 2 infection were excluded. Exposure: CKRT for more than 24 hours. Outcomes: Hospital mortality, kidney recovery, and health care resource utilization. Analytical Approach: Data were collected according to preselected timepoints at intensive care unit admission and CKRT initiation and analyzed descriptively. Results: Patients' characteristics, contributors to AKI, and CKRT indications differed among centers. Mean (standard deviation) age was 59.3 (13.9) years, 39.7% of patients were women, and median [IQR] APACHE-II (acute physiologic assessment and chronic health evaluation) score was 30 [25-34]. Overall, 41.1% of patients survived to hospital discharge. Patients that died were older (mean age 61 vs. 56.8, P < 0.001), had greater comorbidity (median Charlson score 3 [1-4] vs. 2 [1-3], P < 0.001), and higher acuity of illness (median APACHE-II score 30 [25-35] vs. 29 [24-33], P = 0.003). The most common condition predisposing to AKI was sepsis (42.6%), and the most common CKRT indications were oliguria/anuria (56.2%) and fluid overload (53.9%). Standardized mortality ratios were similar among centers. Limitations: The generalizability of these results to CKRT practices in nonacademic centers or low-and middle-income countries is limited. Conclusions: In this registry, sepsis was the major contributor to AKI and fluid management was collectively the most common CKRT indication. Significant heterogeneity in patient- and CKRT-specific characteristics was found in current practice. These data highlight the need for establishing benchmarks of CKRT delivery, performance, and patient outcomes. Data from this registry could assist with the design of such studies.

11.
Crit Care ; 27(1): 56, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765419

RESUMEN

Ethylene glycol (EG) is metabolized into glycolate and oxalate and may cause metabolic acidemia, neurotoxicity, acute kidney injury (AKI), and death. Historically, treatment of EG toxicity included supportive care, correction of acid-base disturbances and antidotes (ethanol or fomepizole), and extracorporeal treatments (ECTRs), such as hemodialysis. With the wider availability of fomepizole, the indications for ECTRs in EG poisoning are debated. We conducted systematic reviews of the literature following published EXTRIP methods to determine the utility of ECTRs in the management of EG toxicity. The quality of the evidence and the strength of recommendations, either strong ("we recommend") or weak/conditional ("we suggest"), were graded according to the GRADE approach. A total of 226 articles met inclusion criteria. EG was assessed as dialyzable by intermittent hemodialysis (level of evidence = B) as was glycolate (Level of evidence = C). Clinical data were available for analysis on 446 patients, in whom overall mortality was 18.7%. In the subgroup of patients with a glycolate concentration ≤ 12 mmol/L (or anion gap ≤ 28 mmol/L), mortality was 3.6%; in this subgroup, outcomes in patients receiving ECTR were not better than in those who did not receive ECTR. The EXTRIP workgroup made the following recommendations for the use of ECTR in addition to supportive care over supportive care alone in the management of EG poisoning (very low quality of evidence for all recommendations): i) Suggest ECTR if fomepizole is used and EG concentration > 50 mmol/L OR osmol gap > 50; or ii) Recommend ECTR if ethanol is used and EG concentration > 50 mmol/L OR osmol gap > 50; or iii) Recommend ECTR if glycolate concentration is > 12 mmol/L or anion gap > 27 mmol/L; or iv) Suggest ECTR if glycolate concentration 8-12 mmol/L or anion gap 23-27 mmol/L; or v) Recommend ECTR if there are severe clinical features (coma, seizures, or AKI). In most settings, the workgroup recommends using intermittent hemodialysis over other ECTRs. If intermittent hemodialysis is not available, CKRT is recommended over other types of ECTR. Cessation of ECTR is recommended once the anion gap is < 18 mmol/L or suggested if EG concentration is < 4 mmol/L. The dosage of antidotes (fomepizole or ethanol) needs to be adjusted during ECTR.


Asunto(s)
Antídotos , Intoxicación , Humanos , Antídotos/uso terapéutico , Fomepizol , Etanol , Diálisis Renal/métodos , Glicolatos , Glicol de Etileno , Intoxicación/terapia
13.
Am J Kidney Dis ; 81(3): 336-351, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36332719

RESUMEN

Acute kidney injury (AKI) and intensive care unit-acquired weakness (ICU-AW) are 2 frequent complications of critical illness that, until recently, have been considered unrelated processes. The adverse impact of AKI on ICU mortality is clear, but its relationship with muscle weakness-a major source of ICU morbidity-has not been fully elucidated. Furthermore, improving ICU survival rates have refocused the field of intensive care toward improving long-term functional outcomes of ICU survivors. We begin our review with the epidemiology of AKI in the ICU and of ICU-AW, highlighting emerging data suggesting that AKI and AKI treated with kidney replacement therapy (AKI-KRT) may independently contribute to the development of ICU-AW. We then delve into human and animal data exploring the pathophysiologic mechanisms linking AKI and acute KRT to muscle wasting, including altered amino acid and protein metabolism, inflammatory signaling, and deleterious removal of micronutrients by KRT. We next discuss the currently available interventions that may mitigate the risk of ICU-AW in patients with AKI and AKI-KRT. We conclude that additional studies are needed to better characterize the epidemiologic and pathophysiologic relationship between AKI, AKI-KRT, and ICU-AW and to prospectively test interventions to improve the long-term functional status and quality of life of AKI survivors.


Asunto(s)
Lesión Renal Aguda , Calidad de Vida , Humanos , Unidades de Cuidados Intensivos , Cuidados Críticos , Terapia de Reemplazo Renal/efectos adversos , Lesión Renal Aguda/terapia , Enfermedad Crítica
14.
Pediatr Nephrol ; 38(7): 2043-2055, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36227440

RESUMEN

Kidney support therapy (KST), previously referred to as Renal Replacement Therapy, is utilized to treat children and adults with severe acute kidney injury (AKI), fluid overload, inborn errors of metabolism, and kidney failure. Several forms of KST are available including peritoneal dialysis (PD), intermittent hemodialysis (iHD), and continuous kidney support therapy (CKST). Traditionally, extracorporeal KST (CKST and iHD) in neonates has had unique challenges related to small patient size, lack of neonatal-specific devices, and risk of hemodynamic instability due to large extracorporeal circuit volume relative to patient total blood volume. Thus, PD has been the most commonly used modality in infants, followed by CKST and iHD. In recent years, CKST machines designed for small children and novel filters with smaller extracorporeal circuit volumes have emerged and are being used in many centers to provide neonatal KST for toxin removal and to achieve fluid and electrolyte homeostasis, increasing the options available for this unique and vulnerable group. These new treatment options create a dramatic paradigm shift with recalibration of the benefit: risk equation. Renewed focus on the infrastructure required to deliver neonatal KST safely and effectively is essential, especially in programs/units that do not traditionally provide KST to neonates. Building and implementing a neonatal KST program requires an expert multidisciplinary team with strong institutional support. In this review, we first describe the available neonatal KST modalities including newer neonatal and infant-specific platforms. Then, we describe the steps needed to develop and sustain a neonatal KST team, including recommendations for provider and nursing staff training. Finally, we describe how quality improvement initiatives can be integrated into programs.


Asunto(s)
Lesión Renal Aguda , Diálisis Peritoneal , Lactante , Recién Nacido , Niño , Adulto , Humanos , Diálisis Renal , Riñón , Terapia de Reemplazo Renal , Lesión Renal Aguda/terapia
15.
Pediatr Nephrol ; 38(2): 565-572, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35552525

RESUMEN

BACKGROUND: Continuous kidney replacement therapy (CKRT) is a mainstay of therapy for management of severe acute kidney injury (AKI) in critically ill pediatric patients. There is limited data on the risk of chronic kidney disease (CKD) after discharge in this population. METHODS: This is a single-center, retrospective cohort study of all pediatric patients ages 0-17 years who received CKRT from 2013 to 2017. The study excluded patients with pre-existing CKD, those who died prior to discharge, and those who had insufficient follow-up data. Patients were followed after hospital discharge and electronic health record data was collected and analyzed to assess for incidence of and risk factors for kidney sequelae. RESULTS: A total of 42 patients were followed at a median time of 27 months (IQR 17.2, 39.8). Of these, 26.2% had evidence of CKD and 19% were at risk for CKD. Lower eGFR at hospital discharge was associated with increased odds of kidney sequelae (aOR 0.985; 95% CI 0.972, 0.996). Ages 0- < 1 and 12-17 were not significantly different (aOR 0.235, 95% CI 0.024, 1.718) and had the highest incidence of kidney sequelae (50% and 77%, respectively). Ages 1-5 and 6-11 had a decreased odds of kidney sequelae compared to the 12-17 year age group (aOR 0.098; 95% CI 0.009, 0.703 and aOR 0.035; 95% CI 0.001, 0.39, respectively). Only 54.8% of patients (n = 23) were seen in the nephrology clinic after discharge. CONCLUSIONS: Patients who receive CKRT for AKI have a significant risk of CKD, while follow-up with a pediatric nephrologist in these high-risk patients is sub-optimal. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Insuficiencia Renal Crónica , Humanos , Niño , Recién Nacido , Lactante , Preescolar , Adolescente , Estudios Retrospectivos , Riñón , Insuficiencia Renal Crónica/complicaciones , Terapia de Reemplazo Renal Continuo/efectos adversos , Lesión Renal Aguda/etiología , Factores de Riesgo , Progresión de la Enfermedad
16.
J Nephrol ; 36(1): 173-181, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849262

RESUMEN

OBJECTIVE: Investigate the association of echocardiographic parameters with hemodynamic instability after initiating continuous kidney replacement therapy (CKRT) in a cohort of intensive care unit (ICU) patients requiring CKRT. METHODS: Historical cohort study of consecutive adults admitted to the ICU at a tertiary care hospital from December 2006 through November 2015 who underwent CKRT and had an echocardiogram done within seven days before CKRT initiation. The primary outcome was hypotension within one hour of CKRT initiation. RESULTS: We included 980 patients, 804 (82%) with acute kidney injury (AKI) and 176 (18%) with end-stage kidney disease (ESKD). Median patient age was 63 (± 14) years, and median Sequential Organ Failure Assessment (SOFA) score on the day of CKRT initiation was 12 (IQR 10-14). Multivariable analysis showed that Left (OR 2.01, 95% CI 1.04-3.86), and Right (OR 1.5, 95% CI 1.04-2.25) moderate and severe ventricular enlargement, Vasoactive-Inotropic Score (VIS) one hour before CKRT initiation (OR 1.18 per 10 units increase, 95% CI 1.09-1.28) and high bicarbonate fluid replacement (OR 2.52, 95% CI 1.01-6.2) were associated with hypotension after CKRT initiation. CONCLUSION: Right and left ventricular enlargement are risk factors associated with hypotension after CKRT initiation.


Asunto(s)
Lesión Renal Aguda , Hipotensión , Adulto , Humanos , Persona de Mediana Edad , Anciano , Estudios de Cohortes , Unidades de Cuidados Intensivos , Hipotensión/etiología , Terapia de Reemplazo Renal/efectos adversos , Ecocardiografía , Hemodinámica , Estudios Retrospectivos
17.
Kidney360 ; 3(10): 1795-1806, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36514727

RESUMEN

The utilization of kidney replacement therapies (KRT) for fluid management of patients who are critically ill has significantly increased over the last years. Clinical studies have suggested that both fluid accumulation and high fluid removal rates are associated with adverse outcomes in the critically ill population receiving KRT. Importantly, the ideal indications and/or fluid management strategies that could favorably affect these patients are unknown; however, differentiating clinical scenarios in which effective fluid removal may provide benefit to the patient by avoiding congestive organ injury, compared with other settings in which this intervention may result in harm, is direly needed in the critical care nephrology field. In this review, we describe observational data related to fluid management with KRT, and examine the role of point-of-care ultrasonography as a potential tool that could provide physiologic insights to better individualize decisions related to fluid management through KRT.


Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Humanos , Enfermedad Crítica/terapia , Objetivos , Lesión Renal Aguda/terapia , Terapia de Reemplazo Renal/efectos adversos
18.
J Intensive Care Med ; 37(5): 577-594, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33688766

RESUMEN

OBJECTIVE: Continuous kidney replacement therapy (CKRT) is the primary therapeutic modality utilized in hemodynamically unstable patients with severe acute kidney injury. As the circuit is extracorporeal, it poses an increased risk of blood clotting and circuit loss; frequent circuit losses affect the provider's ability to provide optimal treatment. The objective of this meta-analysis is to evaluate the safety and efficacy of the extracorporeal anticoagulants in the pediatric CKRT population. DATA SOURCES: We conducted a literature search on PubMed/Medline and Embase for relevant citations. STUDY SELECTION: Studies were included if they involved patients under the age of 18 years undergoing CKRT, with the use of anticoagulation (heparin, citrate, or prostacyclin) as a part of therapy. Only English articles were included in the study. DATA EXTRACTION: Initial search yielded 58 articles and a total of 24 articles were included and reviewed. A meta-analysis was performed focusing on the safety and effectiveness of regional citrate anticoagulation (RCA) vs unfractionated heparin (UFH) anticoagulants in children. DATA SYNTHESIS: RCA had statistically significantly longer circuit life of 50.65 hours vs. UFH of 42.10 hours. Two major adverse effects metabolic alkalosis and electrolyte imbalance seen more commonly in RCA compared to UFH. There was not a significant difference in the risk of systemic bleeding when comparing RCA vs. UFH. CONCLUSION: RCA is the preferred anticoagulant over UFH due to its significantly longer circuit life, although vigilant circuit monitoring is required due to the increased risk of electrolyte disturbances. Prostacyclin was not included in the meta-analysis due to the lack of data in pediatric patients. Additional studies are needed to strengthen the study results further.


Asunto(s)
Anticoagulantes , Terapia de Reemplazo Renal Continuo , Adolescente , Niño , Ácido Cítrico , Electrólitos , Heparina , Humanos , Terapia de Reemplazo Renal
19.
Pediatr Nephrol ; 37(2): 433-441, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34386851

RESUMEN

BACKGROUND: In critically ill children with acute kidney injury (AKI), continuous kidney replacement therapy (CKRT) enables nutrition provision. The magnitude of amino acid loss during continuous venovenous hemodiafiltration (CVVHDF) is unknown and needs accurate quantification. We investigated the mass removal and clearance of amino acids in pediatric CVVHDF. METHODS: This is a prospective observational cohort study of patients receiving CVVHDF from August 2014 to January 2016 in the pediatric intensive care unit (PICU) of a tertiary children's hospital. RESULTS: Fifteen patients (40% male, median age 2.0 (IQR 0.7, 8.0) years) were enrolled. Median PICU and hospital lengths of stay were 20 (9, 59) and 36 (22, 132) days, respectively. Overall survival to discharge was 66.7%. Median daily protein prescription was 2.00 (1.25, 2.80) g/kg/day. Median daily amino acid mass removal was 299.0 (174.9, 452.0) mg/kg body weight, and median daily amino acid mass clearance was 18.2 (13.5, 27.9) ml/min/m2, resulting in a median 14.6 (8.3, 26.7) % protein loss. The rate of amino acid loss increased with increasing dialysis dose and blood flow rate. CONCLUSION: CVVHDF prescription and related amino acid loss impact nutrition provision, with 14.6% of the prescribed protein removed. Current recommendations for protein provision for children requiring CVVHDF should be adjusted to compensate for circuit-related loss. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Hemodiafiltración , Aminoácidos , Niño , Preescolar , Enfermedad Crítica/terapia , Femenino , Hemodiafiltración/efectos adversos , Hemodiafiltración/métodos , Humanos , Masculino , Estudios Prospectivos , Diálisis Renal
20.
Pediatr Nephrol ; 37(1): 189-197, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34235579

RESUMEN

BACKGROUND: Ongoing measures to improve pediatric continuous kidney replacement therapy (CKRT) have lowered mortality rates, shifting the focus to survivor functional status. While septic acute kidney injury generates new morbidity in pediatric critically ill patients, acquired morbidities and functional status of CKRT population are unknown. We predicted that CKRT survivors are at risk for new morbidity and would have worse functional status at PICU discharge compared to baseline, and aimed to describe associated factors. METHODS: Retrospective cohort study over 24 months of CKRT patients surviving to PICU discharge in a quaternary children's hospital. Functional outcome was determined by Functional Status Scale (FSS). RESULTS: FSS scores were higher at PICU and hospital discharge compared to baseline. Of 45 CKRT survivors, 31 (69%) had worse FSS score at PICU discharge and 51% had new morbidity (≥3 increase in FSS); majority qualified as moderate to severe disability (FSS ≥10). Four patients (9%) had new tracheostomy, 3 (7%) were ventilator dependent, and 10 (22%) were dialysis dependent. Most (23/45, 51%) required outpatient rehabilitation. Cumulative days on sedation, controlled for illness severity, were independently associated with worse FSS at PICU discharge (aOR 25.18 (3.73, 169.92)). In adjusted analyses, duration of sedation was associated with new morbidity, while neurologic comorbidity, percent fluid overload at CKRT start, and nonrenal comorbidity were associated with moderate to severe disability at PICU discharge when controlled for baseline FSS. CONCLUSIONS: CKRT survivors, with new morbidity and worse functional outcomes at PICU discharge, are a newly described vulnerable population requiring targeted follow-up. Deliberate decrease of sedation exposure in patients with decreased clearance due to organ dysfunction needs to be studied as a modifiable risk factor.


Asunto(s)
Atención Dirigida al Paciente , Terapia de Reemplazo Renal , Sobrevivientes , Niño , Estado Funcional , Humanos , Morbilidad , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA