Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105641, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211816

RESUMEN

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Lipofuscinosis Ceroideas Neuronales , Animales , Ratones , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Ratones Endogámicos C57BL
2.
Mol Genet Metab Rep ; 37: 101019, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053925

RESUMEN

Neuronal ceroid lipofuscinosis type1(CLN1), is a one form of the group of neuronal ceroid lipofuscinoses (NCLs), which is a neurodegenerative disorder characterized by progressive psychomotor deterioration, ataxia, epilepsy, and visual impairment. Neurological manifestations occur at a wide range of ages, from infancy to adulthood, but are most common in infancy. The prevalence of CLN1 is unclear; however, it is very rare in Japan and Europe. In Japan, only a few cases have been reported, two of infantile- and one of juvenile-onset type. Nonetheless, the clinical characteristics of Japanese patients and their relationship with the genotype have not been sufficiently investigated. Here, we report the cases of two siblings that presented with juvenile-onset (a 22-year-old man and a 29-year-old woman) CLN1 associated with type II diabetes mellitus. In both cases, visual impairment followed by learning disability was observed from school-age, and retinitis pigmentosa was noted on ophthalmological examination. These patients presented type II diabetes mellitus during their later teenage years. Brain magnetic resonance imaging (MRI) revealed marked atrophy of the cerebrum and cerebellum. The clinical symptoms lead to suspect NCLs. Decreased PPT1 enzyme activity in dried blood spot (DBS)and leukocytes were observed, and the genetic analysis revealed heterozygous missense variants in PPT1, c.550G > A/c.664 A > G (p. Glu184Lys/p. Lys216Glu). The latter variant of this patients was novel variant. The residual enzymatic activity of PPT1 in these cases is higher than that in the infantile type. CLN1 mutant cells are known to have altered subcellular expression and localization, enhanced lipid raft-mediated endocytosis, abnormal autophagy, and mitochondrial dysfunction. Although the prevalence of diabetes mellitus is high and the possibility of coincidental complications cannot be ruled out, we concluded that mitochondrial abnormalities are involved in insulin resistance and may be implicated in the development of type II diabetes mellitus. Further studies are needed to prove the correlation between CLN1 and diabetes mellitus.

3.
EMBO Mol Med ; 15(4): e15968, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36876653

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.


Asunto(s)
Encéfalo , Sistema Nervioso Central , Animales , Ratones , Modelos Animales de Enfermedad , Terapia Genética , Células Madre Hematopoyéticas
4.
Front Neurol ; 13: 1061363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438942

RESUMEN

Background: The Neuronal Ceroid Lipofuscinoses (NCLs) may be considered distinct neurodegenerative disorders with separate underlying molecular causes resulting from monogenetic mutations. An alternative hypothesis is to consider the NCLs as related diseases that share lipofuscin pathobiology as the common core feature, but otherwise distinguished by different a) initial anatomic location, and b) disease propagation. Methods: We have tested this hypothesis by comparing known differences in symptomatology and pathology of the CLN1 phenotype caused by complete loss of PPT1 function (i.e., the classical infantile form) and of the classical juvenile CLN3 phenotype. These two forms of NCL represent early onset and rapidly progressing vs. late onset and slowly progressing disease modalities respectively. Results: Despite displaying similar pathological endpoints, the clinical phenotypes and the evidence of imaging and postmortem studies reveal strikingly different time courses and distributions of disease propagation. Data from CLN1 disease are indicative of disease propagation from the body, with early effects within the spinal cord and subsequently within the brainstem, the cerebral hemispheres, cerebellum and retina. In contrast, the retina appears to be the most vulnerable organ in CLN3, and the site where pathology is first present. Pathology subsequently is present in the occipital connectome of the CLN3 brain, followed by a top-down propagation in which cerebral and cerebellar atrophy in early adolescence is followed by involvement of the peripheral nerves in later adolescence/early twenties, with the extrapyramidal system also affected during this time course. Discussion: The propagation of disease in these two NCLs therefore has much in common with the "Brain-first" vs. "Body-first" models of alpha-synuclein propagation in Parkinson's disease. CLN1 disease represents a "Body-first" or bottom-up disease propagation and CLN3 disease having a "Brain-first" and top-down propagation. It is noteworthy that the varied phenotypes of CLN1 disease, whether it starts in infancy (infantile form) or later in childhood (juvenile form), still fit with our proposed hypothesis of a bottom-up disease propagation in CLN1. Likewise, in protracted CLN3 disease, where both cognitive and motor declines are delayed, the initial manifestations of disease are also seen in the outer retinal layers, i.e., identical to classical Juvenile NCL disease.

5.
Mol Genet Metab Rep ; 33: 100930, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36324638

RESUMEN

Neuronal ceroid lipofuscinosis type 1(CLN1 disease) is a rare autosomal recessive lysosomal storage disease caused by genetic defects of palmitoyl protein thioesterase-1(PPT1), leading to accumulation of lipofuscin granules in brain and progressive neurodegeneration. Psychomotor regression, seizures, loss of vision, and movement disorder begin in infancy and result in early death. Currently, no disease-modifying therapy is available. We report a 68-month-old boy with CLN1 treated on a compassionate use basis weekly for 26 months with a PPT1 enzyme fused to an anti-insulin receptor antibody (AGT-194), thereby enabling penetration of the blood-brain barrier (BBB). During treatment, no side effects were observed, while seizure frequency decreased, life quality improved, and the boy's general condition remained stable. This case documents for the first time that treatment of CLN1 is principally feasible by an intravenous BBB penetrating enzyme replacement therapy using PPT1 fused with the human insulin receptor. Monitoring of side effects raised no unacceptable or unexpected safety concerns.Observed improvement of life quality related to ameliorated epilepsy control raises hope that further robust clinical trials including patients in earlier stages of disease will show positive results.

6.
Biochem Biophys Res Commun ; 571: 137-144, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34325129

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL), also known as CLN1-disease, is a devastating neurodegenerative lysosomal storage disorder (LSD), caused by inactivating mutations in the CLN1 gene. The Cln1-/- mice, which mimic INCL, manifest progressive neuroinflammation contributing to neurodegeneration. However, the underlying mechanism of neuroinflammation in INCL and in Cln1-/- mice has remained elusive. Previously, it has been reported that microRNA-155 (miR-155) regulates inflammation and miR profiling in Cln1-/- mouse brain showed that the level of miR-155 was upregulated. Thus, we sought to determine whether ablation of miR-155 in Cln1-/- mice may suppress neuroinflammation in these mice. Towards this goal, we generated Cln1-/-/miR-155-/- double-knockout mice and evaluated the inflammatory signatures in the brain. We found that the brains of double-KO mice manifest progressive neuroinflammatory changes virtually identical to those found in Cln1-/- mice. We conclude that ablation of miR-155 in Cln1-/- mice does not alter the neuroinflammatory trajectory in INCL mouse model.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación/metabolismo , MicroARNs/metabolismo , Tioléster Hidrolasas/metabolismo , Animales , Inflamación/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética
7.
Neurocase ; 27(2): 165-168, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849402

RESUMEN

IntroductionClassic onset of CLN1 disease is within the first year of life with developmental arrest, epilepsy and rapid progression. In an atypical variant of CLN1 disease onset is later in the juvenile epoch. Although epilepsy in the juvenile form of CLN1 often is less severe than in typical CLN1, treatment of seizures and status epilepticus may be challenging.Case presentationThe clinical course, misdiagnosis and epilepsy phenotype are presented in a girl with juvenile CLN1. Cognitive and neurologic regression started at age 5.5 years. Epilepsy was a major clinical issue as the patient suffered from focal seizures, recurrent status epilepticus and epilepsia partialis continua. In one episode of refractory status epilepticus, the patient had significant bradycardia associated with the intravenous infusion of levetiracetam. Diagnosis was made at the age of 12 years, based on palmitoyl protein-thioesterase (PPT) enzyme deficiency and genetic testing that documented a homozygous exon missense mutation in the CLN1 gene (PPT1, c.541G>A, p.Val181Met).DiscussionEpilepsy in all NCL patients is a major clinical issue and presumed related to neuronal excitation and epileptogenesis. The treatment of status epilepticus, in juvenile CLN1 patients, presents a particular challenge and requires monitoring of potential serious pharmacologic side effects of therapy.


Asunto(s)
Epilepsia , Niño , Preescolar , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Exones , Femenino , Humanos , Fenotipo
8.
Arch Microbiol ; 203(1): 85-96, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32749661

RESUMEN

Accumulated evidence indicates that the gut microbiota affects brain function and may be altered in neurological diseases. In this study, we analyzed the gut microbiota in Cln1R151X and Cln2R207X mice, models of the childhood neurodegenerative disorders, infantile CLN1 and late infantile CLN2 Batten diseases. Significant alterations were found in the overall gut microbiota composition and also at the individual taxonomic ranks as compared to wild-type mice. The disease-specific alterations in the gut microbiota of Cln1R151X and Cln2R207X mice may contribute to the disease phenotypes observed in these mouse models. We also compared the gut microbiota composition of three wild-type mouse strains frequently used in transgenic studies: 129S6/SvEv, C57BL/6J and mixed 129S6/SvEv × C57BL/6J. Our results show that the gut microbiota of 129S6/SvEv and C57BL/6J mice differs remarkably, which likely contributes to the known, pronounced differences in behavior and disease susceptibility between these two wild-type mouse strains.


Asunto(s)
Biodiversidad , Microbioma Gastrointestinal , Lipofuscinosis Ceroideas Neuronales/microbiología , Animales , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Tripeptidil Peptidasa 1
9.
J. inborn errors metab. screen ; 9: e20210009, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1250216

RESUMEN

ABSTRACT Neuronal Ceroid Lipofuscinosis (NCL) refers to a group of inherited lysosomal storage disorders characterized by the intracellular accumulation of ceroid-lipofuscin compounds and neurodegeneration. Fourteen genes are currently recognized with disease-causing DNA variants: PPT1/CLN1, TPP1/CLN2, CLN3, DNAJC5/CLN4, CLN5, CLN6, MFSD8/CLN7, CLN8, CTSD/CN10, GRN/CLN11, ATP13A2/CLN12, CTSF/CLN13, KCTD7/CLN14, TBCK/CLN15. In the frame of the Cordoba cohort, we studied N=51 cases. The aim of this paper is the observational and retrospective analysis of the "atypical" phenotypes. PCR-Sanger sequencing and/or massive exome sequencing were used as a screening methodology. One CLN1 subject showed an atypical prolonged (P) phenotype with null PPT1 activity and a heterozygous compound genotype: E5 c.451C>T, p.Arg151*/g.6302T>G (I3 c.363-3T>G). Other 11 CLN2 individuals (except one girl) showed TPP1 activity decreased to around 10% of the minimum value of the reference interval in leukocytes and saliva. The DNA variants E7 c.827A>T, p.Asp276Val and I7 c.887-10A>G were the most prevalent. One CLN8 individual showed an atypical congenital phenotype with a heterozygous combination of DNA variants: E2 c.1A>G, p.?/E3 c.792C>G, p.Asn264Lys. Massive sequencing was installed as a screening methodology for the precision diagnosis of atypical CLN1, CLN2, and CLN8 phenotypes. A genetic/phenotypic local registry is under construction.

10.
Front Cell Neurosci ; 14: 569598, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390903

RESUMEN

CLN1 disease (OMIM #256730) is an inherited neurological disorder of early childhood with epileptic seizures and premature death. It is associated with mutations in CLN1 coding for Palmitoyl-Protein Thioesterase 1 (PPT1), a lysosomal enzyme which affects the recycling and degradation of lipid-modified (S-acylated) proteins by removing palmitate residues. Transcriptomic evidence from a neuronal-like cellular model derived from differentiated SH-SY5Y cells disclosed the potential negative roles of CLN1 overexpression, affecting the elongation of neuronal processes and the expression of selected proteins of the synaptic region. Bioinformatic inquiries of transcriptomic data pinpointed a dysregulated expression of several genes coding for proteins related to voltage-gated ion channels, including subunits of calcium and potassium channels (VGCC and VGKC). In SH-SY5Y cells overexpressing CLN1 (SH-CLN1 cells), the resting potential and the membrane conductance in the range of voltages close to the resting potential were not affected. However, patch-clamp recordings indicated a reduction of Ba2+ currents through VGCC of SH-CLN1 cells; Ca2+ imaging revealed reduced Ca2+ influx in the same cellular setting. The results of the biochemical and morphological investigations of CACNA2D2/α2δ-2, an accessory subunit of VGCC, were in accordance with the downregulation of the corresponding gene and consistent with the hypothesis that a lower number of functional channels may reach the plasma membrane. The combined use of 4-AP and NS-1643, two drugs with opposing effects on Kv11 and Kv12 subfamilies of VGKC coded by the KCNH gene family, provides evidence for reduced functional Kv12 channels in SH-CLN1 cells, consistent with transcriptomic data indicating the downregulation of KCNH4. The lack of compelling evidence supporting the palmitoylation of many ion channels subunits investigated in this study stimulates inquiries about the role of PPT1 in the trafficking of channels to the plasma membrane. Altogether, these results indicate a reduction of functional voltage-gated ion channels in response to CLN1/PPT1 overexpression in differentiated SH-SY5Y cells and provide new insights into the altered neuronal excitability which may underlie the severe epileptic phenotype of CLN1 disease. It remains to be shown if remodeling of such functional channels on plasma membrane can occur as a downstream effect of CLN1 disease.

11.
Biochim Biophys Acta Mol Basis Dis ; 1866(9): 165498, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31207290

RESUMEN

The Neuronal Ceroid Lipofuscinoses are a group of severe and progressive neurodegenerative disorders, which generally present during childhood. With new treatments emerging on the horizon, there is a growing need to understand the specific disease mechanisms as well as identify prospective biomarkers for use to stratify patients and monitor treatment. The use of Omics technologies to NCLs has the potential to address this need. We discuss the recent use and outcomes of Omics to various forms of NCL including identification of interactomes, affected biological pathways and potential biomarker candidates. We also identify common pathways affected in NCL across the reviewed studies.


Asunto(s)
Genómica , Lipofuscinosis Ceroideas Neuronales , Proteómica , Animales , Biomarcadores , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo
12.
Acta Neuropathol Commun ; 6(1): 74, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089511

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are the most common cause of childhood dementia and are invariably fatal. Early localized glial activation occurs in these disorders, and accurately predicts where neuronal loss is most pronounced. Recent evidence suggests that glial dysfunction may contribute to neuron loss, and we have now explored this possibility in infantile NCL (INCL, CLN1 disease). We grew primary cultures of astrocytes, microglia, and neurons derived from Ppt1 deficient mice (Ppt1-/-) and assessed their properties compared to wildtype (WT) cultures, before co-culturing them in different combinations (astrocytes with microglia, astrocytes or microglia with neurons, all three cell types together). These studies revealed that both Ppt1-/- astrocytes and microglia exhibit a more activated phenotype under basal unstimulated conditions, as well as alterations to their protein expression profile following pharmacological stimulation. Ppt1- /- astrocytes also displayed abnormal calcium signalling and an elevated cytoplasmic Ca2+ level, and a profound defect in their survival. Ppt1-/- neurons displayed decreased neurite outgrowth, altered complexity, a reduction in cell body size, and impaired neuron survival with prolonged time in culture. In co-cultures, the presence of both astrocytes and microglia from Ppt1-/- mice further impaired the morphology of both wild type and Ppt1-/- neurons. This negative influence was more pronounced for Ppt1-/- microglia, which appeared to trigger increased Ppt1-/- neuronal death. In contrast, wild type glial cells, especially astrocytes, ameliorated some of the morphological defects observed in Ppt1-/- neurons. These findings suggest that both Ppt1-/- microglia and astrocytes are dysfunctional and may contribute to the neurodegeneration observed in CLN1 disease. However, the dysfunctional phenotypes of Ppt1-/- glia are different from those present in CLN3 disease, suggesting that the pathogenic role of glia may differ between NCLs.


Asunto(s)
Astrocitos/patología , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/efectos de los fármacos , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética , Factores de Tiempo
14.
Front Mol Neurosci ; 10: 266, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878621

RESUMEN

CLN1 disease (OMIM #256730) is an early childhood ceroid-lipofuscinosis associated with mutated CLN1, whose product Palmitoyl-Protein Thioesterase 1 (PPT1) is a lysosomal enzyme involved in the removal of palmitate residues from S-acylated proteins. In neurons, PPT1 expression is also linked to synaptic compartments. The aim of this study was to unravel molecular signatures connected to CLN1. We utilized SH-SY5Y neuroblastoma cells overexpressing wild type CLN1 (SH-p.wtCLN1) and five selected CLN1 patients' mutations. The cellular distribution of wtPPT1 was consistent with regular processing of endogenous protein, partially detected inside Lysosomal Associated Membrane Protein 2 (LAMP2) positive vesicles, while the mutants displayed more diffuse cytoplasmic pattern. Transcriptomic profiling revealed 802 differentially expressed genes (DEGs) in SH-p.wtCLN1 (as compared to empty-vector transfected cells), whereas the number of DEGs detected in the two mutants (p.L222P and p.M57Nfs*45) was significantly lower. Bioinformatic scrutiny linked DEGs with neurite formation and neuronal transmission. Specifically, neuritogenesis and proliferation of neuronal processes were predicted to be hampered in the wtCLN1 overexpressing cell line, and these findings were corroborated by morphological investigations. Palmitoylation survey identified 113 palmitoylated protein-encoding genes in SH-p.wtCLN1, including 25 ones simultaneously assigned to axonal growth and synaptic compartments. A remarkable decrease in the expression of palmitoylated proteins, functionally related to axonal elongation (GAP43, CRMP1 and NEFM) and of the synaptic marker SNAP25, specifically in SH-p.wtCLN1 cells was confirmed by immunoblotting. Subsequent, bioinformatic network survey of DEGs assigned to the synaptic annotations linked 81 DEGs, including 23 ones encoding for palmitoylated proteins. Results obtained in this experimental setting outlined two affected functional modules (connected to the axonal and synaptic compartments), which can be associated with an altered gene dosage of wtCLN1. Moreover, these modules were interrelated with the pathological effects associated with loss of PPT1 function, similarly as observed in the Ppt1 knockout mice and patients with CLN1 disease.

15.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1273-1281, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28390949

RESUMEN

The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders with variable age of onset, characterized by the lysosomal accumulation of autofluorescent ceroid lipopigments. The endoplasmic reticulum (ER) is a critical organelle for normal cell function. Alteration of ER homeostasis leads to accumulation of misfolded protein in the ER and to activation of the unfolded protein response. ER stress and the UPR have recently been linked to the NCLs. In this review, we will discuss the evidence for UPR activation in the NCLs, and address its connection to disease pathogenesis. Further understanding of ER-stress response involvement in the NCLs may encourage development of novel therapeutical agents targeting these pathogenic pathways.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/terapia
16.
FEBS Open Bio ; 7(1): 74-87, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28097090

RESUMEN

The yeast cyclins Cln1 and Cln2 are very similar in both sequence and function, but some differences in their functionality and localization have been recently described. The control of Cln1 and Cln2 cellular levels is crucial for proper cell cycle initiation. In this work, we analyzed the degradation patterns of Cln1 and Cln2 in order to further investigate the possible differences between them. Both cyclins show the same half-life but, while Cln2 degradation depends on ubiquitin ligases SCFGrr1 and SCFCdc4, Cln1 is affected only by SCFGrr1. Degradation analysis of chimeric cyclins, constructed by combining fragments from Cln1 and Cln2, identifies the N-terminal sequence of the proteins as responsible of the cyclin degradation pattern. In particular, the N-terminal region of Cln2 is required to mediate degradation by SCFCdc4. This region is involved in nuclear import of Cln1 and Cln2, which suggests that differences in degradation may be due to differences in localization. Moreover, a comparison of the cyclins that differ only in the presence of the Cln2 nuclear export signal indicates a greater instability of exported cyclins, thus reinforcing the idea that cyclin stability is influenced by their localization.

17.
Metab Brain Dis ; 32(1): 275-279, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27722792

RESUMEN

Infantile CLN1 disease, also known as infantile neuronal ceroid lipofuscinosis, is a fatal childhood neurodegenerative disorder caused by mutations in the CLN1 gene. CLN1 encodes a soluble lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1), and it is still unclear why neurons are selectively vulnerable to the loss of PPT1 enzyme activity in infantile CLN1 disease. To examine the effects of PPT1 deficiency on several well-defined neuronal signaling and cell death pathways, different toxic insults were applied in cerebellar granule neuron cultures prepared from wild type (WT) and palmitoyl protein thioesterase 1-deficient (Ppt1 -/- ) mice, a model of infantile CLN1 disease. Glutamate uptake inhibition by t-PDC (L-trans-pyrrolidine-2,4-dicarboxylic acid) or Zn2+-induced general mitochondrial dysfunction caused similar toxicity in WT and Ppt1 -/- cultures. Ppt1 -/- neurons, however, were more sensitive to mitochondrial complex I inhibition by MPP+ (1-methyl-4-phenylpyridinium), and had significantly decreased sensitivity to chemical anoxia induced by the mitochondrial complex IV inhibitor, sodium azide. Our results indicate that PPT1 deficiency causes alterations in the mitochondrial respiratory chain.


Asunto(s)
Hipoxia de la Célula/fisiología , Neuronas/metabolismo , Tioléster Hidrolasas/metabolismo , 1-Metil-4-fenilpiridinio/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Tioléster Hidrolasas/genética
18.
J Vet Intern Med ; 31(1): 149-157, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28008682

RESUMEN

A 10-month-old spayed female Cane Corso dog was evaluated after a 2-month history of progressive blindness, ataxia, and lethargy. Neurologic examination abnormalities indicated a multifocal lesion with primarily cerebral and cerebellar signs. Clinical worsening resulted in humane euthanasia. On necropsy, there was marked astrogliosis throughout white matter tracts of the cerebrum, most prominently in the corpus callosum. In the cerebral cortex and midbrain, most neurons contained large amounts of autofluorescent storage material in the perinuclear area of the cells. Cerebellar storage material was present in the Purkinje cells, granular cell layer, and perinuclear regions of neurons in the deep nuclei. Neuronal ceroid lipofuscinosis (NCL) was diagnosed. Whole genome sequencing identified a PPT1c.124 + 1G>A splice donor mutation. This nonreference assembly allele was homozygous in the affected dog, has not previously been reported in dbSNP, and was absent from the whole genome sequences of 45 control dogs and 31 unaffected Cane Corsos. Our findings indicate a novel mutation causing the CLN1 form of NCL in a previously unreported dog breed. A canine model for CLN1 disease could provide an opportunity for therapeutic advancement, benefiting both humans and dogs with this disorder.


Asunto(s)
Enfermedades de los Perros/diagnóstico , Lipofuscinosis Ceroideas Neuronales/veterinaria , Animales , Enfermedades de los Perros/genética , Perros , Femenino , Mutación del Sistema de Lectura/genética , Imagen por Resonancia Magnética/veterinaria , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Lipofuscinosis Ceroideas Neuronales/genética
19.
Data Brief ; 8: 741-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27508227

RESUMEN

The article contains raw and analyzed data related to the research article "Neuronal ceroid lipofuscinosis genes, CLN2, CLN3, CLN5 are spatially and temporally co-expressed in a developing mouse brain" (Fabritius et al., 2014) [1]. The processed data gives an understanding of the development of the cell types that are mostly affected by defective function of CLN proteins, timing of expression of CLN1, CLN2, CLN3 and CLN5 genes in a murine model. The data shows relationship between the expression pattern of these genes during neural development. Immunohistochemistry was used to identify known interneuronal markers for neurotransmission and cell proliferation: parvalbumin, somatostatin subpopulations of interneurons. Non-radioactive in-situ hybridization detected CLN5 mRNA in the hippocampus. Throughout the development strong expression of CLN genes were identified in the germinal epithelium and in ventricle regions, cortex, hippocampus, and cerebellum. This provides supportive evidence that CLN1, CLN2, CLN3 and CLN5 genes may be involved in synaptic pruning.

20.
Brain Dev ; 38(7): 674-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26846731

RESUMEN

BACKGROUND: Infantile neuronal ceroid lipofuscinosis (INCL) is an autosomal recessive disorder starting in infancy as early as 12-month-old, caused by PPT1 (palmitoyl-protein thioesterase 1) mutations, and characterized by progressive psychomotor deterioration, brain atrophy, myoclonic jerk and visual impairment. INCL can be diagnosed by brain magnetic resonance image (MRI) prior to rapid deterioration stage. To date, there is no INCL patient whose manifestation was caused by uniparental isodisomy (UPiD). PATIENT: We reported a girl diagnosed with INCL. Genetic analysis revealed a novel PPT1 mutation c.20_47del28:p.Leu7Hisfs*21. Only the father of the patient was found as a carrier of this mutation. SNP array showed the mutation became homozygous by paternal UPiD of chromosome 1. DISCUSSION: Although ICNL is a rare disease except in Finland, it is not difficult to diagnose it since the clinical symptoms and MRI findings are characteristic. Genetic testing is useful for definitive diagnosis, and distinction of UPiD is essential for genetic counseling.


Asunto(s)
Cromosomas Humanos Par 1 , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Disomía Uniparental/genética , Disomía Uniparental/fisiopatología , Encéfalo/diagnóstico por imagen , Preescolar , Diagnóstico Diferencial , Femenino , Mutación del Sistema de Lectura , Humanos , Lactante , Imagen por Resonancia Magnética , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Tioléster Hidrolasas , Disomía Uniparental/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA