Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.889
Filtrar
1.
Elife ; 132024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828844

RESUMEN

Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.


Asunto(s)
Músculo Esquelético , Regeneración , Animales , Regeneración/fisiología , Ratones , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Citocinas/metabolismo , Modelos Biológicos , Fibroblastos/metabolismo , Fibroblastos/fisiología , Macrófagos/metabolismo
2.
Phytopathology ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831567

RESUMEN

Net blotch disease caused by Drechslera teres is a major fungal disease that affects barley (Hordeum vulgare) plants and can result in significant crop losses. In this study, we developed a deep-learning model to quantify net blotch disease symptoms on different days post-infection on seedling leaves using Cascade R-CNN (Region-Based Convolutional Neural Networks) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4-days post infection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.

3.
Elife ; 132024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832759

RESUMEN

Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.


Asunto(s)
Biología Computacional , Genómica , Metabolómica , Metagenómica , Microbiota , Metabolómica/métodos , Microbiota/genética , Biología Computacional/métodos , Metagenómica/métodos , Genómica/métodos , Humanos
4.
Elife ; 122024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787371

RESUMEN

Spatial transcriptomics (ST) technologies allow the profiling of the transcriptome of cells while keeping their spatial context. Since most commercial untargeted ST technologies do not yet operate at single-cell resolution, computational methods such as deconvolution are often used to infer the cell type composition of each sequenced spot. We benchmarked 11 deconvolution methods using 63 silver standards, 3 gold standards, and 2 case studies on liver and melanoma tissues. We developed a simulation engine called synthspot to generate silver standards from single-cell RNA-sequencing data, while gold standards are generated by pooling single cells from targeted ST data. We evaluated methods based on their performance, stability across different reference datasets, and scalability. We found that cell2location and RCTD are the top-performing methods, but surprisingly, a simple regression model outperforms almost half of the dedicated spatial deconvolution methods. Furthermore, we observe that the performance of all methods significantly decreased in datasets with highly abundant or rare cell types. Our results are reproducible in a Nextflow pipeline, which also allows users to generate synthetic data, run deconvolution methods and optionally benchmark them on their dataset (https://github.com/saeyslab/spotless-benchmark).


Asunto(s)
Benchmarking , Perfilación de la Expresión Génica , Transcriptoma , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , Melanoma/genética , Reproducibilidad de los Resultados , Hígado
5.
Protein Sci ; 33(6): e5015, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747369

RESUMEN

Prokaryotic DNA binding proteins (DBPs) play pivotal roles in governing gene regulation, DNA replication, and various cellular functions. Accurate computational models for predicting prokaryotic DBPs hold immense promise in accelerating the discovery of novel proteins, fostering a deeper understanding of prokaryotic biology, and facilitating the development of therapeutics targeting for potential disease interventions. However, existing generic prediction models often exhibit lower accuracy in predicting prokaryotic DBPs. To address this gap, we introduce ProkDBP, a novel machine learning-driven computational model for prediction of prokaryotic DBPs. For prediction, a total of nine shallow learning algorithms and five deep learning models were utilized, with the shallow learning models demonstrating higher performance metrics compared to their deep learning counterparts. The light gradient boosting machine (LGBM), coupled with evolutionarily significant features selected via random forest variable importance measure (RF-VIM) yielded the highest five-fold cross-validation accuracy. The model achieved the highest auROC (0.9534) and auPRC (0.9575) among the 14 machine learning models evaluated. Additionally, ProkDBP demonstrated substantial performance with an independent dataset, exhibiting higher values of auROC (0.9332) and auPRC (0.9371). Notably, when benchmarked against several cutting-edge existing models, ProkDBP showcased superior predictive accuracy. Furthermore, to promote accessibility and usability, ProkDBP (https://iasri-sg.icar.gov.in/prokdbp/) is available as an online prediction tool, enabling free access to interested users. This tool stands as a significant contribution, enhancing the repertoire of resources for accurate and efficient prediction of prokaryotic DBPs.


Asunto(s)
Proteínas de Unión al ADN , Aprendizaje Automático , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Algoritmos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Biología Computacional/métodos
6.
Small Methods ; : e2301585, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807543

RESUMEN

DNA-based data storage is a new technology in computational and synthetic biology, that offers a solution for long-term, high-density data archiving. Given the critical importance of medical data in advancing human health, there is a growing interest in developing an effective medical data storage system based on DNA. Data integrity, accuracy, reliability, and efficient retrieval are all significant concerns. Therefore, this study proposes an Effective DNA Storage (EDS) approach for archiving medical MRI data. The EDS approach incorporates three key components (i) a novel fraction strategy to address the critical issue of rotating encoding, which often leads to data loss due to single base error propagation; (ii) a novel rule-based quaternary transcoding method that satisfies bio-constraints and ensure reliable mapping; and (iii) an indexing technique designed to simplify random search and access. The effectiveness of this approach is validated through computer simulations and biological experiments, confirming its practicality. The EDS approach outperforms existing methods, providing superior control over bio-constraints and reducing computational time. The results and code provided in this study open new avenues for practical DNA storage of medical MRI data, offering promising prospects for the future of medical data archiving and retrieval.

7.
J Bioinform Comput Biol ; 22(2): 2471001, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38779779

RESUMEN

ChatGPT, a recently developed product by openAI, is successfully leaving its mark as a multi-purpose natural language based chatbot. In this paper, we are more interested in analyzing its potential in the field of computational biology. A major share of work done by computational biologists these days involve coding up bioinformatics algorithms, analyzing data, creating pipelining scripts and even machine learning modeling and feature extraction. This paper focuses on the potential influence (both positive and negative) of ChatGPT in the mentioned aspects with illustrative examples from different perspectives. Compared to other fields of computer science, computational biology has (1) less coding resources, (2) more sensitivity and bias issues (deals with medical data), and (3) more necessity of coding assistance (people from diverse background come to this field). Keeping such issues in mind, we cover use cases such as code writing, reviewing, debugging, converting, refactoring, and pipelining using ChatGPT from the perspective of computational biologists in this paper.


Asunto(s)
Algoritmos , Biología Computacional , Biología Computacional/métodos , Programas Informáticos , Lenguajes de Programación , Humanos , Procesamiento de Lenguaje Natural , Aprendizaje Automático
8.
Elife ; 132024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696239

RESUMEN

The reconstruction of complete microbial metabolic pathways using 'omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.


Asunto(s)
Genoma Bacteriano , Redes y Vías Metabólicas , Programas Informáticos , Redes y Vías Metabólicas/genética , Biología Computacional/métodos , Aprendizaje Automático , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación
9.
Elife ; 132024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690805

RESUMEN

As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.


Asunto(s)
Escherichia coli , Genoma Bacteriano , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Mutación , Transcriptoma , Evolución Molecular , Aptitud Genética , Redes Reguladoras de Genes , Evolución Molecular Dirigida
10.
Virol Sin ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697263

RESUMEN

In recent years, substantial advancements have been achieved in understanding the diversity of the human virome and its intricate roles in human health and diseases. Despite this progress, the field of human virome research remains nascent, primarily hindered by the absence of effective methods, particularly in the domain of computational tools. This perspective systematically outlines ten computational challenges spanning various types of virome studies. These challenges arise due to the vast diversity of viromes, the absence of a universal marker gene in viral genomes, the low abundance of virus populations, the remote or minimal homology of viral proteins to known proteins, and the highly dynamic and heterogeneous nature of viromes. For each computational challenge, we discuss the underlying reasons, current research progress, and potential solutions. The resolution of these challenges necessitates ongoing collaboration among computational scientists, virologists, and multidisciplinary experts. In essence, this perspective serves as a comprehensive guide for directing computational efforts in human virome studies.

12.
Oncol Lett ; 28(1): 296, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38737977

RESUMEN

Gastric cancer (GC) ranks fifth globally in cancer diagnoses and third for cancer-related deaths. Chemotherapy with 5-fluorouracil (5-FU), a primary treatment, faces challenges due to the development of chemoresistance. Tumor microenvironment factors, including C-C motif chemokine receptor 3 (CCR3), can contribute to chemoresistance. The present study evaluated the effect of CCR3 receptor inhibition using the antagonist SB 328437 and the molecular dynamics of this interaction on resistance to 5-FU in gastric cancer cells. The 5-FU-resistant AGS cell line (AGS R-5FU) demonstrated notable tolerance to higher concentrations of 5-FU, with a 2.6-fold increase compared with the parental AGS cell line. Furthermore, the mRNA expression levels of thymidylate synthase (TS), a molecular marker for 5-FU resistance, were significantly elevated in AGS R-5FU cells. CCR3 was shown to be expressed at significantly higher levels in these resistant cells. Combining SB 328437 with 5-FU resulted in a significant decrease in cell viability, particularly at higher concentrations of 5-FU. Furthermore, when SB 328437 was combined with 5-FU at a high concentration, the relative mRNA expression levels of CCR3 and TS decreased significantly. Computational analysis of CCR3 demonstrated dynamic conformational changes, especially in extracellular loop 2 region, which indicated potential alterations in ligand recognition. Docking simulations demonstrated that SB 328437 bound to the allosteric site of CCR3, inducing a conformational change in ECL2 and hindering ligand recognition. The present study provides comprehensive information on the molecular and structural aspects of 5-FU resistance and CCR3 modulation, highlighting the potential for therapeutic application of SB 328437 in GC treatment.

13.
Immunity ; 57(5): 1160-1176.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697118

RESUMEN

Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.


Asunto(s)
Linfocitos B , Vacunas contra la Influenza , Análisis de la Célula Individual , Humanos , Vacunas contra la Influenza/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunación , Anticuerpos Antivirales/inmunología , Adyuvantes Inmunológicos , Adyuvantes de Vacunas , Monocitos/inmunología , Polisorbatos , Escualeno/inmunología , Inmunidad Innata/inmunología
14.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783705

RESUMEN

Tumor mutational signatures have gained prominence in cancer research, yet the lack of standardized methods hinders reproducibility and robustness. Leveraging colorectal cancer (CRC) as a model, we explored the influence of computational parameters on mutational signature analyses across 230 CRC cell lines and 152 CRC patients. Results were validated in three independent datasets: 483 endometrial cancer patients stratified by mismatch repair (MMR) status, 35 lung cancer patients by smoking status and 12 patient-derived organoids (PDOs) annotated for colibactin exposure. Assessing various bioinformatic tools, reference datasets and input data sizes including whole genome sequencing, whole exome sequencing and a pan-cancer gene panel, we demonstrated significant variability in the results. We report that the use of distinct algorithms and references led to statistically different results, highlighting how arbitrary choices may induce variability in the mutational signature contributions. Furthermore, we found a differential contribution of mutational signatures between coding and intergenic regions and defined the minimum number of somatic variants required for reliable mutational signature assignment. To facilitate the identification of the most suitable workflows, we developed Comparative Mutational Signature analysis on Coding and Extragenic Regions (CoMSCER), a bioinformatic tool which allows researchers to easily perform comparative mutational signature analysis by coupling the results from several tools and public reference datasets and to assess mutational signature contributions in coding and non-coding genomic regions. In conclusion, our study provides a comparative framework to elucidate the impact of distinct computational workflows on mutational signatures.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Mutación , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Flujo de Trabajo , Línea Celular Tumoral , Secuenciación del Exoma/métodos , Femenino , Algoritmos
15.
BMC Bioinformatics ; 25(1): 199, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789933

RESUMEN

BACKGROUND: Computational models in systems biology are becoming more important with the advancement of experimental techniques to query the mechanistic details responsible for leading to phenotypes of interest. In particular, Boolean models are well fit to describe the complexity of signaling networks while being simple enough to scale to a very large number of components. With the advance of Boolean model inference techniques, the field is transforming from an artisanal way of building models of moderate size to a more automatized one, leading to very large models. In this context, adapting the simulation software for such increases in complexity is crucial. RESULTS: We present two new developments in the continuous time Boolean simulators: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the computational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU accelerators to perform these simulations. CONCLUSION: These implementations enable simulation and exploration of the behavior of very large models, thus becoming a valuable analysis tool for the systems biology community.


Asunto(s)
Simulación por Computador , Programas Informáticos , Biología de Sistemas/métodos , Biología Computacional/métodos , Algoritmos , Gráficos por Computador
16.
Elife ; 132024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814703

RESUMEN

To navigate their environment, insects need to keep track of their orientation. Previous work has shown that insects encode their head direction as a sinusoidal activity pattern around a ring of neurons arranged in an eight-column structure. However, it is unclear whether this sinusoidal encoding of head direction is just an evolutionary coincidence or if it offers a particular functional advantage. To address this question, we establish the basic mathematical requirements for direction encoding and show that it can be performed by many circuits, all with different activity patterns. Among these activity patterns, we prove that the sinusoidal one is the most noise-resilient, but only when coupled with a sinusoidal connectivity pattern between the encoding neurons. We compare this predicted optimal connectivity pattern with anatomical data from the head direction circuits of the locust and the fruit fly, finding that our theory agrees with experimental evidence. Furthermore, we demonstrate that our predicted circuit can emerge using Hebbian plasticity, implying that the neural connectivity does not need to be explicitly encoded in the genetic program of the insect but rather can emerge during development. Finally, we illustrate that in our theory, the consistent presence of the eight-column organisation of head direction circuits across multiple insect species is not a chance artefact but instead can be explained by basic evolutionary principles.


Insects, including fruit flies and locusts, move throughout their environment to find food, interact with each other or escape danger. To navigate their surroundings, insects need to be able to keep track of their orientation. This tracking is achieved through visual cues and integrating information about their movements whilst flying so they know which direction their head is facing. The set of neurons responsible for relaying information about the direction of the head (also known as heading) are connected together in a ring made up of eight columns of cells. Previous studies showed that the level of activity across this ring of neurons resembles a sinusoid shape: a smooth curve with one peak which encodes the animal's heading. Neurons downstream from this eight-column ring, which relay velocity information, also display this sinusoidal pattern of activation. Aceituno, Dall'Osto and Pisokas wanted to understand whether this sinusoidal pattern was an evolutionary coincidence, or whether it offers a particular advantage to insects. To answer this question, they established the mathematical criteria required for neurons in the eight-column ring to encode information about the heading of the animal. This revealed that these conditions can be satisfied by many different patterns of activation, not just the sinusoidal shape. However, Aceituno, Dall'Osto and Pisokas show that the sinusoidal shape is the most resilient to variations in neuronal activity which may impact the encoded information. Further experiments revealed that this resilience only occurred if neurons in the circuit were connected together in a certain pattern. Aceituno, Dall'Osto and Pisokas then compared this circuit with experimental data from locusts and fruit flies and found that both insects exhibit the predicted connection pattern. They also discovered that animals do not have to be born with this neuronal connection pattern, but can develop it during their lifetime. These findings provide fresh insights into how insects relay information about the direction of their head as they fly. They suggest that the structure of the neuronal circuit responsible for encoding head direction was not formed by chance but instead arose due to the evolutionary benefits it provided.


Asunto(s)
Cabeza , Animales , Cabeza/fisiología , Saltamontes/fisiología , Neuronas/fisiología , Insectos/fisiología , Modelos Neurológicos , Drosophila melanogaster/fisiología
17.
Elife ; 122024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804191

RESUMEN

Science journalism is a critical way for the public to learn about and benefit from scientific findings. Such journalism shapes the public's view of the current state of science and legitimizes experts. Journalists can only cite and quote a limited number of sources, who they may discover in their research, including recommendations by other scientists. Biases in either process may influence who is identified and ultimately included as a source. To examine potential biases in science journalism, we analyzed 22,001 non-research articles published by Nature and compared these with Nature-published research articles with respect to predicted gender and name origin. We extracted cited authors' names and those of quoted speakers. While citations and quotations within a piece do not reflect the entire information-gathering process, they can provide insight into the demographics of visible sources. We then predicted gender and name origin of the cited authors and speakers. We compared articles with a comparator set made up of first and last authors within primary research articles in Nature and a subset of Springer Nature articles in the same time period. In our analysis, we found a skew toward quoting men in Nature science journalism. However, quotation is trending toward equal representation at a faster rate than authorship rates in academic publishing. Gender disparity in Nature quotes was dependent on the article type. We found a significant over-representation of names with predicted Celtic/English origin and under-representation of names with a predicted East Asian origin in both in extracted quotes and journal citations but dampened in citations.


Asunto(s)
Periodismo , Humanos , Masculino , Femenino , Ciencia , Autoria , Factores Sexuales , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Bibliometría , Sexismo/estadística & datos numéricos
18.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700926

RESUMEN

The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and ß-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Glucosa , Secreción de Insulina , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Animales Recién Nacidos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Mutación , Canales de Potasio/metabolismo , Canales de Potasio/genética
19.
Elife ; 132024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711355

RESUMEN

Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.


From wolves to ants, many animals are known to be able to hunt as a team. This strategy may yield several advantages: going after bigger preys together, for example, can often result in individuals spending less energy and accessing larger food portions than when hunting alone. However, it remains unclear whether this behavior relies on complex cognitive processes, such as the ability for an animal to represent and anticipate the actions of its teammates. It is often thought that 'collaborative hunting' may require such skills, as this form of group hunting involves animals taking on distinct, tightly coordinated roles ­ as opposed to simply engaging in the same actions simultaneously. To better understand whether high-level cognitive skills are required for collaborative hunting, Tsutsui et al. used a type of artificial intelligence known as deep reinforcement learning. This allowed them to develop a computational model in which a small number of 'agents' had the opportunity to 'learn' whether and how to work together to catch a 'prey' under various conditions. To do so, the agents were only equipped with the ability to link distinct stimuli together, such as an event and a reward; this is similar to associative learning, a cognitive process which is widespread amongst animal species. The model showed that the challenge of capturing the prey when hunting alone, and the reward of sharing food after a successful hunt drove the agents to learn how to work together, with previous experiences shaping decisions made during subsequent hunts. Importantly, the predators started to exhibit the ability to take on distinct, complementary roles reminiscent of those observed during collaborative hunting, such as one agent chasing the prey while another ambushes it. Overall, the work by Tsutsui et al. challenges the traditional view that only organisms equipped with high-level cognitive processes can show refined collaborative approaches to hunting, opening the possibility that these behaviors may be more widespread than originally thought ­ including between animals of different species.


Asunto(s)
Aprendizaje Profundo , Conducta Predatoria , Refuerzo en Psicología , Animales , Conducta Cooperativa , Humanos , Simulación por Computador , Toma de Decisiones
20.
Elife ; 122024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722146

RESUMEN

Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Interpretación Estadística de Datos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...