Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol NMR ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083133

RESUMEN

A transverse relaxation optimized spectroscopy (TROSY) approach is described for the optimal detection of NH2 groups in asparagine and glutamine side chains of proteins. Specifically, we have developed NMR experiments for isolating the slow-relaxing 15N and 1H components of NH2 multiplets. Although even modest sensitivity gains in 2D NH2-TROSY correlation maps compared to their decoupled NH2-HSQC counterparts can be achieved only occasionally, substantial improvements in resolution of the NMR spectra are demonstrated for asparagine and glutamine NH2 sites of a buried cavity mutant, L99A, of T4 lysozyme at 5 ºC. The NH2-TROSY approach is applied to CPMG relaxation dispersion measurements at the side chain NH2 positions of the L99A T4 lysozyme mutant - a model system for studies of the role of protein dynamics in ligand binding.

2.
Proc Natl Acad Sci U S A ; 120(41): e2310910120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782780

RESUMEN

Enzymes are known to sample various conformations, many of which are critical for their biological function. However, structural characterizations of enzymes predominantly focus on the most populated conformation. As a result, single-point mutations often produce structures that are similar or essentially identical to those of the wild-type enzyme despite large changes in enzymatic activity. Here, we show for mutants of a histone deacetylase enzyme (HDAC8) that reduced enzymatic activities, reduced inhibitor affinities, and reduced residence times are all captured by the rate constants between intrinsically sampled conformations that, in turn, can be obtained independently by solution NMR spectroscopy. Thus, for the HDAC8 enzyme, the dynamic sampling of conformations dictates both enzymatic activity and inhibitor potency. Our analysis also dissects the functional role of the conformations sampled, where specific conformations distinct from those in available structures are responsible for substrate and inhibitor binding, catalysis, and product dissociation. Precise structures alone often do not adequately explain the effect of missense mutations on enzymatic activity and drug potency. Our findings not only assign functional roles to several conformational states of HDAC8 but they also underscore the paramount role of dynamics, which will have general implications for characterizing missense mutations and designing inhibitors.


Asunto(s)
Mutación Missense , Conformación Proteica , Resonancia Magnética Nuclear Biomolecular/métodos , Catálisis
3.
J Mol Biol ; 435(11): 167922, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330282

RESUMEN

Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas , Adenosina Trifosfato/química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Proteínas/química
4.
J Biomol NMR ; 77(3): 83-91, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095392

RESUMEN

A methyl Transverse Relaxation Optimized Spectroscopy (methyl-TROSY) based, multiple quantum (MQ) 13C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment is described. The experiment is derived from the previously developed MQ 13C-1H CPMG scheme (Korzhnev in J Am Chem Soc 126: 3964-73, 2004) supplemented with a CPMG train of refocusing 1H pulses applied with constant frequency and synchronized with the 13C CPMG pulse train. The optimal 1H 'decoupling' scheme that minimizes the amount of fast-relaxing methyl MQ magnetization present during CPMG intervals, makes use of an XY-4 phase cycling of the refocusing composite 1H pulses. For small-to-medium sized proteins, the MQ 13C CPMG experiment has the advantage over its single quantum (SQ) 13C counterpart of significantly reducing intrinsic, exchange-free relaxation rates of methyl coherences. For high molecular weight proteins, the MQ 13C CPMG experiment eliminates complications in the interpretation of MQ 13C-1H CPMG relaxation dispersion profiles arising from contributions to exchange from differences in methyl 1H chemical shifts between ground and excited states. The MQ 13C CPMG experiment is tested on two protein systems: (1) a triple mutant of the Fyn SH3 domain that interconverts slowly on the chemical shift time scale between the major folded state and an excited state folding intermediate; and (2) the 82-kDa enzyme Malate Synthase G (MSG), where chemical exchange at individual Ile δ1 methyl positions occurs on a much faster time-scale.


Asunto(s)
Imagen por Resonancia Magnética , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopía de Resonancia Magnética
5.
J Biomol NMR ; 77(1-2): 55-67, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36639431

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.


Asunto(s)
Protones , Triptófano , Flúor , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Triptófano/química , Radioisótopos de Flúor/química
6.
Structure ; 29(10): 1105-1115.e6, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34166612

RESUMEN

Cadherin extracellular domain 1 (EC1) mediates homophilic dimerization in adherens junctions. Conserved Trp2 and Trp4 residues in type II cadherins anchor the EC1 A strand intermolecularly in strand-swapped dimers. Herein, NMR spectroscopy is used to elucidate the roles of Trp2 and Trp4 in Cadherin-11 dimerization. The monomeric state, with the A strand and Trp side chains packed intramolecularly, is in equilibrium with sparsely populated partially and fully A-strand-exposed states, in which Trp2 (and Trp4, respectively) side-chain packing is disrupted. Exchange kinetics between the major state and the partially (fully) A-strand-exposed state is slow-intermediate (intermediate-fast). A separate very fast process exchanges ordered and random-coil BC-loop conformations with populations dependent on A-strand exposure and dimerization status. In addition, very slow processes connect the folded A-strand-exposed conformation to partially unfolded states, which may represent additional domain-swapping intermediates. The dimerization mechanism of type II cadherins is revealed as coupled folding and strand swapping.


Asunto(s)
Cadherinas/química , Multimerización de Proteína , Sustitución de Aminoácidos , Animales , Cadherinas/genética , Cadherinas/metabolismo , Ratones , Conformación Proteica en Hélice alfa , Dominios Proteicos , Pliegue de Proteína
7.
J Biomol NMR ; 74(12): 673-680, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33006092

RESUMEN

Optimized selection of the slow-relaxing components of single-quantum 13C magnetization in 13CH3 methyl groups of proteins using acute (< 90°) angle 1H radio-frequency pulses, is described. The optimal selection scheme is more relaxation-tolerant and provides sensitivity gains in comparison to the experiment where the undesired (fast-relaxing) components of 13C magnetization are simply 'filtered-out' and only 90° 1H pulses are employed for magnetization transfer to and from 13C nuclei. When applied to methyl 13C single-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments for studies of chemical exchange, the selection of the slow-relaxing 13C transitions results in a significant decrease in intrinsic (exchange-free) transverse spin relaxation rates of all exchanging species. For exchanging systems involving high-molecular-weight species, the lower transverse relaxation rates translate into an increase in the information content of the resulting relaxation dispersion profiles.


Asunto(s)
Isótopos de Carbono/química , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Termodinámica
8.
J Biomol NMR ; 74(10-11): 595-611, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32761504

RESUMEN

The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as 'druggable'. Many disease-related proteins that function solely through protein-protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium Burkholderia pseudomallei (BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in B. pseudomallei, and genetic deletion of dsbA significantly attenuates B. pseudomallei virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA. 1HN CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of KD ~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteína Disulfuro Reductasa (Glutatión)/química , Animales , Sitios de Unión , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/patogenicidad , Dominio Catalítico , Ligandos , Ratones , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/genética , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes , Bibliotecas de Moléculas Pequeñas/química , Solubilidad , Tiazoles/química
9.
Proteins ; 88(1): 69-81, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31293000

RESUMEN

In class II transcription activation, the transcription factor normally binds to the promoter near the -35 position and contacts the domain 4 of σ factors (σ4 ) to activate transcription. However, σ4 of σ70 appears to be poorly folded on its own. Here, by fusing σ4 with the RNA polymerase ß-flap-tip-helix, we constructed two σ4 chimera proteins, one from σ70σ470c and another from σSσ4Sc of Klebsiella pneumoniae. The two chimera proteins well folded into a monomeric form with strong binding affinities for -35 element DNA. Determining the crystal structure of σ4Sc in complex with -35 element DNA revealed that σ4Sc adopts a similar structure as σ4 in the Escherichia coli RNA polymerase σS holoenzyme and recognizes -35 element DNA specifically by several conserved residues from the helix-turn-helix motif. By using nuclear magnetic resonance (NMR), σ470c was demonstrated to recognize -35 element DNA similar to σ4Sc . Carr-Purcell-Meiboom-Gill relaxation dispersion analyses showed that the N-terminal helix and the ß-flap-tip-helix of σ470c have a concurrent transient α-helical structure and DNA binding reduced the slow dynamics on σ470c . Finally, only σ470c was shown to interact with the response regulator PmrA and its promoter DNA. The chimera proteins are capable of -35 element DNA recognition and can be used for study with transcription factors or other factors that interact with domain 4 of σ factors.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/metabolismo , Factor sigma/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Mapas de Interacción de Proteínas , Factor sigma/química , Factor sigma/genética , Activación Transcripcional
10.
J Magn Reson ; 304: 62-77, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31129430

RESUMEN

Multidimensional nuclear magnetic resonance (NMR) spectroscopy has enabled detailed characterizations of protein structures and dynamics that are closely linked to functions. However, it leads to a large sensitivity loss in applications to high molecular weight proteins, which is caused by spin relaxation during the frequency discrimination period in the indirect dimension. Here, we describe a selective coherence transfer scheme, which enables us to selectively observe 1H nuclei bonded to 15N or 13C nuclei with specified resonance frequencies. By utilizing this scheme, we achieved a 2.5- to 6-fold increase in signal height per unit of time with this scheme by avoiding the relaxation loss in the indirect dimension, as compared to the conventional two-dimensional heteronuclear correlation spectroscopy. We also demonstrated the effectiveness of this approach with applications to the membrane protein KirBac1.1, and characterized the functionally relevant conformational exchange process in both detergent micelles and a reconstituted membrane environment, corresponding to the apparent molecular masses of 220 kDa and 300 kDa, respectively.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Histidina/química , Maltosa/química , Peso Molecular , Sensibilidad y Especificidad , Triptófano/química , Valina/química
11.
Structure ; 26(8): 1080-1090.e5, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29937357

RESUMEN

Integrin receptors bind collagen via metal-mediated interactions that are modulated by magnesium (Mg2+) levels in the extracellular matrix. Nuclear magnetic resonance-based relaxation experiments, isothermal titration calorimetry, and adhesion assays reveal that Mg2+ functions as both a structural anchor and dynamic switch of the α1ß1 integrin I domain (α1I). Specifically, Mg2+ binding activates micro- to millisecond timescale motions of residues distal to the binding site, particularly those surrounding the salt bridge at helix 7 and near the metal ion-dependent adhesion site. Mutagenesis of these residues impacts α1I functional activity, thereby suggesting that Mg-bound α1I dynamics are important for collagen binding and consequent allosteric rearrangement of the low-affinity closed to high-affinity open conformation. We propose a multistep recognition mechanism for α1I-Mg-collagen interactions involving both conformational selection and induced-fit processes. Our findings unravel the multifaceted role of Mg2+ in integrin-collagen recognition and assist in elucidating the molecular mechanisms by which metals regulate protein-protein interactions.


Asunto(s)
Sustitución de Aminoácidos , Aminoácidos/química , Colágeno Tipo I/química , Integrina alfa1beta1/química , Magnesio/química , Aminoácidos/metabolismo , Animales , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Matriz Extracelular/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Integrina alfa1beta1/genética , Integrina alfa1beta1/metabolismo , Cinética , Magnesio/metabolismo , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
J Biomol NMR ; 70(3): 187-202, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29564579

RESUMEN

Carr-Purcell-Meiboom-Gill (CPMG) type relaxation dispersion experiments are now routinely used to characterise protein conformational dynamics that occurs on the µs to millisecond (ms) timescale between a visible major state and 'invisible' minor states. The exchange rate(s) ([Formula: see text]), population(s) of the minor state(s) and the absolute value of the chemical shift difference [Formula: see text] (ppm) between different exchanging states can be extracted from the CPMG data. However the sign of [Formula: see text] that is required to reconstruct the spectrum of the 'invisible' minor state(s) cannot be obtained from CPMG data alone. Building upon the recently developed triple quantum (TQ) methyl [Formula: see text] CPMG experiment (Yuwen in Angew Chem 55:11490-11494, 2016) we have developed pulse sequences that use carbon detection to generate and evolve single quantum (SQ), double quantum (DQ) and TQ coherences from methyl protons in the indirect dimension to measure the chemical exchange-induced shifts of the SQ, DQ and TQ coherences from which the sign of [Formula: see text] is readily obtained for two state exchange. Further a combined analysis of the CPMG data and the difference in exchange induced shifts between the SQ and DQ resonances and between the SQ and TQ resonances improves the estimates of exchange parameters like the population of the minor state. We demonstrate the use of these experiments on two proteins undergoing exchange: (1) the ~ 18 kDa cavity mutant of T4 Lysozyme ([Formula: see text]) and (2) the [Formula: see text] kDa Peripheral Sub-unit Binding Domain (PSBD) from the acetyl transferase of Bacillus stearothermophilus ([Formula: see text]).


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Teoría Cuántica , Bacillus/enzimología , Simulación de Dinámica Molecular , Muramidasa/química , Transferasas/química
13.
Methods Mol Biol ; 1732: 87-98, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480470

RESUMEN

Understanding the kinetics of proteins interacting with their ligands is important for characterizing molecular mechanism. However, it can be difficult to determine the extent and nature of these interactions for weakly formed protein-ligand complexes that have lifetimes of micro- to milliseconds. Nuclear magnetic resonance (NMR) spectroscopy is a powerful solution-based method for the atomic-level analysis of molecular interactions on a wide range of timescales, including micro- to milliseconds. Recently the combination of thermodynamic experiments using isothermal titration calorimetry (ITC) with kinetic measurements using ZZ-exchange and CPMG relaxation dispersion NMR spectroscopy have been used to determine the kinetics of weakly interacting protein systems. This chapter describes the application of ITC and NMR to understand the differences in the kinetics of carbohydrate binding by the ß1- and ß2-carbohydrate-binding modules of AMP-activated protein kinase.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Calorimetría/métodos , Carbohidratos/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Calorimetría/instrumentación , Cinética , Ligandos , Resonancia Magnética Nuclear Biomolecular/instrumentación , Unión Proteica , Termodinámica
14.
Elife ; 4: e08679, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26099301

RESUMEN

A combination of NMR techniques is able to explore the structure of short-lived protein conformations.


Asunto(s)
Pliegue de Proteína/efectos de la radiación , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Humanos
15.
Elife ; 4: e07296, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26099300

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving cytotoxic conformations of Cu, Zn superoxide dismutase (SOD1). A major challenge in understanding ALS disease pathology has been the identification and atomic-level characterization of these conformers. Here, we use a combination of NMR methods to detect four distinct sparsely populated and transiently formed thermally accessible conformers in equilibrium with the native state of immature SOD1 (apoSOD1(2SH)). Structural models of two of these establish that they possess features present in the mature dimeric protein. In contrast, the other two are non-native oligomers in which the native dimer interface and the electrostatic loop mediate the formation of aberrant intermolecular interactions. Our results show that apoSOD1(2SH) has a rugged free energy landscape that codes for distinct kinetic pathways leading to either maturation or non-native association and provide a starting point for a detailed atomic-level understanding of the mechanisms of SOD1 oligomerization.


Asunto(s)
Pliegue de Proteína/efectos de la radiación , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Superóxido Dismutasa-1 , Temperatura
16.
J Mol Biol ; 426(19): 3214-3220, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25083919

RESUMEN

Understanding the mechanisms by which proteins fold into their three-dimensional structures, including a description of the intermediates that are formed during the folding process, remains a goal of protein science. Most studies are performed under carefully controlled conditions in which the folding reaction is monitored in a buffer solution that is far from the natural milieu of the cell. Here, we have used (13)C and (1)H relaxation dispersion NMR spectroscopy to study folding of the FF domain in both Escherichia coli and Saccharomyces cerevisiae cellular lysates. We find that a conformationally excited state is populated in both lysates, which is very similar in structure to a folding intermediate observed in previous studies in buffer, with the kinetics and thermodynamics of the interconversion between native and intermediate conformers somewhat changed. The results point to the importance of extending folding studies beyond the test tube yet emphasize that insights can be obtained through careful experiments recorded in controlled buffer solutions.


Asunto(s)
Escherichia coli/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Termodinámica
17.
J Biol Chem ; 289(40): 27911-23, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25122758

RESUMEN

Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr-Purcell-Meiboom-Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes.


Asunto(s)
Proteínas Proto-Oncogénicas c-fyn/química , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Animales , Calorimetría , Pollos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Electricidad Estática , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA