Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.678
Filtrar
1.
Int J Biol Macromol ; : 133661, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992546

RESUMEN

Chronic wounds are often caused by diabetes and present a challenging clinical problem due to vascular problems leading to ischemia. This inhibits proper wound healing by delaying inflammatory responses and angiogenesis. To address this problem, we have developed injectable particle-loaded hydrogels which sequentially release Granulocyte-macrophage- colony-stimulating-factor (GM-CSF) and Vascular endothelial growth factor (VEGF) encapsulated in polycaprolactone-lecithin-geleol mono-diglyceride hybrid particles. GM-CSF promotes inflammation, while VEGF facilitates angiogenesis. The hybrid particles (200-1000 nm) designed within the scope of the study can encapsulate the model proteins Bovine Serum Albumin 65 ±â€¯5 % and Lysozyme 77 ±â€¯10 % and can release stably for 21 days. In vivo tests and histological findings revealed that in the hydrogels containing GM-CSF/VEGF-loaded hybrid particles, wound depth decreased, inflammation phase increased, and fibrotic scar tissue decreased, while mature granulation tissue was formed on day 10. These findings confirm that the hybrid particles first initiate the inflammation phase by delivering GM-CSF, followed by VEGF, increasing the number of vascularization and thus increasing the healing rate of wounds. We emphasize the importance of multi-component and sequential release in wound healing and propose a unifying therapeutic strategy to sequentially deliver ligands targeting wound healing stages, which is very important in the treatment of the diabetic wounds.

2.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992688

RESUMEN

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Asunto(s)
Neoplasias Colorrectales , Células Supresoras de Origen Mieloide , ARN Interferente Pequeño , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Factor de Transcripción STAT3 , Animales , Células Supresoras de Origen Mieloide/metabolismo , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Humanos , Transducción de Señal/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Femenino , Ratones Endogámicos BALB C , Quinasas Janus/metabolismo , Inmunomodulación/efectos de los fármacos , Receptor de Factor Estimulante de Colonias de Macrófagos
3.
Alzheimers Dement ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946666

RESUMEN

INTRODUCTION: Vervets are non-human primates that share high genetic homology with humans and develop amyloid beta (Aß) pathology with aging. We expand current knowledge by examining Aß pathology, aging, cognition, and biomarker proteomics. METHODS: Amyloid immunoreactivity in the frontal cortex and temporal cortex/hippocampal regions from archived vervet brain samples ranging from young adulthood to old age was quantified. We also obtained cognitive scores, plasma samples, and cerebrospinal fluid (CSF) samples in additional animals. Plasma and CSF proteins were quantified with platforms utilizing human antibodies. RESULTS: We found age-related increases in Aß deposition in both brain regions. Bioinformatic analyses assessed associations between biomarkers and age, sex, cognition, and CSF Aß levels, revealing changes in proteins related to immune-related inflammation, metabolism, and cellular processes. DISCUSSION: Vervets are an effective model of aging and early-stage Alzheimer's disease, and we provide translational biomarker data that both align with previous results in humans and provide a basis for future investigations. HIGHLIGHTS: We found changes in immune and metabolic plasma biomarkers associated with age and cognition. Cerebrospinal fluid (CSF) biomarkers revealed changes in cell signaling indicative of adaptative processes. TNFRSF19 (TROY) and Artemin co-localize with Alzheimer's disease pathology. Vervets are a relevant model for translational studies of early-stage Alzheimer's disease.

4.
Front Mol Neurosci ; 17: 1397808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947218

RESUMEN

It is generally accepted that hydrocephalus is a consequence of the disbalance between cerebrospinal fluid (CSF) secretion and absorption which should in turn lead to CSF pressure gradient development and ventricular enlargement. To test CSF pressure gradient role in hydrocephalus development, we experimentally caused CSF system impairment at two sites in cats. In the first group of animals, we caused Sylvian aqueduct obstruction and recorded CSF pressure changes pre and post obstruction at three measuring sites (lateral ventricle -LV, cortical-CSS and lumbar subarachnoid space -LSS) during 15 min periods and in different body positions over 360 degrees. In the second group of experiments, we caused cervical stenosis by epidural plastic semiring implantation and monitored CSF pressure changes pre and post stenosis implantation at two measuring sites (lateral ventricle and lumbar subarachnoid space) during 15 min periods in different body positions over 360 degrees. Both groups of experimental animals had similar CSF pressures before stenosis or obstruction at all measuring points in the horizontal position. During head-up verticalization, CSF pressures inside the cranium gradually became more subatmospheric with no significant difference between LV and CSS, as they are measured at the same hydrostatic level, while CSF pressure inside LSS became more positive, causing the development of a large hydrostatic gradient between the cranial and the spinal space. With cervical stenosis, CSF pressure inside the cranium is positive during head-up verticalization, while in cats with aqueductal obstruction CSF pressure inside the CSS remains negative, as it was during control period. Concomitantly, CSF pressure inside LV becomes less negative, thus creating a small hydrostatic gradient between LV and CSS. Since CSF pressure and gradient changes occur only by shifting body position from the horizontal plane, our results indicate that cervical stenosis in a head-up vertical position reduces blood perfusion of the whole brain, while aqueductal obstruction impairs only the perfusion of the local periventricular brain tissue. It seems that, for evolutionary important bipedal activity, free craniospinal communication and good spinal space compliance represent crucial biophysical parameters for adequate cerebral blood perfusion and prevention of pathophysiological changes leading to the development of hydrocephalus.

5.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956598

RESUMEN

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Asunto(s)
Acuaporina 4 , Epéndimo , Hidrocefalia , Ratones Noqueados , Microglía , Animales , Epéndimo/metabolismo , Epéndimo/patología , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patología , Microglía/metabolismo , Acuaporina 4/metabolismo , Acuaporina 4/genética , Ratones , Acueducto del Mesencéfalo/metabolismo , Acueducto del Mesencéfalo/patología , Antígenos CD11/metabolismo , Antígenos CD11/genética , Ratones Endogámicos C57BL
6.
Cancer Diagn Progn ; 4(4): 529-533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962554

RESUMEN

Background/Aim: Granulocyte colony-stimulating factor (G-CSF)-producing neoplasms are relatively rare; however, little is known on the clinical features of G-CSF-producing lung cancer harboring activating epidermal growth factor receptor (EGFR) mutations. Case Report: A 66-year-old female was definitively diagnosed with G-CSF-producing lung cancer that was positive for EGFR mutations. She repeatedly received epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as osimertinib and afatinib. However, she developed resistance to these molecular-targeting drugs within 2 to 3 months after immediate shrinkage. Thus, the patient was treated with chemoimmunotherapy including bevacizumab, and demonstrated a slight survival benefit. Conclusion: Overall, G-CSF-producing lung cancers positive for EGFR mutations were resistant to different treatment modalities. Clinicians should be attentive to the potential resistance of G-CSF-producing EGFR mutant lung cancer to EGFR-TKI therapy.

7.
Cureus ; 16(6): e61582, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962607

RESUMEN

STUDY OBJECTIVE:  Epidural blood patches (EBPs) are frequently performed in children with cerebral palsy (CP) to manage post-dural puncture headache (PDPH) due to cerebrospinal fluid (CSF) leak after intrathecal baclofen pump (ITBP) placement or replacement procedures. The purpose of our study was to review the incidence and management of CSF leak following ITBP placement or replacement procedures in children with CP. The study was a retrospective review of 245 patients representing 310 surgical cases of baclofen pump insertion (n=141) or reinsertion (n=169) conducted at a 125-bed children's hospital with prominent specialty orthopedics surgical cases. MEASUREMENTS:  Demographic and clinical information was obtained from the anesthesia pain service database on all new ITBP placement and subsequent replacements over an eight-year period. MAIN RESULTS:  The overall incidence of CSF leak in our population was 16% (50 of 310) and 18% (25 of 141) with a new ITBP placement. Children with diplegia were associated with a threefold risk of developing CSF leak. Of patients who developed CSF leak (n=50), 68% (n=34) were successfully treated conservatively, while 32% (n=16) required EBPs. EBPs were successful in 87.5% (14 of 16) of patients at relieving PDPH on the first attempt.  Conclusions: CSF leak is a known problem after ITBP placement and replacement. Most patients were successfully treated with conservative management and EBPs were successful in patients failing conservative therapy. Diagnosing PDPH in non-verbal patients can be challenging.

8.
Transfusion ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965867

RESUMEN

BACKGROUND: Granulocyte transfusions for patients with prolonged neutropenia and severe infections has been a controversial practice. Previous studies suggest a benefit of high-dose granulocyte transfusions (≥0.6 × 109/kg), although, until recently, the consistent production of high-dose units has been challenging. Here, we present our experience and results utilizing high-dose granulocyte transfusions at a large, tertiary academic medical center for the treatment of infections in adult, neutropenic patients. STUDY DESIGN/METHODS: A retrospective chart review (2018-2021) was conducted for all patients who received high-dose granulocyte transfusions from donors stimulated with granulocyte colony-stimulating factor (G-CSF) and dexamethasone. Gathered parameters included patient demographics, clinical history, infection status, dose, clinical outcomes, pre- and post-absolute neutrophil count (ANC), and transfusion times including time between granulocyte collection, administration, and posttransfusion ANC count. Gathered parameters were summarized using descriptive statistics, outcomes were assessed utilizing Kaplan-Meier curves/log-rank/regression testing. RESULTS: Totally 28 adult, neutropenic patients refractory to antimicrobial agents and/or G-CSF received a total of 173 granulocyte concentrates. Median ANC increased from 0.7 × 109/L pre-transfusion to 1.6 × 109/L posttransfusion. The mean granulocyte yield was 77.4 × 109 resulting in an average dose per kilogram of 0.90 × 109 ± 0.30 × 109 granulocytes. Composite day 42 survival and microbial response was 42.9% (n = 12/28) without significant adverse reactions. DISCUSSION: Here, we demonstrate the successful and safe implementation of high-dose granulocyte transfusions for neutropenic patients. Given the rapid and consistent production, distribution, and improved granulocyte quality, further investigations to determine the clinical efficacy of G-CSF primed granulocyte transfusions is now possible.

9.
J Neuroinflammation ; 21(1): 168, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961498

RESUMEN

BACKGROUND: The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS: In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION: Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.


Asunto(s)
Macrófagos , Ratones Transgénicos , Cuerpo Vítreo , Saco Vitelino , Animales , Ratones , Cuerpo Vítreo/citología , Saco Vitelino/citología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Animales Recién Nacidos
10.
Natl Sci Rev ; 11(6): nwae142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966071

RESUMEN

Decidual natural killer (dNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy in both mice and humans, and emerging single-cell transcriptomic studies have uncovered various human dNK subsets that are disrupted in patients experiencing recurrent early pregnancy loss (RPL) at early gestational stage, suggesting a connection between abnormal proportions or characteristics of dNK subsets and RPL pathogenesis. However, the functional mechanisms underlying this association remain unclear. Here, we established a mouse model by adoptively transferring human dNK cells into pregnant NOG (NOD/Shi-scid/IL-2Rγnull) mice, where human dNK cells predominantly homed into the uteri of recipients. Using this model, we observed a strong correlation between the properties of human dNK cells and pregnancy outcome. The transfer of dNK cells from RPL patients (dNK-RPL) remarkably worsened early pregnancy loss and impaired placental trophoblast cell differentiation in the recipients. These adverse effects were effectively reversed by transferring CD56+CD39+ dNK cells. Mechanistic studies revealed that CD56+CD39+ dNK subset facilitates early differentiation of mouse trophoblast stem cells (mTSCs) towards both invasive and syncytial pathways through secreting macrophage colony-stimulating factor (M-CSF). Administration of recombinant M-CSF to NOG mice transferred with dNK-RPL efficiently rescued the exacerbated pregnancy outcomes and fetal/placental development. Collectively, this study established a novel humanized mouse model featuring functional human dNK cells homing into the uteri of recipients and uncovered the pivotal role of M-CSF in fetal-supporting function of CD56+CD39+ dNK cells during early pregnancy, highlighting that M-CSF may be a previously unappreciated therapeutic target for intervening RPL.

11.
Transl Res ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969167

RESUMEN

In general, ensuring safety is the top priority of a new modality. Although oncolytic virus armed with an immune stimulatory transgene (OVI) showed some promise, the strategic concept of simultaneously achieving maximum effectiveness and minimizing side effects has not been fully explored. We generated a variety of survivin-responsive "conditionally replicating adenoviruses that can target and treat cancer cells with multiple factors (m-CRAs)" (Surv.m-CRAs) armed with the granulocyte-macrophage colony-stimulating factor (GM-CSF) transgene downstream of various promoters using our m-CRA platform technology. We carefully analyzed both therapeutic and adverse effects of them in the in vivo syngeneic Syrian hamster cancer models. Surprisingly, an intratumor injection of a conventional OVI, which expresses the GM-CSF gene under the constitutively and strongly active "cytomegalovirus enhancer and ß-actin promoter", provoked systemic and lethal GM-CSF circulation and shortened overall survival (OS). In contrast, a new conceptual type of OVI, which expressed GM-CSF under the cancer-predominant and mildly active E2F promoter or the moderately active "Rous sarcoma virus long terminal repeat", not only abolished lethal adverse events but also prolonged OS and systemic anti-cancer immunity. Our study revealed a novel concept that optimal expression levels of an immune stimulatory transgene regulated by a suitable upstream promoter is crucial for achieving high safety and maximal therapeutic effects simultaneously in OVI therapy. These results pave the way for successful development of the next-generation OVI and alert researchers about possible problems with ongoing clinical trials.

13.
World Neurosurg ; 187: 288-293, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970199

RESUMEN

Cerebrospinal fluid (CSF) leaks may occur at the skull base or along the spinal column and can cause a variety of debilitating neurological symptoms for patients. Recognizing the potential presence of a CSF leak and then identifying its source are necessary for accurate diagnosis and definitive treatment. A standardized workflow can be followed for successful leak localization, which often requires several diagnostic studies, and for definitive leak treatment, which can range from minimally invasive, needle-based approaches to a variety of surgical corrections. This review paper provides an overview of epidemiology, pathophysiology, and diagnostic workup for CSF leaks and introduces available treatment options. An illustrative case of a skull base CSF leak demonstrating diagnosis and surgical correction is provided.


Asunto(s)
Pérdida de Líquido Cefalorraquídeo , Humanos , Pérdida de Líquido Cefalorraquídeo/terapia , Pérdida de Líquido Cefalorraquídeo/cirugía , Pérdida de Líquido Cefalorraquídeo/diagnóstico , Pérdida de Líquido Cefalorraquídeo/diagnóstico por imagen , Base del Cráneo/cirugía , Base del Cráneo/diagnóstico por imagen , Procedimientos Neuroquirúrgicos/métodos
14.
World Neurosurg ; 187: 294-303, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970200

RESUMEN

The confirmation of cerebrospinal fluid (CSF) leaks in the setting of spontaneous intracranial hypotension (SIH) by imaging involves a growing toolset of multimodal advanced spinal and skull base imaging techniques, for which exists a unique set of challenges for each CSF leak type. Furthermore, the repertoire of minimally invasive CSF leak treatment beyond nontargeted epidural blood patch administration has grown widely, with varied practices across institutions. This review describes current diagnostic imaging and treatment modalities as they apply to the challenges of CSF leak localization and management.


Asunto(s)
Pérdida de Líquido Cefalorraquídeo , Hipotensión Intracraneal , Procedimientos Quirúrgicos Mínimamente Invasivos , Humanos , Pérdida de Líquido Cefalorraquídeo/terapia , Pérdida de Líquido Cefalorraquídeo/diagnóstico por imagen , Pérdida de Líquido Cefalorraquídeo/cirugía , Hipotensión Intracraneal/terapia , Hipotensión Intracraneal/diagnóstico por imagen , Hipotensión Intracraneal/etiología , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Parche de Sangre Epidural/métodos , Imagen por Resonancia Magnética
15.
World Neurosurg ; 187: 304-312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970201

RESUMEN

Spontaneous spinal cerebrospinal fluid (CSF) leaks are uncommon but can be neurologically debilitating. When initial treatments fail, definitive repair or closure of the leak is indicated. Depending upon the type of leak present, innovative strategies for their treatment have been developed. Among them are open surgical techniques using a transdural approach for the closure of ventral CSF leaks, minimally invasive tubular techniques for the reduction and repair of lateral meningeal diverticula, and endovascular embolization of CSF-venous fistulas. Illustrative cases demonstrating the indications for and implementation of these techniques are provided.


Asunto(s)
Pérdida de Líquido Cefalorraquídeo , Humanos , Pérdida de Líquido Cefalorraquídeo/cirugía , Pérdida de Líquido Cefalorraquídeo/terapia , Embolización Terapéutica/métodos , Procedimientos Neuroquirúrgicos/métodos , Procedimientos Endovasculares/métodos
16.
medRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38947015

RESUMEN

INTRODUCTION: Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting frequently show early AD pathology on cortical biopsy, which is predictive of progression to clinical AD. The objective of this study was to use samples from this cohort to identify CSF biomarkers for AD-related CNS pathophysiologic changes using tissue and fluids with early pathology, free of post-mortem artifact. METHODS: We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with previously documented pathologic and transcriptomic changes. RESULTS: AD pathology on biopsy correlates with CSF ß-amyloid-40/42, neurofilament light chain (NfL), and phospho-tau-181(p-tau181)/ß-amyloid-42, while several gene expression modules correlate with NfL. Proteomic analysis highlights 7 core proteins that correlate with pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies disease-relevant groups that correlate with biopsy data.. DISCUSSION: As additional biomarkers are added to AD diagnostic panels, our work provides insight into the CNS pathophysiology these markers are tracking.

17.
Biochem Biophys Res Commun ; 729: 150342, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38981402

RESUMEN

Despite viral suppression by effective combined antiretroviral therapy, HIV-1-infected individuals have an increased risk of non-AIDS-related overall morbidity, which is due to the persistent chronic inflammation exemplified by the activation of monocytes, such as increased CD16high subset, and elevated plasma level of soluble CD163 (sCD163) and soluble CD14 (sCD14). Here, we show that IL-10, which has been recognized as anti-inflammatory, induces these activated phenotypes of monocytes in vitro. IL-10 increased CD16high monocytes, which was due to the upregulation of CD16 mRNA expression and completely canceled by an inhibitor of Stat3. Moreover, IL-10 increased the production of sCD163 and sCD14 by monocytes, which was consistent with the upregulation of cell surface expression of CD163 and CD14, and mRNA expression of CD163. However, unlike the IL-10-indeuced upregulation of CD16, that of CD14 was minimally affected by the Stat3 inhibitor. Furthermore, the IL-10-induced upregulation of CD163 protein and mRNA was partially inhibited by the Stat3 inhibitor, but completely canceled by an inhibitor of AMPK, an upstream kinase of Stat3 and PI3K/Akt/mTORC1 pathways. In this study, we also found that HIV-1 pathogenic protein Nef, which is known to persist in plasma of virally-suppressed individuals, induced IL-10 production in monocyte-derived macrophages. Our results may suggest that IL-10, which is inducible by Nef-activated macrophages, is one of drivers for activated phenotypes of monocytes in virally-suppressed individuals, and that IL-10 induces the increased CD16high monocytes and elevated level of sCD163 and sCD14 through the activation of different signaling pathways.

18.
Cureus ; 16(6): e61799, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975434

RESUMEN

Objective This study aims to investigate the association between specific imaging parameters, namely, the Evans index (EI) and ventricular volume (VV), and the variation in gait speed observed in patients with idiopathic normal pressure hydrocephalus (iNPH) before and after cerebrospinal fluid (CSF) removal/lumbar drain (LD). Furthermore, it seeks to identify which imaging parameters are the most reliable predictors for significant improvements in gait speed post procedure. Methods In this retrospective analysis, the study measured the gait speed of 35 patients diagnosed with idiopathic normal pressure hydrocephalus (iNPH) before and after they underwent CSF removal. Before lumbar drain (LD), brain images were segmented to calculate the Evans index and ventricular volume. The study explored the relationship between these imaging parameters (the Evans index and ventricular volume) and the improvement in gait speed following CSF removal. Patients were divided into two categories based on the degree of improvement in gait speed, and we compared the imaging parameters between these groups. Receiver operating characteristic (ROC) curve analysis was employed to determine the optimal imaging parameter thresholds predictive of gait speed enhancement. Finally, the study assessed the predictive accuracy of these thresholds for identifying patients likely to experience improved gait speed post-LD. Results Following CSF removal/lumbar drain, the participants significantly improved in gait speed, as indicated by a paired sample t-test (p-value = 0.0017). A moderate positive correlation was observed between the imaging parameters (EI and VV) and the improvement in gait speed post-LD. Significant differences were detected between the two patient groups regarding EI, VV, and a composite score (statistical test value = 3.1, 2.8, and 2.9, respectively; p-value < 0.01). Receiver operating characteristic (ROC) curve analysis identified the optimal thresholds for the EI and VV to be 0.39 and 110.78 cm³, respectively. The classification based on these thresholds yielded significant associations between patients displaying favorable imaging parameters and those demonstrating improved gait speed post-LD, with chi-square (χ²) values of 8.5 and 7.1, respectively, and p-values < 0.01. Furthermore, these imaging parameter thresholds had a 74% accuracy rate in predicting patients who would improve post-LD. Conclusion The study demonstrates that ventricle volume and the Evans index can significantly predict gait speed improvement after lumbar drain (LD) in patients with iNPH.

19.
J Neurosurg Case Lessons ; 8(2)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976925

RESUMEN

BACKGROUND: Space-occupying tumor bed cysts may exceptionally happen after the resection of diffuse low-grade glioma. Their mechanism and management remain debated. The authors report two cases of tumor bed cysts occurring after the resection of a left temporal diffuse low-grade glioma with two different evolutions. OBSERVATIONS: The first patient showed a spontaneous decrease in the cyst volume and did not report any symptoms. In contrast, the second patient showed a progressive increase in the cyst volume and reported headaches and difficulties in finding words. Endoscopic cyst fenestration was performed and led to symptom relief and normalization of the surgical cavity. LESSONS: A tumor bed cyst is a rare complication of temporal low-grade glioma resection. Its formation is due to entrapment of the choroid plexus in the temporal horn widely opened into the surgical cavity. Endoscopic cyst fenestration should be offered only in symptomatic cases. https://thejns.org/doi/10.3171/CASE23674.

20.
Neuroradiology ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958705

RESUMEN

PURPOSE: Infants undergoing CSF shunting procedures face a rare complication which we propose to rename "Widespread Haemorrhages in Infants Post-Shunting" (WHIPS) to better capture this unique phenomenon specific to infants undergoing CSF diversion. Our objective is to analyse the risk factors for WHIPS development and provide a detailed neuroradiological description of these haemorrhages. MATERIALS AND METHODS: A radiology information system (RIS) was searched using the search terms "shunt" and/or "catheter" and/or "drain" and/or "ventriculoperitoneal" and/or "VP" between September 2008 to January 2021 for patients < 12 months of age. Clinical data was compiled for each patient meeting the inclusion criteria. Included cases were reviewed by three radiologists for the presence of WHIPS with calculation of the bifrontal ratio and documenting haemorrhage number, morphology, location and lobar distribution. RESULTS: 51 patients met inclusion criteria, 8 WHIPS patients and 43 controls. There was a statistically significant correlation between a larger post-op head circumference and WHIPS (p = 0.04). WHIPS was associated with post-haemorrhagic hydrocephalus and post-infectious hydrocephalus (p = 0.009). WHIPS were identified in the cortico-subcortical regions, periventricular white matter, and deep white matter. Haemorrhages were either punctate, ovoid or confluent. Haemorrhages ranged from single to innumerable. CONCLUSIONS: WHIPS represent a rare and under-recognised complication of CSF shunting unique to the infantile population. We postulate deep and superficial medullary venous haemorrhage as an underlying mechanism related to disordered intracranial hydrodynamics which are exacerbated in the infantile population due to underdeveloped arachnoid granulations and a compliant skull.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...