Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Am J Nucl Med Mol Imaging ; 14(2): 122-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737645

RESUMEN

As a regulator in renin-angiotensin-aldosterone system, angiotensin-converting enzyme 2 (ACE2) closely correlated with tumor progression of pancreatic cancer, meantime, was easily affected by a variety of factors. [99mTc]Tc-cyc-DX600 SPECT was established as an ACE2-specific imaging protocol to figure out the ACE2 status in pancreatic tumor. BALB/C-NU mice were used to prepare the subcutaneous cell derived xenograft (CDX) models with HEK-293T or HEK-293T/hACE2 cells to validate ACE2 specificity of [99mTc]Tc-cyc-DX600 SPECT and establish SPECT imaging protocol. On the basis of [99mTc]Tc-cyc-DX600 SPECT and [18F]F-FDG PET/CT, ACE2-dependence on tumor size and tumor metabolism were further verified on orthotopic pancreatic cancer model with KPC cells. Immunohistochemical analysis was used to demonstrate the findings on ACE2 SPECT. [99mTc]Tc-cyc-DX600 was of superior tumor uptake in HEK-293T/hACE2 CDX than wild type (6.74 ± 0.31 %ID/mL vs 1.83 ± 0.26 %ID/mL at 1.5 h post injection (p.i.); 3.14 ± 0.31 %ID/mL vs 1.16 ± 0.15 %ID/mL at 4.5 h p.i.). For the CDX models with PANC-1 cells, a significant negative correlation between the slope of tumor volume and tumor uptake was observed (r = -0.382 for the 1-4th day; r = -0.146 for the 1-5th day; r = -0.114 for the 1-6th day; r = -0.152 for the 1-7th day; but P > 0.05 for all). For orthotopic pancreatic cancer model, the linear correlation between FDG PET and ACE2 SPECT of the pancreatic lesions was negative (r = -0.878), the quantitative values of ACE2 SPCET was positively correlated with the volume of primary lesions (r = 0.752) and also positively correlated with the quantitative values of ACE2 immunohistochemical analysis (r = 0.991). Conclusively, [99mTc]Tc-cyc-DX600 SPECT is an ACE2-specific imaging protocol with clinical translational potential, adding multidimensional information on the disease progression of pancreatic cancer.

2.
FEBS J ; 291(14): 3080-3103, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648231

RESUMEN

Living organisms are frequently exposed to multiple biotic and abiotic stress forms during their lifetime. Organisms cope with stress conditions by regulating their gene expression programs. In response to different environmental stress conditions, yeast cells activate different tolerance mechanisms, many of which share common signaling pathways. Flocculation is one of the key mechanisms underlying yeast survival under unfavorable environmental conditions, and the Tup1-Cyc8 corepressor complex is a major regulator of this process. Additionally, yeast cells can utilize different mitogen-activated protein kinase (MAPK) pathways to modulate gene expression during stress conditions. Here, we show that the high osmolarity glycerol (HOG) MAPK pathway is involved in the regulation of yeast flocculation. We observed that the HOG MAPK pathway was constitutively activated in flocculating cells, and found that the interaction between phosphorylated Hog1 and the FLO genes promoter region increased significantly upon sodium chloride exposure. We found that treatment of cells with cantharidin decreased Hog1 phosphorylation, causing a sharp reduction in the expression of FLO genes and the flocculation phenotype. Similarly, deletion of HOG1 in yeast cells reduced flocculation. Altogether, our results suggest a role for HOG MAPK signaling in the regulation of FLO genes and yeast flocculation.


Asunto(s)
Floculación , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosforilación , Glicerol/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Regiones Promotoras Genéticas , Presión Osmótica
3.
Microb Genom ; 10(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38529898

RESUMEN

The transcriptome from a Saccharomyces cerevisiae tup1 deletion mutant was one of the first comprehensive yeast transcriptomes published. Subsequent transcriptomes from tup1 and cyc8 mutants firmly established the Tup1-Cyc8 complex as predominantly acting as a repressor of gene transcription. However, transcriptomes from tup1/cyc8 gene deletion or conditional mutants would all have been influenced by the striking flocculation phenotypes that these mutants display. In this study, we have separated the impact of flocculation from the transcriptome in a cyc8 conditional mutant to reveal those genes (i) subject solely to Cyc8p-dependent regulation, (ii) regulated by flocculation only and (iii) regulated by Cyc8p and further influenced by flocculation. We reveal a more accurate list of Cyc8p-regulated genes that includes newly identified Cyc8p-regulated genes that were masked by the flocculation phenotype and excludes genes which were indirectly influenced by flocculation and not regulated by Cyc8p. Furthermore, we show evidence that flocculation exerts a complex and potentially dynamic influence upon global gene transcription. These data should be of interest to future studies into the mechanism of action of the Tup1-Cyc8 complex and to studies involved in understanding the development of flocculation and its impact upon cell function.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Floculación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcripción Genética
4.
Plant Commun ; 5(6): 100851, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38409784

RESUMEN

Convergent morphological evolution is widespread in flowering plants, and understanding this phenomenon relies on well-resolved phylogenies. Nuclear phylogenetic reconstruction using transcriptome datasets has been successful in various angiosperm groups, but it is limited to taxa with available fresh materials. Asteraceae, which are one of the two largest angiosperm families and are important for both ecosystems and human livelihood, show multiple examples of convergent evolution. Nuclear Asteraceae phylogenies have resolved relationships among most subfamilies and many tribes, but many phylogenetic and evolutionary questions regarding subtribes and genera remain, owing to limited sampling. Here, we increased the sampling for Asteraceae phylogenetic reconstruction using transcriptomes and genome-skimming datasets and produced nuclear phylogenetic trees with 706 species representing two-thirds of recognized subtribes. Ancestral character reconstruction supports multiple convergent evolutionary events in Asteraceae, with gains and losses of bilateral floral symmetry correlated with diversification of some subfamilies and smaller groups, respectively. Presence of the calyx-related pappus may have been especially important for the success of some subtribes and genera. Molecular evolutionary analyses support the likely contribution of duplications of MADS-box and TCP floral regulatory genes to innovations in floral morphology, including capitulum inflorescences and bilaterally symmetric flowers, potentially promoting the diversification of Asteraceae. Subsequent divergences and reductions in CYC2 gene expression are related to the gain and loss of zygomorphic flowers. This phylogenomic work with greater taxon sampling through inclusion of genome-skimming datasets reveals the feasibility of expanded evolutionary analyses using DNA samples for understanding convergent evolution.


Asunto(s)
Asteraceae , Evolución Molecular , Filogenia , Asteraceae/genética , Asteraceae/anatomía & histología , Transcriptoma , Genoma de Planta
5.
Am J Bot ; 111(2): e16271, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38265745

RESUMEN

PREMISE: Duplicated genes (paralogs) are abundant in plant genomes, and their retention may influence the function of genetic programs and contribute to evolutionary novelty. How gene duplication affects genetic modules and what forces contribute to paralog retention are outstanding questions. The CYCLOIDEA(CYC)-dependent flower symmetry program is a model for understanding the evolution of gene duplication, providing multiple examples of paralog partitioning and novelty. However, a novel CYC gene lineage duplication event near the origin of higher core Lamiales (HCL) has received little attention. METHODS: To understand the evolutionary fate of duplicated HCL CYC2 genes, we determined the effects on flower symmetry by suppressing MlCYC2A and MlCYC2B expression using RNA interference (RNAi). We determined the phenotypic effects on flower symmetry in single- and double-silenced backgrounds and coupled our functional analyses with expression surveys of MlCYC2A, MlCYC2B, and a putative downstream RADIALIS (MlRAD5) ortholog. RESULTS: MlCYC2A and MlCYC2B jointly contribute to bilateral flower symmetry. MlCYC2B exhibits a clear dorsal flower identity function and may additionally function in carpel development. MlCYC2A functions in establishing dorsal petal shape. Further, our results suggest an MlCYC2A-MlCYC2B regulatory interaction, which may affect pathway homeostasis. CONCLUSIONS: Our results suggest that CYC paralogs specific to higher core Lamiales may be selectively retained for their joint contribution to bilateral flower symmetry, similar to the independently derived CYC paralogs in the Lamiales model for bilateral flower symmetry research, Antirrhinum majus (snapdragon).


Asunto(s)
Antirrhinum , Lamiales , Mimulus , Filogenia , Mimulus/genética , Genes de Plantas , Proteínas de Plantas/genética , Lamiales/genética , Flores , Antirrhinum/genética , Antirrhinum/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Constraints ; 28(2): 138-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545838

RESUMEN

Constraint programming has proven to be a successful framework for determining whether a given instance of the three-dimensional stable matching problem with cyclic preferences (3dsm-cyc) admits a solution. If such an instance is satisfiable, constraint models can even compute its optimal solution for several different objective functions. On the other hand, the only existing output for unsatisfiable 3dsm-cyc instances is a simple declaration of impossibility. In this paper, we explore four ways to adapt constraint models designed for 3dsm-cyc to the maximum relaxation version of the problem, that is, the computation of the smallest part of an instance whose modification leads to satisfiability. We also extend our models to support the presence of costs on elements in the instance, and to return the relaxation with lowest total cost for each of the four types of relaxation. Empirical results reveal that our relaxation models are efficient, as in most cases, they show little overhead compared to the satisfaction version.

8.
Animals (Basel) ; 13(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37443951

RESUMEN

Leishmaniasis is spreading in Europe, especially in endemic countries such as Italy and Spain, in part due to ongoing climate change and the increase in travel and migration. Although Leishmania infantum is the main agent responsible for this disease in humans and animals, other species and hybrids have been detected. This highlights the need to continue isolating and characterizing Leishmania strains from biological samples of infected hosts. In this study, we characterized the recently isolated parasites L. infantum NAV and L. infantum TDL, obtained from naturally infected mammals (dogs), and we compared them with the widely distributed and studied strain L. infantum BCN 150. Both NAV and TDL promastigotes showed a slower growth rate than BCN 150 and were significantly more sensitive to amphotericin B and miltefosine. Furthermore, the expression of the CYCA gene (involved in cell cycle and proliferation) was significantly downregulated in NAV and TDL isolates. On the other hand, CYC6 (implicated in treatment resistance) and APG9 (related to the recycling of protein under stress conditions and/or while undergoing a differentiation process and treatment resistance) levels were upregulated, compared to those measured in BCN 150. Both isolates displayed a higher infection capacity (>3 amastigotes per macrophage and >70% of infected macrophages) compared to controls (<2 amastigotes/cells and <50% of infected macrophages). Finally, a higher susceptibility to miltefosine treatment was observed in intracellular NAV and TDL amastigotes. In conclusion, TDL and NAV are novel Leishmania isolates that might be useful for in vitro and in vivo assays that will allow a better understanding of the parasite biology in Mediterranean areas.

9.
Gene ; 878: 147572, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37336275

RESUMEN

Chromatin-mediated transcriptional regulation is modulated by post-translational modifications of the core histones, particularly the H3 and H4 unstructured amino termini, or "tails". In budding yeast, the H3 and H4 tails can be deacetylated by Rpd3 to repress specific target genes, and hypoacetylated histones can facilitate recruitment of the Tup1-Ssn6 complex to effect gene repression. However, the extent to which these mechanisms are used to effect repression by the histone tails, and whether other factors similarly collaborate with the tails to facilitate gene repression, has not been determined. Here, a chromatin modifier compendium of 170 gene expression profiles from yeast strains mutated for chromatin-related genes was used to query the effect of the corresponding mutations on gene cohorts repressed by the histone H3 and H4 tails and/or by Rpd3. The resulting analysis reveals that repression of nearly all of the genes repressed by the histone tails requires Rpd3 and/or the Tup1-Ssn6 complex. Repression by Rpd3 occurs via the Rpd3-L complex, and TFIID-dominated genes are underrepresented among genes repressed by mutations or deletions of the H3 or H4 tails, in accord with previous work. In addition, Bur6, the yeast homolog of human NC2α, is required for repression at ∼50 % of genes repressed by the H3 or H4 tail. These results illuminate genome-wide repression mechanisms utilized by the histone tails in yeast and raise new questions regarding the role of Bur6 in histone tail-mediated repression and whether parallels exist in metazoan cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Animales , Humanos , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/genética , Saccharomycetales/genética , Cromatina/genética , Cromatina/metabolismo , Transcripción Genética
10.
Front Neural Circuits ; 17: 1124221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025991

RESUMEN

Motor skill learning has been linked to functional and structural changes in the brain. Musicians and athletes undergo intensive motor training through the practice of an instrument or sport and have demonstrated use-dependent plasticity that may be subserved by long-term potentiation (LTP) processes. We know less, however, about whether the brains of musicians and athletes respond to plasticity-inducing interventions, such as repetitive transcranial magnetic stimulation (rTMS), differently than those without extensive motor training. In a pharmaco-rTMS study, we evaluated motor cortex excitability before and after an rTMS protocol in combination with oral administration of D-cycloserine (DCS) or placebo. In a secondary covariate analysis, we compared results between self-identified musicians and athletes (M&As) and non-musicians and athletes (non-M&As). Three TMS measures of cortical physiology were used to evaluate plasticity. We found that M&As did not have higher baseline corticomotor excitability. However, a plasticity-inducing protocol (10-Hz rTMS in combination with DCS) strongly facilitated motor-evoked potentials (MEPs) in M&As, but only weakly in non-M&As. Placebo and rTMS produced modest facilitation in both groups. Our findings suggest that motor practice and learning create a neuronal environment more responsive to plasticity-inducing events, including rTMS. These findings may explain one factor contributing to the high inter-individual variability found with MEP data. Greater capacity for plasticity holds implications for learning paradigms, such as psychotherapy and rehabilitation, by facilitating LTP-like activation of key networks, including recovery from neurological/mental disorders.


Asunto(s)
Potenciación a Largo Plazo , Plasticidad Neuronal , Humanos , Atletas , Potenciales Evocados Motores/fisiología , Aprendizaje , Plasticidad Neuronal/fisiología , Estimulación Magnética Transcraneal/métodos
11.
Curr Issues Mol Biol ; 45(3): 2035-2059, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36975501

RESUMEN

CYCLOIDEA (CYC)-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The CYC-like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number of members that are crucial regulators of floral symmetry. To date, studies on CYC-like genes have mainly focused on plants with actinomorphic and zygomorphic flowers, including Fabaceae, Asteraceae, Scrophulariaceae, and Gesneriaceae species and the effects of CYC-like gene duplication events and diverse spatiotemporal expression patterns on flower development. The CYC-like genes generally affect petal morphological characteristics and stamen development, as well as stem and leaf growth, flower differentiation and development, and branching in most angiosperms. As the relevant research scope has expanded, studies have increasingly focused on the molecular mechanisms regulating CYC-like genes with different functions related to flower development and the phylogenetic relationships among these genes. We summarize the status of research on the CYC-like genes in angiosperms, such as the limited research conducted on CYC1 and CYC3 clade members, the necessity to functionally characterize the CYC-like genes in more plant groups, the need for investigation of the regulatory elements upstream of CYC-like genes, and exploration of the phylogenetic relationships and expression of CYC-like genes with new techniques and methods. This review provides theoretical guidance and ideas for future research on CYC-like genes.

12.
Curr Genet ; 69(2-3): 127-139, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36854981

RESUMEN

Transcriptional corepressors Sin3, Cyc8 and Tup1 are important for downregulation of gene expression by recruiting various histone deacetylases once they gain access to defined genomic locations by interaction with pathway-specific repressor proteins. In this work we systematically investigated whether 17 yeast repressor proteins (Cti6, Dal80, Fkh1, Gal80, Mig1, Mot3, Nrg1, Opi1, Rdr1, Rox1, Sko1, Ume6, Ure2, Xbp1, Yhp1, Yox1 and Whi5) representing several unrelated regulatory pathways are able to bind to Sin3, Cyc8 and Tup1. Our results show that paired amphipathic helices 1 and 2 (PAH1 and PAH2) of Sin3 are functionally redundant for some regulatory pathways. WD40 domains of Tup1 proved to be sufficient for interaction with repressor proteins. Using length variants of selected repressors, we mapped corepressor interaction domains (CIDs) in vitro and assayed gene repression in vivo. Systematic comparison of CID minimal sequences allowed us to define several related positional patterns of hydrophobic amino acids some of which could be confirmed as functionally supported by site-directed mutagenesis. Although structural predictions indicated that certain CIDs may be α-helical, most repression domains appear to be randomly structured and must be considered as intrinsically disordered regions (IDR) adopting a defined conformation only by interaction with a corepressor.


Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/genética , Glutatión Peroxidasa/genética , Priones/genética , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo
13.
Rheumatology (Oxford) ; 62(11): 3662-3671, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36847447

RESUMEN

OBJECTIVE: To identify characteristics of granulomatosis with polyangiitis (GPA) associated with induction failure, describe salvage therapies and their efficacy. METHODS: We conducted a nationwide retrospective case-control study of GPA with induction failure between 2006 and 2021. Each patient with induction failure was randomly paired to three controls matched for age, sex and induction treatment. RESULTS: We included 51 patients with GPA and induction failure (29 men and 22 women). At induction therapy, median age was 49 years. Twenty-seven patients received intravenous cyclophosphamide (ivCYC) and 24 rituximab (RTX) as induction therapy. Patients with ivCYC induction failure more frequently had PR3-ANCA (93% vs 70%, P = 0.02), relapsing disease (41% vs 7%, P < 0.001) and orbital mass (15% vs 0%, P < 0.01) compared with controls. Patients with disease progression despite RTX induction therapy more frequently had renal involvement (67% vs 25%, P = 0.02) with renal failure (serum creatinine >100 µmol/l in 42% vs 8%, P = 0.02) compared with controls. After salvage therapy, remission was achieved at 6 months in 35 (69%) patients. The most frequent salvage therapy was switching from ivCYC to RTX (or vice versa), showing an efficacy in 21/29 (72%). Remission was achieved in nine (50%) patients with inappropriate response to ivCYC, while in patients with progression after RTX induction, remission was achieved in four (100%) who received ivCYC (with or without immunomodulatory therapy), but only in three (50%) after adding immunomodulatory therapy alone. CONCLUSION: In patients with induction failure, characteristics of GPA, salvage therapies and their efficacy vary according to induction therapy and failure modality.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Granulomatosis con Poliangitis , Masculino , Humanos , Femenino , Persona de Mediana Edad , Granulomatosis con Poliangitis/complicaciones , Granulomatosis con Poliangitis/tratamiento farmacológico , Estudios Retrospectivos , Estudios de Casos y Controles , Resultado del Tratamiento , Rituximab/uso terapéutico , Ciclofosfamida/uso terapéutico , Factores de Riesgo , Inducción de Remisión
14.
Eur J Nucl Med Mol Imaging ; 50(7): 2056-2067, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36847824

RESUMEN

PURPOSE: For the tumor-specific ACE2 expression, this research aimed to establish and verify ACE2-targeted PET imaging in differentiating tumors with distinct ACE2 expression. METHODS: 68Ga-cyc-DX600 was synthesized as tracer of ACE2 PET. NOD-SCID mice were used to prepare the subcutaneous tumor models with HEK-293 or HEK-293T/hACE2 cells to verify ACE2 specificity, with other kinds of tumor cells to evaluate the diagnostic efficiency for ACE2 expression, additionally, immunohistochemical analysis and western blot were used to certify the findings on ACE2 PET, which was then performed on four cancer patients and compared with FDG PET. RESULTS: The metabolic clearance of 68Ga-cyc-DX600 was initially completed in 60 min, realizing an ACE2-dependent and organ-specific background of ACE2 PET; meanwhile, tracer uptake of subcutaneous tumor models was of a definite dependence on ACE2 expression (r = 0.903, p < 0.05), and the latter served as the primary factor when ACE2 PET was used for the differential diagnosis of ACE2-related tumors. In pre-clinical practice, a comparable tumor-to-background ratio was acquired in ACE2 PET of a lung cancer patient at 50 and 80 min post injection; the quantitative values of ACE2 PET and FDG PET were negatively correlated (r = - 0.971 for SUVmax, p = 0.006; r = - 0.994 for SUVmean, p = 0.001) in an esophageal cancer patient, no matter the primary lesion or metastasis. CONCLUSIONS: 68Ga-cyc-DX600 PET was an ACE2-specific imaging for the differential diagnosis of tumors and added complementary value to conventional nuclear medicine diagnosis, such as FDG PET on glycometabolism.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Ratones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos de Galio , Enzima Convertidora de Angiotensina 2 , Fluorodesoxiglucosa F18 , Células HEK293 , Ratones Endogámicos NOD , Ratones SCID
15.
J Med Virol ; 95(2): e28470, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606602

RESUMEN

Due to the COVID-19 pandemic, a series of sequelae, such as fatigue, tachypnea, and ageusia, appeared in long COVID patients, but the pathological basis was still uncertain. The targeted radiopharmaceuticals were of potential to systemically and dynamically trace the pathological changes. For the key ACE2 protein in the virus-host interaction, 68 Ga-cyc-DX600 was developed on the basis of DX600 as a PET tracer of ACE2 fluctuation and maintained the ability in differentiating ACE and ACE2. In the temporary infection model inhaled with the radio-traceable pseudovirus in the upper respiratory tract of male humanized ACE2 (hACE2) mice, organ-specific ACE2 dysfunction in acute period and the following ACE2 recovery in a relatively long period was visualized and quantified by ACE2 PET, revealing a complex pattern of virus concentration-dependent degree and time period-dependent tendency of ACE2 recovery, mainly a sudden decrease of apparent ACE2 in the heart, liver, kidneys, lungs, and so on, but the liver was of a quick functional compensation on ACE2 expression after a temporary decrease. ACE2 expression of most organs has recovered to a normal level at 15 days post inhalation, with brain and genitals still of a decreased SUVACE2 ;  meanwhile, kidneys were of an increased SUVACE2 . These findings on ACE2 PET were further verified by western blot. When compared with high-resolution computed tomography on structural changes and FDG PET on glycometabolism, ACE2 PET was superior in an earlier diagnostic window during infection and more comprehensive understanding of functional dysfunction post-infection. In the respective ACE2 PET/CT and ACE2 PET/MR scans of a volunteer, the repeatability of SUVACE2 and the ACE2 specificity were further confirmed. In conclusion, 68 Ga-cyc-DX600 was developed as an ACE2-specific tracer, and the corresponding ACE2 PET revealed the dynamic patterns of functional ACE2 recovery and provided a reference and approach to explore the ACE2-related pathological basis of sequelae in long COVID.


Asunto(s)
COVID-19 , Masculino , Humanos , Ratones , Animales , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2 , Síndrome Post Agudo de COVID-19 , Pandemias , Tomografía Computarizada por Tomografía de Emisión de Positrones
16.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38203474

RESUMEN

A cell population characterized by the release of glucose repression and known as [GAR+] emerges spontaneously in the yeast Saccharomyces cerevisiae. This study revealed that the [GAR+] variants exhibit retarded alcoholic fermentation when glucose is the sole carbon source. To identify the key to the altered glucose response, the gene expression profile of [GAR+] cells was examined. Based on RNA-seq data, the [GAR+] status was linked to impaired function of the Cyc8p-Tup1p complex. Loss of Cyc8p led to a decrease in the initial rate of alcoholic fermentation under glucose-rich conditions via the inactivation of pyruvate decarboxylase, an enzyme unique to alcoholic fermentation. These results suggest that Cyc8p can become inactive to attenuate alcoholic fermentation. These findings may contribute to the elucidation of the mechanism of non-genetic heterogeneity in yeast alcoholic fermentation.


Asunto(s)
Carbono , Saccharomyces cerevisiae , Fermentación , Glucosa , Piruvato Descarboxilasa/genética , Saccharomyces cerevisiae/genética
17.
BMC Genomics ; 23(1): 846, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36544087

RESUMEN

BACKGROUND: The ray and disc florets on the chrysanthemum capitulum are morphologically diverse and have remarkably abundant variant types, resulting in a rich variety of flower types. An anemone shape with pigmented and elongated disk florets is an important trait in flower shape breeding of chrysanthemums. The regulatory mechanism of their anemone-type disc floret formation was not clear, thus limiting the directional breeding of chrysanthemum flower types. In this study, we used morphological observation, transcriptomic analysis, and gene expression to investigate the morphogenetic processes and regulatory mechanisms of anemone-type chrysanthemum. RESULT: Scanning electron microscopy (SEM) observation showed that morphological differences between non-anemone-type disc florets and anemone-type disc florets occurred mainly during the petal elongation period. The anemone-type disc florets elongated rapidly in the later stages of development. Longitudinal paraffin section analysis revealed that the anemone-type disc florets were formed by a great number of cells in the middle layer of the petals with vigorous division. We investigated the differentially expressed genes (DEGs) using ray and disc florets of two chrysanthemum cultivars, 082 and 068, for RNA-Seq and their expression patterns of non-anemone-type and anemone-type disc florets. The result suggested that the CYCLOIDEA2 (CYC2s), MADS-box genes, and phytohormone signal-related genes appeared significantly different in both types of disc florets and might have important effects on the formation of anemone-type disc florets. In addition, it is noteworthy that the auxin and jasmonate signaling pathways might play a vital role in developing anemone-type disc florets. CONCLUSIONS: Based on our findings, we propose a regulatory network for forming non-anemone-type and anemone-type disc florets. The results of this study lead the way to further clarify the mechanism of the anemone-type chrysanthemum formation and lay the foundation for the directive breeding of chrysanthemum petal types.


Asunto(s)
Chrysanthemum , Transcriptoma , Fitomejoramiento , Flores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
18.
Food Chem X ; 15: 100375, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36211748

RESUMEN

In recent years, the residues of neonicotinoid insecticide in food and environmental samples have attracted extensive attention. Neonicotinoids have many adverse effects on human health, such as cancer, chronic disease, birth defects, and infertility. They have substantial toxicity to some non-target organisms (especially bees). Hence, monitoring the residues of neonicotinoid insecticides in foodstuffs is necessary to guarantee public health and ecological stability. This review aims to summarize and assess the metabolic features, residue status, sample pretreatment methods (solid-phase extraction (SPE), Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), and some novel pretreatment methods), and detection methods (instrument detection, immunoassay, and some innovative detection methods) for neonicotinoid insecticide residues in food and environmental samples. This review provides detailed references and discussion for the analysis of neonicotinoid insecticide residues, which can effectively promote the establishment of innovative detection methods for neonicotinoid insecticide residues.

19.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232994

RESUMEN

Yeasts provide attractive host/vector systems for heterologous gene expression. The currently used yeast-based expression platforms include mesophilic and thermotolerant species. A eukaryotic expression system working at low temperatures could be particularly useful for the production of thermolabile proteins and proteins that tend to form insoluble aggregates. For this purpose, an expression system based on an Antarctic psychrotolerant yeast Debaryomyces macquariensis strain D50 that is capable of growing at temperatures ranging from 0 to 30 °C has been developed. The optimal physical culture conditions for D. macquariensis D50 in a fermenter are as follows: temperature 20 °C, pH 5.5, aeration rate of 1.5 vvm, and a stirring speed of 300 rpm. Four integrative plasmid vectors equipped with an expression cassette containing the constitutive GAP promoter and CYC1 transcriptional terminator from D. macquariensis D50 were constructed and used to clone and express a gene-encoding cold-active ß-d-galactosidase of Paracoccus sp. 32d. The yield was 1150 U/L of recombinant yeast culture. Recombinant D. macquariensis D50 strains were mitotically stable under both selective and non-selective conditions. The D. macquariensis D50 host/vector system has been successfully utilized for the synthesis of heterologous thermolabile protein, and it can be an alternative to other microbial expression systems.


Asunto(s)
Paracoccus , Saccharomycetales , beta-Galactosidasa , Fermentación , Galactosidasas , Paracoccus/enzimología , Saccharomycetales/metabolismo , beta-Galactosidasa/biosíntesis
20.
Front Plant Sci ; 13: 994567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119616

RESUMEN

TCP proteins are plant-specific transcription factors, which are involved in a broad range of physiological processes of plant growth and development. However, the origin and evolutionary history of this gene family is not fully resolved. Here, we present a genome-wide survey of TCP genes in 59 species (including 42 genomes and 17 transcriptomes) covering all main lineages of green plants, and reconstruct the evolutionary history of this gene family. Our results suggested that the origin of TCP genes predated the emergence of land plants, possibly in the common ancestor of Phragmoplastophyta. The TCP gene family gradually experienced a continuous expansion and grew from a few members in algae, moss and lycophytes to dozens, and sometimes over 50 members in angiosperms. Phylogenetic analysis indicated that at least four subclades (Class I and three subclades of Class II) have been occurred in the ancestor of spermatophyte (seed plant). Both dispersed duplication and segmental duplication or whole-genome duplication (WGD) contributed significantly to the expansion of the TCP gene family over the course of evolution. Our findings provide a comprehensive evolutionary analysis of the TCP gene family and highlight the importance of gene duplications in the evolution of this plant-specific transcription factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...